首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Our previous study found that co-culture with human vascular endothelial cells (HMVECs) is beneficial for dorsal root ganglion cells (DRGCs). The goal of the present study is to investigate whether co-culture with HMVECs could promote the development of DRGCs, and whether this effect is induced by the secretion of BDNF by HMVECs. DRGCs were mono-cultured, co-cultured with HMVECs or co-cultured with HMVECs that pre-transfected with BDNF siRNA, the expression of neurite formation and branching factors were determined. The results showed that transfecting with BDNF siRNA inhibited BDNF expression and reduced BDNF secretion. Co-culture with HMVECs increased the expression of Etv4, Etv5, FN-L, FN-M, and GAP-43 in DRGCs that accompanied by the activation of ERK pathway. However, these changes were all reversed by the inhibition of BDNF in HMVECs. In conclusion, our data demonstrate that HMVECs potentiated DRGCs development at least partly by the secretion of BDNF in the co-culture system.  相似文献   

3.
Animal cell culture is a highly complex process, in which cells are grown under specific conditions. The growth and development of these cells is a highly unnatural process in vitro condition. Cells are removed from animal tissues and artificially cultured in various culture vessels. Vitamins, minerals, and serum growth factors are supplied to maintain cell viability. Obtaining result homogeneity of in vitro and in vivo experiments is rare, because their structure and function are different. Living tissues have highly ordered complex architecture and are three-dimensional (3D) in structure. The interaction between adjacent cell types is quite distinct from the in vitro cell culture, which is usually two-dimensional (2D). Co-culture systems are studied to analyze the interactions between the two different cell types. The muscle and fat co-culture system is useful in addressing several questions related to muscle modeling, muscle degeneration, apoptosis, and muscle regeneration. Co-culture of C2C12 and 3T3-L1 cells could be a useful diagnostic tool to understand the muscle and fat formation in animals. Even though, co-culture systems have certain limitations, they provide a more realistic 3D view and information than the individual cell culture system. It is suggested that co-culture systems are useful in evaluating the intercellular communication and composition of two different cell types.  相似文献   

4.
A co-culture system of cerebellar granule cells (glutamatergic neurons) and hepatocytes has been developed. Petri dishes divided in halves by a temporary septum were coated with poly-L-lysine and cerebellar granule cells plated in one of the compartments. Five days later hepatocytes were plated in the other compartment and after 2 days the septum was removed and the two cell types shared the same culture medium for a period of 5 days. During this period of time cultures of neurons and hepatocytes kept separately or in co-culture exhibited identical characteristics with regard to activities of pyruvate kinase and glucokinase (hepatocytes), aspartate aminotransferase (neurons) as well as evoked transmitter release (neurons) and content of cytochrome P-450 (hepatocytes). The results show that it is possible to maintain neurons and hepatocytes in co-culture sharing the same culture medium for a prolonged period of time. Such a system may serve as a pharmacological model to study interactions between liver and brain cells with regard to neuroactive drugs.  相似文献   

5.
6.
7.
8.
BACKGROUND: Mixed giant cell tumor (MGCT) of the pancreas is a rare malignant neoplasm. The tumor contains pleomorphic giant cells (PGC), pleomorphic mononuclear cells (PMC) and osteoclastic giant cells (OGC). We describe the first fine needle aspiration biopsy (FNAB) diagnosis of this tumor. CASE: A 76-year-old woman was discovered (on imaging studies) to have an apparently inoperable mass in the head of the pancreas. Computed tomography-guided FNAB showed a malignant neoplasm with features of an MGCT. PGC/PMC, OGC and spindle cells were present. The PGC/PMC expressed epithelial antigens, pancytokeratin, CAM 5.2, AE1/AE3 and epithelial membrane antigen (EMA). The spindle cells focally stained for EMA. OGC were negative for the epithelial antigens. OGC, PGC/PMC and the spindle cells were positive for the mesenchymal marker vimentin. CONCLUSION: FNAB was instrumental in making the diagnosis of a rare pancreatic tumor, MGCT. Immunocytochemistry was helpful in making a definitive diagnosis and suggested that MGCT is a carcinosarcoma like neoplasm. The morphology and immunocytochemical profile raise the possibility that osteoclastic giant cell tumor and pleomorphic giant cell tumor may be different morphologic and biologic expressions of the same tumor.  相似文献   

9.
Morphological features of osteoclasts derived from a co-culture system   总被引:1,自引:0,他引:1  
The interaction between the receptor activator of NfKB (RANK) and its ligand receptor activator of NfKB ligand (RANKL) has recently been proven to be pivotal for osteoclast differentiation and activation. The influence of RANK-RANKL signaling on osteoclast formation was established by co-culturing murine osteoblasts (type CRL-12257) and murine mononuclear monocytes (RAW 264.7). The aim of the present study was to examine, by means of morphological techniques, the interaction between these two cell lines grown in the absolute absence of exogenous cytokines and other stimulating factors. Moreover, we wanted to show that our model could provide a system to analyze the bone resorption process. Mineralized matrix induced morphological changes of osteoclasts (OC) by the formation of organized ruffled-border and a large number of secondary lysosomal vesicles. On the contrary, OC grown on glass coverslips without dentin showed no organized ruffled border or secondary lysosomes. The study of the relationship between these two cell types could establish new approaches for a potential pharmacological control of these cell types and tissues in health and disease.  相似文献   

10.
The cross talk between the corpus luteum (CL) and the early embryo, potentially relevant to pregnancy establishment, is difficult to evaluate in the in vivo bovine model. In vitro co-culture of bovine luteal cells and early embryos (days?2?C8 post in vitro fertilization) may allow the deciphering of this poorly understood cross talk. However, early embryos and somatic cells require different in vitro culture conditions. The objective of this study was to develop a bovine luteal cell in vitro culture system suitable for co-culture with early embryos in order to evaluate their putative steroidogenic and prostanoid interactions. The corpora lutea of the different stages of the estrous cycle (early, mid, and late) were recovered postmortem and enriched luteal cell populations were obtained. In experiments 1 and 2, the effects of CL stage, culture medium (TCM, DMEM-F12, or SOF), serum concentration (5 or 10%), atmosphere oxygen tension (5 or 20%), and refreshment of the medium on the ability of luteal cells to produce progesterone (P4) were evaluated. The production of P4 was significantly increased in early CL cultures, and luteal cells adapted well to simple media (SOF), low serum concentrations (5%), and oxygen tensions (5%). In experiment 3, previous luteal cell cryopreservation did not affect the production of P4, PGF2??, and PGE2 compared to fresh cell cultures. This enables the use of pools of frozen?Cthawed cells to decrease the variation in cell function associated with primary cell cultures. In experiment 4, mineral oil overlaying culture wells resulted in a 50-fold decrease of the P4 quantified in the medium, but had no effect on PGF2?? and PGE2 quantification. In conclusion, a luteal cell in vitro culture system suitable for the 5-d-long co-culture with early embryos was developed.  相似文献   

11.
Osteoporosis is one of the major health problems in our modern world. Especially, disuse (unloading) osteoporosis occurs commonly in bedridden patients, a population that is rapidly increasing due to aging-associated diseases. However, the mechanisms underlying such unloading-induced pathological bone loss have not yet been fully understood. Since sympathetic nervous system could control bone mass, we examined whether unloading-induced bone loss is controlled by sympathetic nervous tone. Treatment with beta-blocker, propranolol, suppressed the unloading-induced reduction in bone mass. Conversely, beta-agonist, isoproterenol, reduced bone mass in loaded mice, and under such conditions, unloading no longer further reduced bone mass. Analyses on the cellular bases indicated that unloading-induced reduction in the levels of osteoblastic cell activities, including mineral apposition rate, mineralizing surface, and bone formation rate, was suppressed by propranolol treatment and that isoproterenol-induced reduction in these levels of bone formation parameters was no longer suppressed by unloading. Unloading-induced reduction in the levels of mineralized nodule formation in bone marrow cell cultures was suppressed by propranolol treatment in vivo. In addition, loss of a half-dosage in the dopamine beta-hydroxylase gene suppressed the unloading-induced bone loss and reduction in mineralized nodule formation. Unloading-induced increase in the levels of osteoclastic activities such as osteoclast number and surface as well as urinary deoxypyridinoline was all suppressed by the treatment with propranolol. These observations indicated that sympathetic nervous tone mediates unloading-induced bone loss through suppression of bone formation by osteoblasts and enhancement of resorption by osteoclasts.  相似文献   

12.
The stem cell of the murine teratocarcinoma is refractory to infection with Simian virus 40 and polyoma. Utilizing various procedures, we attempted to alter this block to infection by modifying the infection procedure. Multiple infections with high-titer SV40 and pretreatment of cells with DEAE-dextran or the carcinogen 4-nitroquinoline l-oxide did not induce embryonal carcinoma cells to produce T- antigen. Co-infection with adenovirus 5, which infects the embryonal carcinoma, and SV40 did not induce the expression of SV40 Tantigen. Therefore, these procedures did not overcome the block to virus infection. The assay for the SV40 T antigen was immunofluorescence; however, the immunoprecipitation technique did not detect T antigen in the infected embryonal carcinoma cells. Finally, the viral DNA present in the embryonal carcinoma was examined for its ability to replicate. These studies showed that viral DNA was not replicating as assayed by the viral DNA's sensitivity to UV irradiation when replicating in the presence of 5-bromodeoxyundine.  相似文献   

13.
Aims:  To characterize the interaction of Sclerotinia sclerotiorum and S. minor with strains of the mycoparasite and commercial biocontrol agent Coniothyrium minitans using novel perfusion chamber gasket co-culture.
Methods and Results:  Sclerotinia were cultured in perfusion chamber gaskets and then flooded with Coniothyrium conidia. After germination, Coniothyrium failed to show any form of directed growth, making contact with Sclerotinia hyphae in a random manner. In turn, some Coniothyrium hyphae coiled round Sclerotinia counterparts and although no intracellular growth was observed, Coniothyrium proliferated, while the hyphae of Sclerotinia became vacuolated and lost the cytoplasm. When co-cultures of Sclerotinia with Coniothyrium were flooded with FITC-lectins, small difference in fluorescence between the fungi was found with FITC-Con A suggesting that cell walls of both the species exposed mannose. In contrast, Coniothyrium fluoresced poorly in comparison with Sclerotinia when FITC-wheat germ agglutinin was used, indicating a marked paucity of N -acetylglucosamine exposure by cell walls of Coniothyrium, hence reduced exposure to chitinolytic enzyme action.
Conclusions, Significance and Impact of the Study:  The approach employed supported direct sequential microscopic observation of Coniothyrium and Sclerotinia as well as the utilization of representative fluorescent moieties to characterize relative carbohydrate cell wall exposure.  相似文献   

14.
A novel two-helper-strain co-culture system (TSCS) was developed to enhance 2-keto-l-gulonic acid (2-KLG) productivity for vitamin C production. Bacillus megaterium and B. cereus (with a seeding culture ratio of 1:3, v/v), used as helper strains, increased the 2-KLG yield using Ketogulonigenium vulgare compared to the conventional one-helper-strain (either B. cereus or B. megaterium) co-culture system (OSCS). After 45 h cultivation, 2-KLG concentration in the TSCS (69 g l?1) increased by 8.9 and 7 % over that of the OSCS (B. cereus: 63.4 g l?1; B. megaterium: 64.5 g l?1). The fermentation period of TSCS was 4 h shorter than that of OSCS (B. cereus). The increased cell numbers of K. vulgare stimulated by the two helper strains possibly explain the enhanced 2-KLG yield. The results imply that TSCS is a viable method for enhancing industrial production of 2-KLG.  相似文献   

15.
Implantation of blastocysts involves conversion of maternal and embryonic cell surfaces from a nonadhesive to an adhesive state in response to the internally driven developmental program or to externally generated factors. However, the intricacies of the cellular and subcellular changes that promote the attachment are not known, because these changes are difficult to determine in situ because of the nonaccessibility of the site. To overcome this, an in vitro model of implantation was developed by co-culturing rat blastocysts and uterine epithelial cells of the same gestational age (day 5 postcoitum; plug day as day 1) in drops hanging from the lid of a Petri dish. The system was used to study the changes on the surface membranes of the cells of the trophectoderm and uterine epithelium and to evaluate the antiadhesive activity of the newly designed test substances. The isolated epithelial cell vesicles were co-cultured with zona-free blastocysts in the microdrops (40–50 µl) hanging from the lid of a 60-mm Petri dish. The lid was placed over the lower dish, which was presaturated with the medium. The culture was examined 48 h later to determine the site of adhesion of epithelial cell vesicles with the trophoblasts lining the blastocyst. The cell-cell adhesion was monitored on a computerized image analyzer. To validate the adhesion of blastocysts and epithelial cell vesicles in co-culture, the expression of a cell adhesion molecule, uvomorulin, was studied using immunocytochemical technique after incubating with antiuvomorulin antibody. Intense staining was noted on the membrane surfaces at the site of attachment of the blastocyst and cell vesicles.The authors express their sincere thanks to the Ministry of Health and Family Welfare, Government of India, for their financial support  相似文献   

16.
Although some experimental evidence has implicated the TRAIL/TRAIL-receptor system in the regulation of osteoclastogenesis, the only available studies performed so far have been performed on isolated pre-osteoclasts, induced to differentiate by the addition of recombinant RANKL and M-CSF. Using a more physiological co-culture system in the absence of exogenous cytokines, we have here demonstrated that recombinant TRAIL inhibits osteoclast formation, but only at relatively high concentrations (500 ng/mL).  相似文献   

17.
Studies on the stem cell niche and the efficacy of cancer therapeutics require complex multicellular structures and interactions between different cell types and extracellular matrix (ECM) in three dimensional (3D) space. We have engineered a 3D in vitro model of mammary gland that encompasses a defined, porous collagen/hyaluronic acid (HA) scaffold forming a physiologically relevant foundation for epithelial and adipocyte co-culture. Polarized ductal and acinar structures form within this scaffold recapitulating normal tissue morphology in the absence of reconstituted basement membrane (rBM) hydrogel. Furthermore, organoid developmental outcome can be controlled by the ratio of collagen to HA, with a higher HA concentration favouring acinar morphological development. Importantly, this culture system recapitulates the stem cell niche as primary mammary stem cells form complex organoids, emphasising the utility of this approach for developmental and tumorigenic studies using genetically altered animals or human biopsy material, and for screening cancer therapeutics for personalised medicine.  相似文献   

18.
We have investigated the in vitro effects and regulatory mechanism of CGRP (calcitonin gene-related peptide) on the differentiation of OB (osteoblasts) in co-culture with HUVEC (human umbilical vein endothelial cells). Primary human MOB (mandibular OB) and OB-like cells (MG-63) were either cultured directly or indirectly co-cultured with HUVEC at a 1:1 ratio. Expression of OC (osteocalcin) was measured by ELISA, and expression of ALP (alkaline phosphatase) and collagen mRNA was measured by quantitative fluorescent PCR. For mineralization nodus, OB were stained with Alizarin Red-S. When co-cultured with HUVEC, expression of OC and ALP mRNA were increased in MG-63 (P<0.01), and the expression of OC, ALP and collagen mRNA were increased in MOB (P<0.01 or 0.05). When treated with CGRP, OC and ALP mRNA and mineralization nodus numbers were increased in the MG-63 co-culture system (P<0.01 or 0.05); OC, ALP and collagen mRNA, and mineralization nodus numbers were increased in the MOB co-culture system (P<0.01 or 0.05). The effect of CGRP regulation on the differentiation of OB is not only direct but also indirect, via its effect on HUVEC and stimulation of OB.  相似文献   

19.
Tripsacum-maize interaction: a novel cytogenetic system   总被引:3,自引:0,他引:3       下载免费PDF全文
de Wet JM  Harlan JR 《Genetics》1974,78(1):493-502
The genera Zea and Tripsacum cross readily when they are not isolated by gametophytic barriers, and it has been postulated that intergeneric introgression played a role in the evolution of maize. The basic x = 9 Tripsacum and x = 10 Zea genomes have little cytological affinity for each other in hybrids that combine 10 Zea with 18 Tripsacum chromosomes. However, one to four Tripsacum chromosomes sometimes associate with Zea chromosomes in hybrids between Z. mays (2n = 20) and T. dactyloides (2n = 72). These hybrids with 10 Zea and 36 Tripsacum chromosomes frequently produce functional female gametes with 36 Tripsacum chromosomes only. When they are pollinated with maize, their offspring again have 36 Tripsacum and 10 maize chromosomes, but the Tripsacum genome is contaminated with maize genetic material. In these individuals, intergenome pairing is the rule, and when they are pollinated with maize, their offspring have 36 Tripsacum and 10, 12, 14, 16, 18, or 20 Zea chromosomes. Plants with 36 Tripsacum and 20 Zea chromosomes behave cytologically as alloploids, although the Tripsacum genome is contimated with maize, and one basic maize genome is contaminated with with Tripsacum genetic material. When they are pollinated with maize, offspring with 18 Tripsacum and 20 Zea chromosome are obtained. Further successive backcrosses with maize selectively eliminate Tripsacum chromosomes, and eventually plants with 2n = 20 Zea chromosomes are recovered. Many of these maize plants are highly "tripsacoid." Strong gametophytic selection for essentially pure Zea gametes, however, eliminates all obvious traces of Tripsacum morphology within a relatively few generations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号