首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The number of species that live in a habitat typically declines as that habitat becomes more isolated. However, the influence of habitat isolation on patterns of food web structure, in particular the ratio of predator to prey species richness, is less well understood. We placed aquatic mesocosms at varying distances from ponds that acted as sources of potential colonists; then we examined how isolation affected the ratio of predator:prey species richness in the communities that assembled. In the final sampling, a total of 21 species (12 prey and 9 predators) of insects, crustaceans, and amphibians had colonized the mesocosms. We found that total species richness, as well as the richness of predators and prey, declined with increasing isolation. However, predator richness declined more rapidly than prey richness with increasing isolation, which lead to decreasing predator:prey ratios. This result conflicts with prior demonstrations of invariant predator:prey ratios in freshwater communities.  相似文献   

2.
Lindgren funnel traps baited with aggregation pheromones are widely used to monitor and manage populations of economically important bark beetles (Coleoptera: Scolytidae). This study was designed to advance our understanding of how funnel trap catches assess bark beetle communities and relative abundance of individual species. In the second year (2005) of a 3-yr study of the bark beetle community structure in north-central Arizona pine (Pinus spp.) forests, we collected data on stand structure, site conditions, and local bark beetle-induced tree mortality at each trap site. We also collected samples of bark from infested (brood) trees near trap sites to identify and determine the population density of bark beetles that were attacking ponderosa pine, Pinus ponderosa Douglas ex Lawson, in the area surrounding the traps. Multiple regression models indicated that the number of Dendroctonus and Ips beetles captured in 2005 was inversely related to elevation of the trap site, and positively associated with the amount of ponderosa pine in the stand surrounding the site. Traps located closer to brood trees also captured more beetles. The relationship between trap catches and host tree mortality was weak and inconsistent in forest stands surrounding the funnel traps, suggesting that trap catches do not provide a good estimate of local beetle-induced tree mortality. However, pheromone-baited funnel trap data and data from gallery identification in bark samples produced statistically similar relative abundance profiles for the five species of bark beetles that we examined, indicating that funnel trap data provided a good assessment of species presence and relative abundance.  相似文献   

3.
In this study, we compared ground-dwelling beetle assemblages (Coleoptera) from a range of different oak fragments and surrounding conifer plantations to evaluate effects of forest size and surrounding matrix habitat in a temperate forest of north China. During 2000, beetles were sampled via pitfall traps within two large oak fragments (ca. 2.0-4.0 ha), two small oak fragments (ca. 0.2-0.4 ha) and two surrounding matrices dom- inated by pine plantations (〉4 ha) in two sites of different aspects. Overall, no significantly negative effects from forest patch size and the surrounding matrix habitat were detected in total species number and abundance of ground-dwelling beetles. However, compared with small oak patches or pine plantations, more species were associated with an affinity for at least one large oak patch of the two aspects. Multivariate regression trees showed that the habitat type better determined the beetle assemblage structure than patch size and aspect, indicating a strong impact of the surrounding matrix. Linear mixed models indicated that species richness and abundance of all ground-dwelling beetles or beetle families showed different responses to the selected environmental variables. Our results suggest that more disturbed sites are significantly poorer in oak forest specialists, which are usually more abundant in large oak fragments and decrease in abundance or disappear in small fragments and surrounding matrix habitats. Thus, it is necessary to preserve a minimum size of forest patch to create conditions characteristic for forest interior, rather than the more difficult task of increasing habitat connectivity.  相似文献   

4.
Almany GR 《Oecologia》2004,141(1):105-113
Greater structural complexity is often associated with greater abundance and diversity, perhaps because high complexity habitats reduce predation and competition. Using 16 spatially isolated live-coral reefs in the Bahamas, I examined how abundance of juvenile (recruit) and adult (non-recruit) fishes was affected by two factors: (1) structural habitat complexity and (2) the presence of predators and interference competitors. Manipulating the abundance of low and high complexity corals created two levels of habitat complexity, which was cross-factored with the presence or absence of resident predators (sea basses and moray eels) plus interference competitors (territorial damselfishes). Over 60 days, predators and competitors greatly reduced recruit abundance regardless of habitat complexity, but did not affect adult abundance. In contrast, increased habitat complexity had a strong positive effect on adult abundance and a weak positive effect on recruit abundance. Differential responses of recruits and adults may be related to the differential effects of habitat complexity on their primary predators. Sedentary recruits are likely most preyed upon by small resident predators that ambush prey, while larger adult fishes that forage widely and use reefs primarily for shelter are likely most preyed upon by large transient predators that chase prey. Increased habitat complexity may have inhibited foraging by transient predators but not resident predators. Results demonstrate the importance of habitat complexity to community dynamics, which is of concern given the accelerated degradation of habitats worldwide.  相似文献   

5.
The arthropod communities are influenced by both local conditions and features of the surrounding landscape. Landscape complexity and stand factors may both influence arthropod communities in poplar forests, but the multiscale effects of these factors on poplar defoliators and natural enemies are still poorly understood. We collected poplar arthropods at 30 sampling sites within five forest landscapes in Xinjiang, China, and assessed whether landscape complexity and stand factors influence species abundance and diversity of poplar arthropods. Landscape complexity was quantified by several independent metrics of landscape composition, configuration, and connectivity at three spatial scales. We also determined the most powerful explanatory variables and the scale effect of each arthropod. Results found that landscape complexity and stand factors had different effects on different poplar arthropod communities. Landscape complexity promoted natural enemies at different spatial scales, but it inhibited the population of poplar defoliators at the scale of 200 m. Specifically, the abundance and diversity of all defoliators decreased with increasing proportion of nonhost plants. Landscape diversity only had a negative effect on defoliator abundance. The shape complexity of habitat patches increased the abundance of carabid beetles but reduced the abundance of green leafhoppers and migratory locusts. The abundance and diversity of predators increased with increasing structural connectivity of forest landscape. Additionally, both the abundance and diversity of all defoliators were positively correlated with the average height of herbaceous plants. Diversity of all defoliators increased with increasing size of host trees. The distance from sampling site to the nearest village positively influenced the abundance and diversity of all predators. Arthropod abundance and diversity in poplar forests were driven by stand factors and landscape complexity. Therefore, maintaining complex shape and structural connectivity of habitat patches and keeping poplar stands away from the village are crucial for management of forest landscape to enhance natural enemies. And in order to reduce the abundance of defoliators in poplar forest, the diversity of surrounding habitat types should be promoted within 200 m radii.  相似文献   

6.
Habitat quality and quantity are key factors in evaluating the potential for success of a wildlife translocation. However, because of the difficulty or cost of evaluating these factors, habitat assessments may not include valuable information on important habitat attributes including the abundance and distribution of prey, predators, and competitors. Fishers (Pekania pennanti) are one of the most commonly reintroduced carnivores in North America, and they are a species of conservation concern in their western range. We examined the relative importance of landscape features and species interactions in determining habitat use of a reintroduced population of fishers in the southern Cascade Mountains, Washington, USA. We used detections of prey and predators at 134 remote camera stations, remotely sensed forest structure data, and telemetry locations of fishers in a resource selection function to assess the relative importance of prey, predators, and forest structure in fisher habitat selection. Fishers selected habitats based on forest conditions and activity levels of snowshoe hares (Lepus americanus), whereas bobcat (Lynx rufus) and coyote (Canis latrans) activity levels did not directly affect habitat selection. The probability of fisher use increased in older stands, close to recently disturbed stands, and in areas with intermediate levels of hare activity. Bobcat and hare activity levels were positively correlated, and fishers avoided areas with the greatest hare activity, suggesting that fishers may experience a food-safety tradeoff in the study area. Temporal activity patterns in photo detections indicate that fishers may mediate this danger by avoiding bobcats temporally. Our findings suggest that fishers in Washington prefer habitat mosaics of old and recently disturbed stands where they have greater access to resting structures and hares. Management that maintains mosaics of young and old forest across large landscapes is likely to support fisher recovery. Future reintroduction efforts would benefit from an assessment of prey and predator abundance in proposed reintroduction areas before project initiation. © 2019 The Wildlife Society.  相似文献   

7.
Habitat loss is commonly identified as a major threat to the loss of global biodiversity. In this study, we expand on our previous work by addressing the question of how lepidopteran species richness and composition vary among remnants of North American eastern deciduous forest located within agricultural or pastoral landscapes. Specifically, we tested the relative roles of habitat quantity (measured as stand area and percent forest in the greater landscape) and habitat quality (measured as tree species diversity) as determinants of moth species richness. We sampled >19 000 individuals comprising 493 moth species from 21 forest sites in two forested ecoregions. In the unglaciated Western Allegheny Plateau, the species richness of moths with woody host plants diminished as forest stand size and percent forest in the landscape decreased, but the total species richness and abundance of moths were unaffected by stand size, percent forest in the landscape, or tree species diversity. In contrast, the overall species richness and abundance of moths in the glaciated North Central Tillplain were affected primarily by tree species diversity and secondarily by forest size. Higher tree species diversity may reduce species loss from smaller forest stands, suggesting that small, diverse forests can support comparable numbers of species to those in less diverse, large stands. Smaller forests, however, contained a disproportionate number of moth species that possess larvae known to feed on herbaceous vegetation. Thus, although woody plant feeding moths are lost from forests with changes in stand area, new species appear capable of recolonizing smaller fragments from the surrounding habitat matrix. Our study further suggests that when species replacement occurs, local patch size and habitat quality may be more important than landscape context in determining the community structure of forest Lepidoptera.  相似文献   

8.
Practices that enhance abundance and diversity of generalist predators are often employed with the objective of improving biological control of insect pests. Ground beetles and other predators can prey on blueberry maggot, an important pest of blueberries, when mature larvae pupate in the ground. We conducted mesocosm and field experiments to determine if Pterostichus melanarius, a common predatory ground beetle, lowers maggot numbers in compost mulch or when predator and alternative prey abundances are manipulated. At background (field) densities of alternative prey, increasing densities of P. melanarius did not significantly reduce pest numbers in mesocosms containing compost or soil. When alternative prey were removed from compost, beetles reduced pest numbers by up to 35%. In field experiments, maggot numbers were higher when beetles and other predators were excluded from soil plots, but beetle exclusion had no effect in compost plots where both predator and alternative prey numbers were high. Our results indicate that there can be some reduction of blueberry maggot by P. melanarius and other potential predators when there are few alternative prey. However, despite attracting large numbers of predators compost mulch did not lead to a significant reduction in blueberry maggot; in fact, the high abundance of alternative food associated with compost appeared to interfere with beetle predation on blueberry maggot.  相似文献   

9.
The relationship between prey abundance and predation is often examined in single habitat units or populations, but predators may occupy landscapes with diverse habitats and foraging opportunities. The vulnerability of prey within populations may depend on habitat features that hinder predation, and increased density of conspecifics in both the immediate vicinity and the broader landscape. We evaluated the relative effects of physical habitat, local, and neighborhood prey density on predation by brown bears on sockeye salmon in a suite of 27 streams using hierarchical Bayesian functional response models. Stream depth and width were inversely related to the maximum proportion of salmon killed, but not the asymptotic limit on total number killed. Interannual variation in predation was density dependent; the number of salmon killed increased with fish density in each stream towards an asymptote. Seven streams in two geographical groups with ≥23 years of data in common were then analyzed for neighborhood density effects. In most (12 of 18) cases predation in a stream was reduced by increasing salmon abundance in neighboring streams. The uncertainty in the estimates for these neighborhood effects may have resulted from interactions between salmon abundance and habitat that influenced foraging by bears, and from bear behavior (e.g., competitive exclusion) and abundance. Taken together, the results indicated that predator–prey interactions depend on density at multiple spatial scales, and on habitat features of the surrounding landscape. Explicit consideration of this context dependency should lead to improved understanding of the ecological impacts of predation across ecosystems and taxa.  相似文献   

10.
Warfe DM  Barmuta LA 《Oecologia》2004,141(1):171-178
We investigated the role of freshwater macrophytes as refuge by testing the hypothesis that predators capture fewer prey in more dense and structurally complex habitats. We also tested the hypothesis that habitat structure not only affects the prey-capture success of a single predator in isolation, but also the effectiveness of two predators combined, particularly if it mediates interactions between the predators. We conducted a fully crossed four-factorial laboratory experiment using artificial plants to determine the separate quantitative (density) and qualitative (shape) components of macrophyte structure on the prey-capture success of a predatory damselfly, Ischnura heterosticta tasmanica, and the southern pygmy perch, Nannoperca australis. Contrary to our expectations, macrophyte density had no effect on the prey-capture success of either predator, but both predators were significantly less effective in the structurally complex Myriophyllum analogue than in the structurally simpler Triglochin and Eleocharis analogues. Furthermore, the greater structural complexity of Myriophyllum amplified the impact of the negative interaction between the predators on prey numbers; the habitat use by damselfly larvae in response to the presence of southern pygmy perch meant they captured less prey in Myriophyllum. These results demonstrate habitat structure can influence multiple predator effects, and support the mechanism of increased prey refuge in more structurally complex macrophytes.  相似文献   

11.
Economic and biological consequences are associated with exotic ambrosia beetles and their fungal associates. Despite this, knowledge of ambrosia beetles and their ecological interactions remain poorly understood, especially in the oak-hickory forest region. We examined how forest stand and site characteristics influenced ambrosia beetle habitat use as evaluated by species richness and abundance of ambrosia beetles, both the native component and individual exotic species. We documented the species composition of the ambrosia beetle community, flight activity, and habitat use over a 2-yr period by placing flight traps in regenerating clearcuts and older oak-hickory forest stands differing in topographic aspect. The ambrosia beetle community consisted of 20 species with exotic ambrosia beetle species dominating the community. Similar percentages of exotic ambrosia beetles occurred among the four forest habitats despite differences in stand age and aspect. Stand characteristics, such as stand age and forest structure, influenced ambrosia beetle richness and the abundances of a few exotic ambrosia beetle species and the native ambrosia beetle component. Topographic aspect had little influence on ambrosia beetle abundance or species richness. Older forests typically have more host material than younger forests and our results may be related to the amount of dead wood present. Different forms of forest management may not alter the percent contribution of exotic ambrosia beetles to the ambrosia beetle community.  相似文献   

12.
The Bdellovibrionaceae are predatory, intraperiplasmic bacteria that prey upon a variety of Gram-negative bacteria. The prey susceptibility pattern is frequently used to characterize new isolates. The objective in this study was to isolate and characterize predators from the Great Salt Lake (GSL) by prey susceptibility testing. To recover the predators, water samples were inoculated into an enrichment medium with Vibrio parahaemolyticus as prey. After several days of incubation, the predators were isolated, pure DNA was extracted, and partial 16S rDNA gene was sequenced. Water samples were also plated for isolation of heterotrophic bacteria. The susceptibility of bacterial isolates from the lake and other sources to each predator isolate was determined. The results revealed that there are predators in the GSL, and they preferentially prey on bacteria from the lake. This is the first report of the isolation of Bdellovibrionaceae from GSL and the predators showing preferences for bacteria from the same habitat.  相似文献   

13.
Our research used a combination of passive traps, funnel traps with lures, baited trees, and surveys of long-term thinning plots to assess the impacts of different levels of stand basal area (BA) on bark beetle tree attack and on trap captures of Ips spp., Dendroctonus spp., and their predators. The study occurred at two sites in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests, from 2004 to 2007 during low bark beetle populations. Residual stand BA ranged from 9.0 to 37.0 m2/ha. More predators and bark beetles were collected in passive traps in stands of lower BA than in stands of higher BA; however, significance varied by species and site, and total number of beetles collected was low. Height of the clear panel passive traps affected trap catches for some species at some sites and years. When pheromone lures were used with funnel traps [Ips pini (Say) lure: lanierone, +03/-97 ipsdienol], we found no significant difference in trap catches among basal area treatments for bark beetles and their predators. Similarly, when trees were baited (Dendroctonus brevicomis LeConte lure: myrcene, exo-brevicomin and frontalin), we found no significant difference for days to first bark beetle attack. Surveys of long-term thinning treatments found evidence of bark beetle attacks only in unthinned plots (approximately 37 m2/ha basal area). We discuss our results in terms of management implications for bark beetle trapping and control.  相似文献   

14.
Bark beetle diversity at different spatial scales   总被引:3,自引:1,他引:2  
To determine how the scale of observation affects ecological patterns we studied bark beetle (Coleoptera, Scolytidae) diversity in southern Finland. A block covering 160 × 160 m of a forest was delimited in four stands of different site types. Each block was divided into 256 squares (10 × 10 m) in which the occurrence of bark beetle species was recorded. In addition, environmental variables describing site type, trees, and breeding material appropriate for bark beetles were measured. The species presence/absence data were combined at different scales of resolution (10 × 10 m. 20 × 20 m, 40 × 40 m, 80 × 80 m, 160 × 160 m). At the finest scale a recently thinned pine stand showed relatively high diversity compared to other study stands due to a few evenly distributed and abundant species. However, the species diversity increased faster toward larger scales in mature spruce stands with several sporadically distributed species. According to logistic regression analyses, breeding material and site characteristics explained the occurrence of most beetle species. However, these variables did not explain the occurrence of the six most frequent species, probably because the factors regulating their distribution and occurrence operate at larger scales.  相似文献   

15.
Aim Plant and arthropod diversity are often related, but data on the role of mature tree diversity on canopy insect communities are fragmentary. We compare species richness of canopy beetles across a tree diversity gradient ranging from mono‐dominant beech to mixed stands within a deciduous forest, and analyse community composition changes across space and time. Location Germany’s largest exclusively deciduous forest, the Hainich National Park (Thuringia). Methods We used flight interception traps to assess the beetle fauna of various tree species, and applied additive partitioning to examine spatiotemporal patterns of diversity. Results Species richness of beetle communities increased across the tree diversity gradient from 99 to 181 species per forest stand. Intra‐ and interspecific spatial turnover among trees contributed more than temporal turnover among months to the total γ‐beetle diversity of the sampled stands. However, due to parallel increases in the number of habitat generalists and the number of species in each feeding guild (herbivores, predators and fungivores), no proportional changes in community composition could be observed. If only beech trees were analysed across the gradient, patterns were similar but temporal (monthly) species turnover was higher compared to spatial turnover among trees and not related to tree diversity. Main conclusions The changes in species richness and community composition across the gradient can be explained by habitat heterogeneity, which increased with the mix of tree species. We conclude that understanding temporal and spatial species turnover is the key to understanding biodiversity patterns. Mono‐dominant beech stands are insufficient to conserve fully the regional species richness of the remaining semi‐natural deciduous forest habitats in Central Europe, and analysing beech alone would have resulted in the misleading conclusion that temporal (monthly) turnover contributes more to beetle diversity than spatial turnover among different tree species or tree individuals.  相似文献   

16.
Although modern agriculture generally relies on homogeneous varieties that are usually grown in pure stands, crop variety mixtures have been used for a long time, notably to improve resistance to fungal diseases. A growing number of studies suggest that intraspecific plant diversity may also enhance the abundance and diversity of wild species and thereby some ecosystem services such as biological control by natural predators. However, positive effects of the genetic diversity of plant species on the diversity of associated communities have mostly been documented in natural systems, with only a handful of studies targeting crop species in agroecosystems. Here, we investigated the ecological effects of the number of winter wheat varieties (Triticum aestivum) on aboveground arthropods and particularly predatory species. We manipulated the number of wheat varieties (1, 2, 4 or 8) in 120 plots (80 m2 each) to examine how wheat diversity and stand characteristics impact communities of three dominant aboveground arthropod groups that include many predatory species: ground beetles, rove beetles and spiders. The number of wheat varieties had a weak, but positive effect on predator abundance, notably spider abundance. In contrast, wheat functional diversity, as assessed by the number of wheat functional groups, was only negatively related to the diversity of spiders. Among wheat stand characteristics, the variance in plant height, wheat biomass and the Green Area Index were weakly correlated with ground beetle, rove beetle and predatory diversity, respectively. The Green Area Index was also weakly correlated with ground beetle abundance. Our study suggests that wheat variety mixtures have variable and limited effects on aboveground arthropods and probably low effectiveness to enhance biological control, but these results should be further tested under low-input agriculture in real fields.  相似文献   

17.
Generalist natural enemies such as carabid beetles have the potential to maintain a variety of pests below outbreak levels in annual crops. To assess the relationship between carabid beetle abundance and field rates of prey removal, we created plots surrounded by different boundaries that selectively affected dispersal of edaphic arthropods, primarily carabids. Three treatments were established: (1) naturally occurring communities, (2) augmented communities using ingress boundaries, and (3) reduced communities using egress boundaries. Selective boundaries altered carabid communities with minimal habitat alteration and without use of insecticides. Three times during the growing season, a fixed number of onion fly pupae were placed in plots to evaluate the impact of carabid abundance on predation rates. A combination of vertebrate and invertebrate exclosures allowed us to evaluate prey removal by invertebrates alone. In comparison to the no boundary treatment, carabids increased 54.2% and decreased 83.1% in plots surrounded by ingress and egress boundaries respectively. Predation rates were positively correlated with carabid abundance (r2 = 0.70, p < 0.0001). Significantly more pupae were removed from exclosures allowing access to invertebrates alone than from total exclosures, suggesting that invertebrates represented an important group of predators. Laboratory trials tested the feeding potential of the four most abundant carabid species and showed that they readily consumed onion fly pupae, supporting our hypothesis that carabids were the main predators in field tests. This study corroborates and extends previous observations of the importance of carabid beetles as generalist predators of insect pests in agricultural fields.  相似文献   

18.
Habitat heterogeneity might promote the abundance and richness of natural enemies potentially leading to higher top-down pressure on herbivorous insects. Heterogeneous habitats could provide natural enemies with more abundant and alternative resources and a greater variety of micro-habitats. Natural enemies with different searching behaviours, e.g. generalists and specialists, could be affected in different ways by habitat heterogeneity, thus affecting their pressure on herbivorous insects.To understand how top-down pressure on herbivorous insects is promoted by habitat heterogeneity, it is crucial to investigate which parameters contributing to habitat heterogeneity affect not only the abundance and richness but also the searching behaviour of different natural enemies. We investigated the relationship between heterogeneity in forest habitats and the top-down pressure exerted by generalist predators and specialist parasitoids on larvae of the European pine sawfly (Neodiprion sertifer).We used forest stands with endemic or epidemic densities of resident sawfly populations. Within each stand we selected experimental trees to create variation in tree species diversity and density in their surrounding area, i.e. habitat heterogeneity. We found that a higher tree density increased the predation by generalists on sawfly larvae in stands with endemic sawfly densities. Parasitoids were less successful in stands with endemic sawfly densities. Total mortality depended on stand character and the proportion of pine around experimental trees.The explained variation in the response variables by the models is relatively low, indicating that other measures of heterogeneity, like understory vegetation and presence of dead wood could contribute to the observed variation. Also, interference between generalist and specialist enemies could affect the realized mortality pressure. Thus, the effect of tree species diversity in combination with these other measures of heterogeneity needs to be recognized to promote the presence and the activity of natural enemies in managed habitats.  相似文献   

19.
Summary Two main hypotheses compete to explain why prey abundance decreases when seagrass density is reduced. One proposes that predators are more successful amongst seagrass of lower density; the other invokes habitat choice by prey. We reduced the density of seagrass in the presence, and in the absence, of predators in a field experiment to discriminate between these hypotheses. When seagrass was manipulated abundances of all six prey species decreased simultaneously both in the presence and in the absence of predators. We conclude that correlations of prey abundance and shoot density within a seagrass bed are proximately due to habitat preference of dense seagrass by prey. We report another experiment which supports this conclusion and shows that habitat preference is exercised at the earliest opportunity. However, the habitat preferences may have been selected by predation pressure.  相似文献   

20.
This study experimentally tested the impact of peat bog habitat loss and isolation on the invertebrate community associated with Sporadanthus ferrugineus (Restionaceae), a dominant indigenous plant species in peat bogs. Potted S. ferrugineus plants were exposed to invertebrates at various distances up to 800 m from an intact habitat (the source population) over 18 weeks. Invertebrates rapidly colonized the experimental plants, with all major orders and trophic groups present on S. ferrugineus within 6 weeks. However, with increasing distance away from the undisturbed habitat, there was a significant decrease in total species richness and abundance of invertebrates associated with the potted plants. Of the total taxa captured, only 38% were found on potted S. ferrugineus plants at 800 m compared with 62% found on potted plants 30 m from the intact peat bog. Predator species richness and the predator–prey ratio changed significantly with time available for colonization of potted plants but, more importantly, prey (herbivores and detritivores) and predator (including parasitoids) species richness, as well as the predator–prey ratio, declined significantly with increasing isolation from the peat bog. Thus, the degree of isolation of restoration areas from undisturbed habitat has a major impact on the rate and patterns of recovery in invertebrate community structure. The current recommended practice of restoring the mined area by establishing raised "habitat islands" 30 m apart should result in colonization by most invertebrates associated with S. ferrugineus , but only if the restoration islands are placed as stepping stones outward from existing areas of intact habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号