首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The three disulfide bonds of the gene-3-protein of the phage fd are essential for the conformational stability of this protein, and it unfolds when they are removed by reduction or mutation. Previously, we used an iterative in vitro selection strategy to generate a stable and functional form of the gene-3-protein without these disulfides. It yielded optimal replacements for the disulfide bonds as well as several stabilizing second-site mutations. The best selected variant showed a higher thermal stability compared with the disulfide-bonded wild-type protein. Here, we investigated the molecular basis of this strong stabilization by solving the crystal structure of this variant and by analyzing the contributions to the conformational stability of the selected mutations individually. They could mostly be explained by improved side-chain packing. The R29W substitution alone increased the midpoint of the thermal unfolding transition by 14 deg and the conformational stability by about 25 kJ mol− 1. This key mutation (i) removed a charged side chain that forms a buried salt bridge in the disulfide-containing wild-type protein, (ii) optimized the local packing with the residues that replace the C46-C53 disulfide and (iii) improved the domain interactions. Apparently, certain residues in proteins indeed play key roles for stability.  相似文献   

2.
The present study characterizes the unfolding and folding processes of recombinant manganese peroxidase. This enzyme contains five disulfide bonds, two calcium ions, and one heme prosthetic group. Circular dichroism in the far UV was used to monitor global changes of the protein secondary structure, whereas UV-visible spectroscopy of the Soret band provided information about local changes in the heme cavity. The effects of reducing agents, oxidizing agents, and denaturants on this process were investigated. In addition to affecting the secondary structure content, these factors also affect the binding of the heme and the calcium ions, both of which have a significant effect on the folding process. Our results also show that denaturants induce irreversible changes, which are most likely due to the inability of the denatured protein to rebind either calcium or the heme. Breaking of disulfide bonds by 30 mM dithiothreitol causes complete unfolding of recombinant manganese peroxidase. The unfolding process was also studied at low and high pH, where the protein reaches the final unfolded state through two different intermediate states. The data also indicate that only the acidic folding-unfolding process is reversible. Our results indicate a complex synergistic relationship between the secondary structure content, the tertiary structure arrangement, and the binding of the heme and the calcium ions and disulfide bridge formation.  相似文献   

3.
The extremely heat-stable 5'-methylthioadenosine phosphorylase from the hyperthermophilic archaeon Pyrococcus furiosus was cloned, expressed to high levels in Escherichia coli, and purified to homogeneity by heat precipitation and affinity chromatography. The recombinant enzyme was subjected to a kinetic analysis including initial velocity and product inhibition studies. The reaction follows an ordered Bi-Bi mechanism and phosphate binding precedes nucleoside binding in the phosphorolytic direction. 5'-Methylthioadenosine phosphorylase from Pyrococcus furiosus is a hexameric protein with five cysteine residues per subunit. Analysis of the fragments obtained after digestion of the protein alkylated without previous reduction identified two intrasubunit disulfide bridges. The enzyme is very resistant to chemical denaturation and the transition midpoint for guanidinium chloride-induced unfolding was determined to be 3.0 M after 22 h incubation. This value decreases to 2.0 M in the presence of 30 mM dithiothreitol, furnishing evidence that disulfide bonds are needed for protein stability. The guanidinium chloride-induced unfolding is completely reversible as demonstrated by the analysis of the refolding process by activity assays, fluorescence measurements and SDS/PAGE. The finding of multiple disulfide bridges in 5'-methylthioadenosine phosphorylase from Pyrococcus furiosus argues strongly that disulfide bond formation may be a significant molecular strategy for stabilizing intracellular hyperthermophilic proteins.  相似文献   

4.
Disulfide bonds play diverse structural and functional roles in proteins. In tear lipocalin (TL), the conserved sole disulfide bond regulates stability and ligand binding. Probing protein structure often involves thiol selective labeling for which removal of the disulfide bonds may be necessary. Loss of the disulfide bond may destabilize the protein so strategies to retain the native state are needed. Several approaches were tested to regain the native conformational state in the disulfide-less protein. These included the addition of trimethylamine N-oxide (TMAO) and the substitution of the Cys residues of disulfide bond with residues that can either form a potential salt bridge or others that can create a hydrophobic interaction. TMAO stabilized the protein relaxed by removal of the disulfide bond. In the disulfide-less mutants of TL, 1.0 M TMAO increased the free energy change (ΔG0) significantly from 2.1 to 3.8 kcal/mol. Moderate recovery was observed for the ligand binding tested with NBD-cholesterol. Because the disulfide bond of TL is solvent exposed, the substitution of the disulfide bond with a potential salt bridge or hydrophobic interaction did not stabilize the protein. This approach should work for buried disulfide bonds. However, for proteins with solvent exposed disulfide bonds, the use of TMAO may be an excellent strategy to restore the native conformational states in disulfide-less analogs of the proteins.  相似文献   

5.
Helicobacter pylori cysteine-rich proteins (Hcps) are disulfide-containing repeat proteins. The repeating unit is a 36-residue, disulfide-bridged, helix-loop-helix motif. We use the protein HcpB, which has four repeats and four disulfide bridges arrayed in tandem, as a model to determine the thermodynamic stability of a disulfide-rich repeat protein and to study the formation and the contribution to stability of the disulfide bonds. When the disulfide bonds are intact, the chemical unfolding of HcpB at pH 5 is cooperative and can be described by a two-state reaction. Thermal unfolding is reversible between pH 2 and 5 and irreversible at higher pH 5. Differential scanning calorimetry shows noncooperative structural changes preceding the main thermal unfolding transition. Unfolding of the oxidized protein is not an all-or-none two-state process, and the disulfide bonds prevent complete unfolding of the polypeptide chain. The reduced protein is significantly less stable and does not unfold in a cooperative way. During oxidative refolding of the fully reduced protein, all the possible disulfide intermediates with a correct disulfide bond are formed. Formation of "wrong" (non-native) disulfide bonds could not be demonstrated, indicating that the reduced protein already has some partial repeating structure. There is a major folding intermediate with disulfides in the second, third, and fourth repeat and reduced cysteines in the first repeat. Disulfide formation in the first repeat limits the overall rate of oxidative refolding and contributes about half of the thermodynamic stability to native HcpB, estimated as 27 kJ mol(-1) at 25 degrees C and pH 7. The high contribution to stability of the first repeat may be explained by the repeat acting as a cap to protect the hydrophobic interior of the molecule.  相似文献   

6.
Disulfide bonds between the side chains of cysteine residues are the only common crosslinks in proteins. Bovine pancreatic ribonuclease A (RNase A) is a 124-residue enzyme that contains four interweaving disulfide bonds (Cys26-Cys84, Cys40-Cys95, Cys58-Cys110, and Cys65-Cys72) and catalyzes the cleavage of RNA. The contribution of each disulfide bond to the conformational stability and catalytic activity of RNase A has been determined by using variants in which each cystine is replaced independently with a pair of alanine residues. Thermal unfolding experiments monitored by ultraviolet spectroscopy and differential scanning calorimetry reveal that wild-type RNase A and each disulfide variant unfold in a two-state process and that each disulfide bond contributes substantially to conformational stability. The two terminal disulfide bonds in the amino-acid sequence (Cys26-Cys84 and Cys58-Cys110) enhance stability more than do the two embedded ones (Cys40-Cys95 and Cys65-Cys72). Removing either one of the terminal disulfide bonds liberates a similar number of residues and has a similar effect on conformational stability, decreasing the midpoint of the thermal transition by almost 40 degrees C. The disulfide variants catalyze the cleavage of poly(cytidylic acid) with values of kcat/Km that are 2- to 40-fold less than that of wild-type RNase A. The two embedded disulfide bonds, which are least important to conformational stability, are most important to catalytic activity. These embedded disulfide bonds likely contribute to the proper alignment of residues (such as Lys41 and Lys66) that are necessary for efficient catalysis of RNA cleavage.  相似文献   

7.
To find a disulfide pair that could stabilize the enzyme human carbonic anhydrase II (HCA II), we grafted the disulfide bridge from the related and unusually stable carbonic anhydrase form from Neisseria gonorrhoeae (NGCA) into the human enzyme. Thus, the two Cys residues at positions 23 and 203 were engineered into a pseudo-wild-type form of HCA II (C206S), giving the mutant C206S/A23C/L203C. The disulfide bond was not formed spontaneously. The native state of the reduced form of the mutant was markedly destabilized (2.9 kcal/mol) compared to that of HCA II. Formation of a disulfide bridge was achieved by treatment by oxidized glutathione. This led to a significant stabilization of the native conformation. Compared to HCA II the unfolding midpoint for the variant was increased from 0.9 to 1.7 M guanidine HCl, corresponding to a stabilization of 3.7 kcal/mol. This makes the human enzyme almost as stable as the model protein NGCA, for which the unfolding of the native state has a midpoint at 2.1 M guanidine HCl. The stabilized protein underwent, contrary to all other investigated variants of HCA II, an apparent two-state unfolding transition, as judged from intrinsic Trp fluorescence measurements. A molten-globule intermediate is nevertheless formed but is suppressed because of the high denaturant pressure it faces upon rupture of the native state.  相似文献   

8.
Disulfide bonds are known to be crucial for protein stability. To probe the contribution of each of the five disulfide bonds (C9-C31, C30-C70, C37-C63, C61-C95, and C105-C113) in bee venom phospholipase A2 to stability, variants with deleted disulfide bonds were produced by substituting two serine residues for each pair of cysteine residues. The mutations started from the pseudo-wild-type variant (pWT) with the mutation I1A (Markert et al., Biotechnol. Bioeng. 98 (2007) 48-59). All variants were expressed in Escherichia coli, refolded from inclusion bodies and purified as pWT. The activity of the variants ranged from 12 to 82% of pWT. From the transition curves of guanidine hydrochloride-induced unfolding, the contributions of the individual disulfide bonds to conformational stability were estimated. They increased in the sequence C9-C31 < C105-C113 < C30-C70 ≈ C37-C63 < C61-C95. For two disulfide bonds (C9-C31, C105-C113) the effects were confirmed on additionally produced variants with the substitution of cysteine by alanine. Despite distinct differences in stability, all variants showed similar cooperativity in unfolding. Selected variants were also probed for proteolytic stability toward thermolysin. The removal of disulfide bonds increased the proteolytic susceptibility of the native proteins in the same way as the stability decreased. From the comparison of the results with literature data on phospholipase A2 from bovine pancreas possessing seven disulfide bonds, it was concluded that conserved disulfide bonds in homologous proteins fulfill related functions in conformational stability.  相似文献   

9.
Human immunoglobulin G1 (IgG1) contains 12 domains, and each has an intrachain disulfide bond that connects the two layers of antiparallel β-sheets. These intrachain disulfide bonds are shielded from solvents under native conditions. Therefore, accessibility of the disulfide bonds to reduction under conditions that unfold antibody has the potential to be a good indicator of the thermodynamic stability of each domain. The stability of a recombinant monoclonal antibody at the domain level was investigated using a novel method involving reduction of the disulfide bonds in the presence of increasing amounts of guanidine hydrochloride and alkylation with [12C]iodoacetic acid, which was followed by reduction of the remaining disulfide bonds and alkylation with [13C]iodoacetic acid. The percentage of modification by [12C]iodoacetic acid of each cysteine residue was calculated using mass spectra of the cysteine-containing tryptic peptides and used to follow the unfolding of each domain. It demonstrated that the CH2 domain was the least stable domain of the antibody, whereas the CH3 domain was the most stable domain of the antibody. Other domains showed intermediate resistance to the denaturant concentration, similar to the overall unfolding transition monitored by the intrinsic tryptophan fluorescence wavelength shift.  相似文献   

10.
Detailed circular dichroism and fluorescence studies at different pHs have been carried out to monitor thermal unfolding of horseradish peroxidase isoenzyme c (HRPc). The change in CD in the 222 nm region corresponds to changes in the overall secondary structure of the enzyme, while that in the 400 nm region (Soret region) corresponds to changes in the tertiary structure around the heme in the enzyme. The temperature dependence of the tertiary structure around the heme also affected the intrinsic tryptophan fluorescence emission spectrum of the enzyme. The results suggested that melting of the tertiary structure to a pre-molten globule form takes place at 45 degrees C, which is much lower than the temperature (T(m) = 74 degrees C) at which depletion of heme from the heme cavity takes place. The melting of the tertiary structure was found to be associated with a pK(a) of approximately 5, indicating that this phase possibly involves breaking of the hydrogen-bonding network of the heme pocket, keeping the heme moiety still inside it. The stability of the secondary structure of the enzyme was also found to decrease at pH below 4.5. A 'high temperature' unfolding phase was observed which was, however, independent of pH. The stability of the secondary structure was found to drastically decrease in the presence of DTT (dithiothreitol), indicating that the 'high temperature' form is possibly stabilized due to interhelical disulfide bonds. Depletion of Ca(2+) ions resulted in a marked decrease in the stability of the secondary structure of the enzyme.  相似文献   

11.
Reduction of proteins which require disulfide bonds to be stable in the folded state is accompanied by step-wise unfolding. A soluble human interferon gamma receptor produced in Escherichia coli was used to investigate the kinetics of formation of unfolding intermediates. The protein includes 8 cysteine residues forming four disulfide bonds. It was reduced by using either dithiothreitol or the thioredoxin reduction system. Reduction with dithiothreitol resulted in formation of mainly four monomeric unfolding species as visualized by sodium dodecyl sulfate-polyacrylamide gels. The enzymatically catalyzed reaction produced only small amounts of two monomeric products and mostly delivered oligomeric and polymeric forms. In both cases, the ligand binding capacity of the receptor was significantly reduced immediately after appearance of the first intermediate. The intermediates involved interchange of disulfide bonds and did not show ligand binding capacity. Some of them were recognized by specific antibodies which detect conformational epitopes on the native interferon gamma receptor. On the basis of the antibody binding, a preliminary characterization of the formed intermediates was attempted. When the soluble receptor was reduced in the presence of denaturing agents, the reduction products were different from the unfolding intermediates generated in the absence of denaturants.  相似文献   

12.
NAD-glycohydrolase (AA-NADase) from Agkistrodon acutus venom is a unique multicatalytic enzyme with both NADase and AT(D)Pase-like activities. Among all identified NADases, only AA-NADase is a disulfide-linked dimer and contains Cu(2+). Cu(2+) and disulfide bonds are essential for its multicatalytic activity. In this study, the effects of Cu(2+) and disulfide-bonds on guanidine hydrochloride (GdnHCl)- and thermal-induced unfolding of AA-NADase have been investigated by fluorescence, circular dichroism (CD) and differential scanning calorimetry (DSC). Cu(2+) and disulfide bonds not only increase the free energy change during the GdnHCl-induced unfolding as determined by fluorescence, but also increase the overall enthalpy change and the transition temperature during the thermal-induced unfolding as determined by CD and DSC. The slope of the GdnHCl-induced unfolding curve at its midpoint and the heat capacity of thermal-induced unfolding are slightly affected by Cu(2+) but significantly decrease after reduction of three disulfide-bonds. This work suggests that Cu(2+) stabilizes the folded state by increasing the enthalpy of unfolding, while disulfide-bonds stabilize the folded state by increasing the enthalpy of unfolding and stabilizing the packing of hydrophobic residues. Thus both Cu(2+) and disulfide bonds play a structural role in its multicatalytic activity.  相似文献   

13.
We provide evidence that in vitro protein cross-linking can be accomplished in three concerted steps: (i) a change in protein conformation; (ii) formation of interchain disulfide bonds; and (iii) formation of interchain isopeptide cross-links. Oxidative refolding and thermal unfolding of ribonuclease A, lysozyme, and protein disulfide isomerase led to the formation of cross-linked dimers/oligomers as revealed by SDS-polyacrylamide gel electrophoresis. Chemical modification of free amino groups in these proteins or unfolding at pH < 7.0 resulted in a loss of interchain isopeptide cross-linking without affecting interchain disulfide bond cross-linking. Furthermore, preformed interchain disulfide bonds were pivotal for promoting subsequent interchain isopeptide cross-links; no dimers/oligomers were detected when the refolding and unfolding solution contained the reducing agent dithiothreitol. Similarly, the Cys326Ser point mutation in protein disulfide isomerase abrogated its ability to cross-link into homodimers. Heterogeneous proteins become cross-linked following the formation of heteromolecular interchain disulfide bonds during thermal unfolding of a mixture of of ribonuclease A and lysozyme. The absence of glutathione and glutathione disulfide during the unfolding process attenuated both the interchain disulfide bond cross-links and interchain isopeptide cross-links. No dimers/oligomers were detected when the thermal unfolding temperature was lower than the midpoint of thermal denaturation temperature.  相似文献   

14.
N S Reading  S D Aust 《Biochemistry》2001,40(27):8161-8168
Phanerochaete chrysosporium manganese peroxidase (MnP) [isoenzyme H4] was engineered with additional disulfide bonds to provide structural reinforcement to the proximal and distal calcium-binding sites. This rational protein engineering investigated the effects of multiple disulfide bonds on the stabilization of the enzyme heme environment and oxidase activity. Stabilization of the heme environment was monitored by UV-visible spectroscopy based on the electronic state of the alkaline transition species of ferric and ferrous enzyme. The optical spectral data confirm an alkaline transition to hexacoordinate, low-spin heme species for native and wild-type MnP and show that the location of the engineered disulfide bonds in the protein can have significant effects on the electronic state of the enzyme. The addition of a single disulfide bond in the distal region of MnP resulted in an enzyme that maintained a pentacoordinate, high-spin heme at pH 9.0, whereas MnP with multiple engineered disulfide bonds did not exhibit an increase in stability of the pentacoordinate, high-spin state of the enzyme at alkaline pH. The mutant enzymes were assessed for increased stability by incubation at high pH. In comparison to wild-type MnP, enzymes containing engineered disulfide bonds in the distal and proximal regions of the protein retained greater levels of activity when restored to physiological pH. Additionally, when assayed for oxidase activity at pH 9.0, proteins containing engineered disulfide bonds exhibited slower rates of inactivation than wild-type MnP.  相似文献   

15.
Horseradish Peroxidase (HRP) is one of the most studied peroxidases and a great number of chemical modifications and genetic manipulations have been carried out on its surface accessible residues to improve its stability and catalytic efficiency necessary for biotechnological applications. Most of the stabilized derivatives of HRP reported to date have involved chemical or genetic modifications of three surface-exposed lysines (K174, K232 and K241). In this computational study, we altered these lysines to phenylalanine residues to model those chemical modifications or genetic manipulations in which these positively charged lysines are converted to aromatic hydrophobic residues. Simulation results implied that upon these substitutions, the protein structure becomes less flexible. Stability gains are likely to be achieved due to the increased number of stable hydrogen bonds, improved heme-protein interactions and more integrated proximal Ca2+ binding pocket. We also found a new persistent hydrogen bond between the protein moiety (F174) and the heme prosthetic group as well as two stitching hydrogen bonds between the connecting loops GH and F′F″ in mutated HRP. However, detailed analysis of functionally related structural properties and dynamical features suggests reduced reactivity of the enzyme toward its substrates. Molecular dynamics simulations showed that substitutions narrow the bottle neck entry of peroxide substrate access channel and reduce the surface accessibility of the distal histidine (H42) and heme prosthetic group to the peroxide and aromatic substrates, respectively. Results also demonstrated that the area and volume of the aromatic-substrate binding pocket are significantly decreased upon modifications. Moreover, the hydrophobic patch functioning as a binding site or trap for reducing aromatic substrates is shrunk in mutated enzyme. Together, the results of this simulation study could provide possible structural clues to explain those experimental observations in which the protein stability achieved concurrent with a decrease in enzyme activity, upon manipulation of charge/hydrophobicity balance at the protein surface.  相似文献   

16.
Heme-propionates of horseradish peroxidase (HRP) were esterified by p-nitrophenol, phenol and p-methylphenol to change its electron character and to increase its hydrophobicity. These synthetic hemes were inserted apo-HRP to give a novel HRP, respectively. Of the three reconstituted HRPs, reconstituted HRP with p-nitrophenol-modified heme derivative had a larger initial rate, affinity, catalytic efficiency and substrate-binding efficiency than native HRP in aqueous buffer and some solvents. The reconstituted HRPs showed higher thermostability and tolerance of DMF because of the increase of the hydrophobicity of the active site. Changing the electron character of the aromatic moieties linked at each terminal of the two heme-propionates can control activity and stability of HRP. The initial rate, affinity, catalytic efficiency and substrate-binding efficiency increased with the increases of electron-withdrawing efficiency of substituents at 4-position of the phenolic used to synthesize the heme derivatives, contrariwise, the stability decreased. The modifications resulted in the increase in the temperature (Tm) at the midpoint of thermal denaturation and the decreases in both enthalpy and entropy change at Tm. The changes of catalytic properties and stabilities are related to the changes of the conformation of HRP. The modification changed the environment of heme and tryptophan, increased α-helix content of HRP. The present work demonstrates that enhancement of the hydrophobicity and the electron-withdrawing efficiency of heme improves the activity and stability of HRP.  相似文献   

17.
The significant contribution of disulfide bonds to the conformational stability of proteins is generally considered to result from an entropic destabilization of the unfolded state causing a faster escape of the molecules to the native state. However, the introduction of extra disulfide bonds into proteins as a general approach to protein stabilization yields rather inconsistent results. By modeling studies, we selected positions to introduce additional disulfide bonds into ribonuclease A at regions that had proven to be crucial for the initiation of the folding or unfolding process, respectively. However, only two out of the six variants proved to be more stable than unmodified ribonuclease A. The comparison of the thermodynamic and kinetic data disclosed a more pronounced effect on the unfolding reaction for all variants regardless of the position of the extra disulfide bond. Native-state proteolysis indicated a perturbation of the native state of the destabilized variants that obviously counterbalances the stability gain by the extra disulfide bond.  相似文献   

18.
We report for the first time the stabilization of an immunoglobulin fold domain by an engineered disulfide bond. In the llama single-domain antibody, which has human chorionic gonadotropin as its specific antigen, Ala49 and Ile70 are buried in the structure. A mutant with an artificial disulfide bond at this position showed a 10 degrees C higher midpoint temperature of thermal unfolding than that without the extra disulfide bond. The modified domains exhibited an antigen binding affinity comparable with that of the wild-type domain. Ala49 and Ile70 are conserved in camel and llama single-domain antibody frameworks. Therefore, domains against different antigens are expected to be stabilized by the engineered disulfide bond examined here. In addition to the effect of the loop constraints in the unfolded state, thermodynamic analysis indicated that internal interaction and hydration also control the stability of domains with disulfide bonds. The change in physical properties resulting from mutation often causes unpredictable and destabilizing effects on these interactions. The introduction of a hydrophobic cystine into the hydrophobic region maintains the hydrophobicity of the protein and is expected to minimize the unfavorable mutational effects.  相似文献   

19.
Seo ES  Sherman JC 《Biopolymers》2007,88(5):774-779
Four-, five-, and six-helix bundle template assembled synthetic proteins (TASPs) have been synthesized using disulfide bonds between cavitand templates and peptides, and characterized in terms of stability and structural specificity. The peptide sequence (CGGGEELLKKLEE LLKKG) used was originally designed for a four-helix bundle. The TASPs were analyzed using CD spectroscopy, chemical denaturation studies, NMR spectroscopy, sedimentation equilibria studies, and hydrophobic dye binding studies to determine the effect of a single peptide sequence when incorporated into bundles with different numbers of helices. If the design was indeed idealized for a four-helix bundle, then the five- and six-helix bundles should be less stable and manifest lower conformational specificity. The TASPs all demonstrated high stability and cooperative unfolding. However, the four-helix bundle was found to be significantly more stable and nativelike compared to the five- and six-helix bundles. This suggests that the peptide sequence is specific to the four-helix bundle, as designed. This result demonstrates the ability to design de novo proteins with specified structure, not just generic stability.  相似文献   

20.
We have developed a screening method to identify stable protein mutants from a large number of sequences using a cellular quality control system. This method was used to screen amino acid pairs substituted for the disulfide (S-S) bond between residues 14 and 38 of bovine pancreatic trypsin inhibitor. The mutants selected could be divided into two groups: one with mutation C14G and the other with mutation C38V. Although each mutation did not fully compensate for the destabilizing effect of removal of the S-S bond, these mutants have midpoint temperatures of thermal unfolding that are 12-17 degrees C higher than that of the C14A/C38A mutant. This fact indicates that these mutations are better substitutions for the S-S bond than C14A/C38A. The C14G mutants inhibited trypsin more strongly at 37 degrees C than did the C14A/C38A mutant, although bulky amino acids at position 14 largely diminished the inhibitory activity of the C38V mutants. Thermodynamic analysis indicated that the enthalpy of unfolding of the C14G and C38V mutant groups differed considerably, which suggests different stabilizing mechanisms in these two groups. Because renaturation of S-S bonds is often difficult in the large scale production of proteins, this method should provide a useful tool with which to increase the production of recombinant proteins by eliminating S-S bonds with minimum concomitant stability loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号