首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subcellular localization of 1-aminocyclopropane-1-carboxylic acid oxidase (ACC oxidase), an enzyme involved in the biosynthesis of ethylene, has been studied in ripening fruits of tomato (Lycopersicum esculentum Mill.). Two types of antibody have been raised against (i) a synthetic peptide derived from the reconstructed pTOM13 clone (pRC13), a tomato cDNA encoding ACC oxidase, and considered as a suitable epitope by secondary-structure predictions; and (ii) a fusion protein overproduced in Escherichia coli expressing the pRC13 cDNA. Immunoblot analysis showed that, when purified by antigen affinity chromatography, both types of antibody recognized a single band corresponding to ACC oxidase. Superimposition of Calcofluor white with immunofluorescence labeling, analysed by optical microscopy, indicated that ACC oxidase is located at the cell wall in the pericarp of breaker tomato and climacteric apple (Malus × domestica Borkh.) fruit. The apoplasmic location of the enzyme was also demonstrated by the observation of immunogold-labeled antibodies in this region by both optical and electron microscopy. Transgenic tomato fruits in which ACC-oxidase gene expression was inhibited by an antisense gene exhibited a considerable reduction of labeling. Immunocytological controls made with pre-immune serum or with antibodies pre-absorbed on their corresponding antigens gave no staining. The discrepancy between these findings and the targeting of the protein predicted from sequences of ACC-oxidase cDNA clones isolated so far is discussed.  相似文献   

2.
Inactivation of 1-aminocyclopropane-1-carboxylate (ACC) oxidase   总被引:1,自引:0,他引:1  
The enzyme 1-aminocyclopropane-1-carboxylate (ACC) oxidase,which catalyses the final step in the biosynthesis of ethylene,showed a non-linear time-course in vitro and activity decayedwith a half-life of around 14 min. This loss of activity wasstudied using tomato ACC oxidase purified from Escherichia coiltransformed with the cDNA clone pTOM13. Inactivation was notdue to end-product inhibition by dehydroascorbic acid or cyanide.Preincubatlon of enzyme in the combined presence of Fe2+ ascorbateand ACC, which together allowed catalytic turnover, resultedin almost total loss of ACC oxidase activity. Enzyme Inactivatedby catalysis could not be reactivated by passage through SephadexG-25 or by treating with combina tions of DTT and CO2 A non-lineartime-course and inactivation in the presence of all substratesand cofactors was also shown for the enzyme assayed in vivowith melon fruit discs. Using the purified tomato enzyme a distinctascorbate-dependent inactivation was also observed, which occurredIn the absence of catalysis and was prevented, although notreversed, by catalase. This ascorbate-dependent inactivationmay thus be due to H2O2 attack on ACC oxidase. Key words: 1-aminocyclopropane-1-carboxylate (ACC) oxidase, catalase, catalytic inactivation, ethylene  相似文献   

3.
Yip WK  Dong JG  Yang SF 《Plant physiology》1991,95(1):251-257
1-Aminocyclopropane-1-carboxylate (ACC) synthase, a key enzyme in ethylene biosynthesis, was isolated and partially purified from apple (Malus sylvestris Mill.) fruits. Unlike ACC synthase isolated from other sources, apple ACC synthase is associated with the pellet fraction and can be solubilized in active form with Triton X-100. Following five purification steps, the solubilized enzyme was purified over 5000-fold to a specific activity of 100 micromoles per milligram protein per hour, and its purity was estimated to be 20 to 30%. Using this preparation, specific monoclonal antibodies were raised. Monoclonal antibodies against ACC synthase immunoglobulin were coupled to protein-A agarose to make an immunoaffinity column, which effectively purified the enzyme from a relatively crude enzyme preparation (100 units per milligram protein). As with the tomato enzyme, apple ACC synthase was inactivated and radiolabeled by its substrate S-adenosyl-l-methionine. Apple ACC synthase was identified to be a 48-kilodalton protein based on the observation that it was specifically bound to immunoaffinity column and it was specifically radiolabeled by its substrate S-adenosyl-l-methionine.  相似文献   

4.
The localization of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase was examined in suspension-cultured cells of tomato (Lycopersicon esculentum Mill.), using cell-fractionation techniques, followed by immunoblot analysis with monospecific antibodies raised against a tomato ACC oxidase expressed in Escherichia coli. When assayed in vivo, ACC oxidase had a low activity in untreated tomato cells but was strongly induced when the cells were supplied with its substrate, ACC. Immunoblots showed that this induction was accompanied by the accumulation of a single protein corresponding to ACC oxidase, with an apparent molecular mass (Mr) of 36 kDa. The level of this protein in induced cells, estimated by immunoblotting, was compared with that in protoplasts and vacuoles, and with that in various particulate and soluble fractions obtained by differential centrifugation of cell homogenates. It was found that the ACC oxidase antigen was absent from the vacuole, and that most of it was localized in the cytoplasm of the protoplasts without being associated with membranes. Measurements of ACC oxidase activity in preparations of protoplasts and vacuoles supported these results.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid We thank Martin Regenass (Friedrich Miescher-Institut, Basel, Switzerland) for maintaining the cell cultures and Georg Felix (Friedrich Miescher-Institut, Basel, Switzerland) for helpful discussions. This work was supported, in part, by the Swiss National Science Foundation, Grant 31-26492.89.  相似文献   

5.
6.
1-Aminocyclopropane-l-carboxylate (ACC) synthase from applefruits was purified over 5,000-fold by conventional column chromatography.By immunizing mice with this partially purified enzyme preparation,8 hybridoma lines producing monoclonal antibodies against appleACC synthase were isolated. While all 8 clones immunoprecipitatednative ACC synthase, only two clones recognized the putative(48 kDa) ACC synthase on Western blots. When a partially purifiedACC synthase preparation was incubated with S-adenosyl-L-[carboxyl-14C]methionine(AdoMet), only one radioactive protein of 48 kDa was detectedon sodium dodecyl sulfate-poly-acrylamide gel electrophoresis.This radioactive protein was specifically immunoprecipitatedby the monoclonal antibodies, indicating that apple ACC synthaseis specifically radiolabeled by its substrate AdoMet, as istomato ACC synthase. Thus, the monoclonal antibodies recognizedboth native and AdoMet-inactivated forms of ACC synthase. Whilethese antibodies failed to im-munoprecipitate ACC synthase isolatedfrom ripe tomato fruits, ripe avocado fruits or auxin-treatedmungbean hypocotyls, they were effective in immunoprecipitatingthe enzyme isolated from ripe pear fruits. (Received August 11, 1990; Accepted October 17, 1990)  相似文献   

7.
8.
A simple and sensitive chemical assay was developed for 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene. The assay is based on the liberation of ethylene from ACC at pH 11.5 in the presence of pyridoxal phosphate, MnCl2 and H2O2. This assay was used to detect ACC in extracts of tomato fruits (Lycopersicon esculentum Mill.) and to measure the activity of a soluble enzyme from tomato fruit that converted S-adenosylmethionine (SAM) to ACC. The enzyme had a Km of 13 M for SAM, and conversion of SAM to ACC was competitively and reversibly inhibited by aminoethoxyvinylglycine (AVG), an analog of rhizobitoxine. The Ki value for AVG was 0.2 M. The level of the ACC-forming enzyme activity was positively correlated with the content of ACC and the rate of ethylene formation in wild-type tomatoes of different developmental stages. Mature fruits of the rin (non-ripening) mutant of tomato, which only produce low levels of ethylene, contained much lower levels of ACC and of the ACC-forming enzyme activity than wild-type tomato fruits of comparable age.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine, the aminoethoxy analog of rhizobitoxine L-2-amino-4-(2-aminoethoxy)-trans-3-butenoic acid - SAM S-adenosyl-L-methionine Michigan Agricultural Experiment Station No. 8876  相似文献   

9.
1-Aminocyclopropane-1-carboxylic acid (ACC), which is a precursor of ethylene in plants, has never been known to occur in microorganisms. We describe the synthesis of ACC by Penicillium citrinum, purification of ACC synthase [EC 4.4.1.14] and ACC deaminase [EC 4.1.99.4], and their properties. Analyses of P. citrinum culture showed occurrence of ACC in the culture broth and in the cell extract. ACC synthase was purified from cells grown in a medium containing 0.05% L-methionine and ACC deaminase was done from cells incubated in a medium containing 1% 2-aminoisobutyrate. The purified ACC synthase, with a specific activity of 327 milliunit/mg protein, showed a single band of M r 48,000 in SDS-polyacrylamide gel electrophoresis. The molecular mass of the native enzyme by gel filtration was 96,000 Da. The ACC synthase had the K m for S-adenosyl-L-methionine of 1.74 mM and k cat of 0.56 s-1 per monomer. The purified ACC deaminase, with a specific activity of 4.7 unit/mg protein, showed one band in SDS-polyacrylamide gel electrophoresis of M r 41,000. The molecular mass of the native ACC deaminase was 68,000 Da by gel filtration. The enzyme had a K m for ACC of 4.8 mM and k cat of 3.52 s-1. The presence of 7 mM Cu2+ in alkaline buffer solution was effective for increasing the stability of the ACC deaminase in the process of purification.  相似文献   

10.
Satoh S  Yang SF 《Plant physiology》1988,88(1):109-114
1-Aminocyclopropane-1-carboxylic acid (ACC) synthase was partially purified from the homogenate of wounded tomato (Lycoperiscon esculentum Mill.) pericarp tissue by (NH4)2SO4 fractionation followed by conventional column chromatography with diethylaminoethyl-Sepharose, Sephadex G-150, Affi-Gel blue and hydroxylapatite. The partially purified ACC synthase preparation attained a specific activity of about 12,000 nmoles per hour per milligram protein. Employing this enzyme preparation, we confirmed that the ACC synthase was inactivated by its substrate, S-adenosyl-l-methionine (SAM), during its catalytic action. When the partially purified enzyme preparation was incubated with [3,4-14C]SAM and the resulting proteins were analyzed by sodium dodecyl sulfate-gel electrophoresis, only one radioactive protein band was observed. This protein was thought to be ACC synthase based on its molecular mass of 50 kD and on the fact that it was specifically bound to a monoclonal antibody against ACC synthase (AB Bleecker et al. 1986 Proc Natl Acad Sci USA 83, 7755-7759). These results suggest that the substrate SAM acts as an enzyme-activated inactivator of ACC synthase by covalently linking a fragment of SAM molecule to the active site of ACC synthase, resulting in the inactivation of the enzyme.  相似文献   

11.
In vivo ethylene production by hypocotyl segments of sunflower seedlings and in vitro activity of 1-aminocyclopropane-1-carboxylic acid oxidase (formerly ethylene-forming enzyme) extacted from the same tissues increase with increasing concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC) and oxygen. ACC oxidase activity follows Michaelis-Menten kinetics. The apparent Km values of the enzyme towards ACC, estimated in vivo and in vitro, are respectively 219 M and 20.6 M. Both Km values towards O2 are similar, ca 10.6–11.4%. A decrease in concentration in one of the substrates (ACC or O2) results in an increase in in vivo apparent Km of ACC oxidase for the other substrate. On the contrary, Km values of the enzyme towards ACC or O2 estimated in vitro are not dependent upon the concentration of the other substrate (ACC or O2).Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - MACC malonylate 1-aminocyclopropane-1-carboxylic acid - SD standard deviation  相似文献   

12.
Biotic stress like pathogenic infection increases ethylene biosynthesis in plants and ethylene inhibitors are known to alleviate the severity of plant disease incidence. This study aimed to reduce the bacterial spot disease incidence in tomato plants caused by Xanthomonas campestris pv. vesicatoria (XCV) by modulating stress ethylene with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity of Methylobacterium strains. Under greenhouse condition, Methylobacterium strains inoculated and pathogen challenged tomato plants had low ethylene emission compared to pathogen infected ones. ACC accumulation and ACC oxidase (ACO) activity with ACO related gene expression increased in XCV infected tomato plants over Methylobacterium strains inoculated plants. Among the Methylobacterium spp., CBMB12 resulted lowest ACO related gene expression (1.46 Normalized Fold Expression), whereas CBMB20 had high gene expression (3.42 Normalized Fold Expression) in pathogen challenged tomato. But a significant increase in ACO gene expression (7.09 Normalized Fold Expression) was observed in the bacterial pathogen infected plants. In contrast, Methylobacterium strains enhanced β-1,3-glucanase and phenylalanine ammonia-lyase (PAL) enzyme activities in pathogen challenged tomato plants. The respective increase in β-1,3-glucanase related gene expressions due to CBMB12, CBMB15, and CBMB20 strains were 66.3, 25.5 and 10.4% higher over pathogen infected plants. Similarly, PAL gene expression was high with 0.67 and 0.30 Normalized Fold Expression, in pathogen challenged tomato plants inoculated with CBMB12 and CBMB15 strains. The results suggest that ethylene is a crucial factor in bacterial spot disease incidence and that methylobacteria with ACC deaminase activity can reduce the disease severity with ultimate pathogenesis-related protein increase in tomato.  相似文献   

13.
14.
15.
16.
The characteristics of the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by pea (Pisum sativum L.) epicotyls and by pea epicotyl enzyme are compared. Of the four stereoisomers of 1-amino-2-ethylcyclopropane-1-carboxylic acid (AEC), only (1R,2S)-AEC is preferentially converted to 1-butene in pea epicotyls. This conversion is inhibited by ACC, indicating that butene production from (1R,2S)-AEC and ethylene production from ACC are catalyzed by the same enzyme. Furthermore, pea epicotyls efficiently convert ACC to ethylene with a low K m (66 M) for ACC and do not convert 4-methylthio-2-oxo-butanoic acid (KMB) to ethylene, thus demonstrating high specificity for its substrate. In contrast, the reported pea epicotyl enzyme which catalyzes the conversion of ACC to ethylene had a high K m (389 mM) for ACC and readily converted KMB to ethylene. We show, moreover, that the pea enzyme catalyzes the conversion of AEC isomers to butene without stereodiscrimination. Because of its lack of stereospecificity, its low affinity for ACC and its utilization of KMB as a substrate, we conclude that the reported pea enzyme system is not related to the in-vivo ethylene-forming enzyme.Abbreviations ACC 1-Amino cyclopropane-1-carboxylic acid - AEC 1-amino-2-ethylcyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - KMB 4-methylthio-2-oxobutanoic acid  相似文献   

17.
An ethylene-forming enzyme from Citrus unshiu fruits was purified some 630-fold. The enzyme catalysed ethylene formation from 1-aminocyclopropane-1-carboxylic acid in the presence of pyridoxal phosphate, β-indoleacetic acid, Mn2+ and 2,4-dichlorophenol. It behaved as a protein of MW 40 000 on Sephacryl S-200 gel filtration, and gave one band corresponding to a MW of 25 000 on SDS-PAGE. It had a specific activity of 0.025 μmol/min·mg protein. It exhibited IAA oxidase activity and had no guaiacol peroxidase or NADH oxidase activity. Its Km for ACC was 2.8 mM, and its pH optimum was 5.7. It was inhibited by potassium cyanide n-propyl gallate and Tiron. d-Mannose, histidine, iodoacetate, PCMB, dimethylfuran and superoxide dismutase showed no inhibition. β-Indoleacrylic acid against IAA competitively inhibited ethylene formation. Other IAA analogues, such as β-indolepropionic acid, β-indolecarboxylic acid and β-indolebutylic acid, slightly stimulated ethylene formation. β-Indoleacrylic acid against 1-aminocyclopropane-1-carboxylic acid non-competitively inhibited ethylene formation. Ascorbate was a potent inhibitor. The inhibitory effects, however, were not always reproduced in vivo. It is difficult to identify this enzyme system as a natural in vivo system from the above observations. Nevertheless, the possible in vivo participation of this in vitro enzyme system is discussed.  相似文献   

18.
19.
《Plant science》1986,43(1):13-17
Intact plant mitochondria, isolated from climacteric (Lycopersicon esculentum, Mill., tomato) or non-climacteric (Solanum tuberosum, L., potato) tissues, and purified on Percoll density gradients, were unable to convert 1-aminocyclopropane 1-carboxylic acid (ACC) to ethylene. Energization or sonication did not enhance ethylene production. For both tissues, the low activity of ACC conversion found in crude mitochondrial fractions from both tissues was increased by sonication. After mitochondrial purification, this activity was located on top of the gradient together with the microsomal membrane fraction containing a high lipoxygenase activity. Addition of exogenous lipoxygenase and linoleic acid to isolated tomato or potato mitochondria greatly enhanced ACC conversion (to approx. 300 pmol h−1 mg−1 protein). Direct measurements of ACC uptake by mitochondria indicated that ACC uptake is not dependent on energization.  相似文献   

20.
A partially purified preparation of 1-aminocyclopropane-1-carboxylate (ACC) synthase (EC 4.4.1.14) from tomato (Lycopersicon esculentum (Mill.) fruit tissue was used to generate monoclonal antibodies (MAb) specific for the two different MAbs yielded a 50-kDa polypeptide as shown by sodium dodecylsulfate-polyacrylamide gel electrophoresis. An enzyme-linked immunosorbent assay (ELISA) capable of detecting <1 ng of antigen was developed. The ELISA system was used to demonstrate that two of the MAbs recognized different epitopes on the ACC-synthase protein. Wound-induced increases in ACC-synthase activity in tomato fruit tissue were correlated with changes in ELISA-detectable protein. In-vivo labeling of wounded tissue with [35S]methionine followed by extraction and immunopurification in the presence of various protease inhibitors yielded one major radioactive band of 50 kDa molecular mass. Pulse labeling with [35S]methionine at various times after wounding indicated that the wound-induced increase in ACC-synthase activity involved de-novo synthesis of a rapidly turning over 50-kDa polypeptide.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - ELISA enzyme-linked immunosorbent assay - MAb monoclonal antibody - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号