首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Capsaicin is viewed as a purely chemesthetic stimulus that selectively stimulates the somatosensory system. Here we show that when applied to small areas of the tongue, capsaicin can produce a bitter taste as well as sensory irritation. In experiment 1, individuals were screened for the ability to perceive bitterness from capsaicin on the circumvallate papillae. Fifteen of 25 subjects who reported at least weak bitterness rated the intensity of taste, irritation and coolness produced by 100-320 microM capsaicin and 100-320 mM menthol applied via cotton swabs to the tip (fungiform region), the posterior edge (foliate region), and the dorsal posterior surface (circumvallate region) of the tongue. Sucrose, citric acid, sodium chloride and quinine hydrochloride were applied to the same areas to assess tastes responsiveness. On average, capsaicin and menthol produced "moderate" bitterness (and no other significant taste qualities) in the circumvallate region, and weaker bitterness on the side and tip of the tongue. Sensory irritation from capsaicin was rated significantly higher at the tongue tip, whereas menthol coolness was rated higher in the circumvallate region. In experiment 2 we applied sucrose and quinine hydrochloride together with capsaicin to investigate the effects other taste stimuli might have on capsaicin's reported bitterness. As expected, adding quinine produced stronger bitterness in the circumvallate and fungiform regions, and adding sucrose significantly reduced the bitterness of capsaicin in the circumvallate region. Overall, the results suggest that capsaicin and menthol are capable of stimulating a subset of taste neurons that respond to bitter substances, perhaps via receptor-gated ion channels like those recently found in capsaicin- and menthol-sensitive trigeminal ganglion neurons, and that the glossopharyngeal nerve may contain more such neurons than the chorda tympani nerve. That some people fail to perceive bitterness from capsaicin further implies that the incidence of capsaicin-sensitive taste neurons varies across people as well as between gustatory nerves.  相似文献   

2.
Conflicting reports exist regarding the ability of quinine to activate neurons in the trigeminal system. We used the complementary approaches of single-unit electrophysiology and c-fos immunohistochemistry to investigate whether quinine (100 mM) activates chemonociceptive cells in the brainstem trigeminal subnucleus caudalis (Vc). In electrophysiological experiments, 38 units responded to noxious mechanical, thermal and chemical (200 mM pentanoic acid) stimuli applied to the tongue with an increase in firing rate; none responded to lingual quinine whether the quinine was presented before or after application of pentanoic acid. In the c-fos immunohistochemical experiment, both quinine and water elicited equivalent levels of fos-like immunoreactivity (FLI) in dorsomedial Vc that were significantly lower than the level of FLI evoked by pentanoic acid. These data collectively indicate that quinine does not elicit activity in chemonociceptive Vc neurons.  相似文献   

3.
The cell bodies of the lingual branch of the trigeminal nerve were localized in the trigeminal ganglion using extracellular recordings together with horseradish peroxidase labeling from the tongue. Individual lingual nerve fibers were characterized with regard to their conduction velocities, receptive fields, and response to thermal, mechanical, and chemical stimuli. Fibers were classified as C, A delta, A beta, cold, and warm. The chemical stimuli included NaCl, KCl, NH4Cl, CaCl2, menthol, nicotine, hexanol, and capsaicin. With increasing salt concentration the latency of the response decreased and the activity increased. The responses elicited by salts (to 2.5 M), but not nonpolar stimuli such as menthol, were reversibly inhibited by 3.5 mM of the tight junction blocker, LaCl3. These data suggest that salts diffuse into stratified squamous epithelia through tight junctions in the stratum corneum and stratum granulosum, whereupon they enter the extracellular space. 11 C fibers were identified and 5 were characterized as polymodal nociceptors. All of the C fibers were activated by one or more of the salts NaCl, KCl, or NH4Cl. Three C fibers were activated by nicotine (1 mM), but none were affected by CaCl2 (1 M), menthol (1 mM), or hexanol (50 mM). However, not all C fibers or even the subpopulation of polymodals were activated by the same salts or by nicotine. Thus, it appears that C fibers display differential responsiveness to chemical stimuli. A delta fibers also showed differential sensitivity to chemicals. Of the 35 characterized A delta mechanoreceptors, 8 responded to NaCl, 9 to KCl, 9 to NH4Cl, 0 to CaCl2, menthol, or hexanol, and 2 to nicotine. 8 of 9 of the cold fibers (characterized as A delta''s) responded to menthol, none responded to nicotine, 8 of 16 were inhibited by hexanol, 9 of 19 responded to 2.5 M NH4Cl, 5 of 19 responded to 2.5 M KCl, and 1 of 19 responded to 2.5 M NaCl. In summary, lingual nerve fibers exhibit responsiveness to chemicals introduced onto the tongue. The differential responses of these fibers are potentially capable of transmitting information regarding the quality and quantity of chemical stimuli from the tongue to the central nervous system.  相似文献   

4.
Lim J  Green BG 《Chemical senses》2007,32(1):31-39
Although it has long been studied as a pure sensory irritant, the ability of capsaicin to evoke, mask, and desensitize bitter taste suggests that burning sensations and bitter taste might be closely related perceptually. The current study investigated the psychophysical relationship between bitterness and burning using 2 different approaches. In Experiment 1, spatial discrimination of 4 taste stimuli was measured in the presence or absence of capsaicin. The subjects' task was to report which of 3 swabs, spaced 1 cm apart and presented to the tongue tip, contained a taste stimulus when 1) water was presented on the other 2 swabs or 2) when 10 muM capsaicin was presented on all 3 swabs. The presence of capsaicin did not change performance on the 3 alternative forced-choice (3-AFC) task for sweet, sour, and salty stimuli, while the localization error for 1.8 mM quinine sulfate (QSO(4)) increased significantly. In Experiment 2, the perceptual similarity/dissimilarity of taste stimuli and capsaicin was measured directly using pairs of stimuli applied to opposite sides of the tongue tip on swabs separated by 2 cm. Multidimensional scaling analyses showed that capsaicin fell nearer to QSO(4) than to any other taste stimulus. Cluster analysis corroborated this finding: capsaicin was closely linked with QSO(4) and the capsaicin-QSO(4) group was separated from the other taste stimuli. The latter result indicated that bitterness was more similar to burning than to the other tastes. These findings imply that despite being mediated by different sensory modalities, bitterness and burn are qualitatively similar. We speculate that this similarity reflects a common function of these 2 sensations as sensory signals of potentially harmful stimuli.  相似文献   

5.
The role of amiloride-sensitive Na+ channels (ASSCs) in the transduction of salty taste stimuli in rat fungiform taste buds has been well established. Evidence for the involvement of ASSCs in salt transduction in circumvallate and foliate taste buds is, at best, contradictory. In an attempt to resolve this apparent controversy, we have begun to look for functional ASSCs in taste buds isolated from fungiform, foliate, and circumvallate papillae of male Sprague-Dawley rats. By use of a combination of whole-cell and nystatin-perforated patch-clamp recording, cells within the taste bud that exhibited voltage-dependent currents, reflective of taste receptor cells (TRCs), were subsequently tested for amiloride sensitivity. TRCs were held at - 70 mV, and steady-state current and input resistance were monitored during superfusion of Na(+)-free saline and salines containing amiloride (0.1 microM to 1 mM). Greater than 90% of all TRCs from each of the papillae responded to Na+ replacement with a decrease in current and an increase in input resistance, reflective of a reduction in electrogenic Na+ movement into the cell. ASSCs were found in two thirds of fungiform and in one third of foliate TRCs, whereas none of the circumvallate TRCs was amiloride sensitive. These findings indicate that the mechanism for Na+ influx differs among taste bud types. All amiloride-sensitive currents had apparent inhibition constants in the submicromolar range. These results agree with afferent nerve recordings and raise the possibility that the extensive labeling of the ASSC protein and mRNA in the circumvallate papillae may reflect a pool of nonfunctional channels or a pool of channels that lacks sensitivity to amiloride.  相似文献   

6.
Roitman MF  Wheeler RA  Carelli RM 《Neuron》2005,45(4):587-597
The nucleus accumbens (NAc) is a key component of the brain's reward pathway, yet little is known of how NAc cells respond to primary rewarding or aversive stimuli. Here, naive rats received brief intraoral infusions of sucrose and quinine paired with cues in a classical conditioning paradigm while the electrophysiological activity of individual NAc neurons was recorded. NAc neurons (102) were typically inhibited by sucrose (39 of 52, 75%) or excited by quinine (30 of 40, 75%) infusions. Changes in firing rate were correlated with the oromotor response to intraoral infusions. Most taste-responsive neurons responded to only one of the stimuli. NAc neurons developed responses to the cues paired with sucrose and quinine. Thus, NAc neurons are innately tuned to rewarding and aversive stimuli and rapidly develop responses to predictive cues. The results indicate that the output of the NAc is very different when rats taste rewarding versus aversive stimuli.  相似文献   

7.
Mammalian nasal chemosensation is predominantly mediated by two independent neuronal pathways, the olfactory and the trigeminal system. Within the early olfactory system, spatiotemporal responses of the olfactory bulb to various odorants have been mapped in great detail. In contrast, far less is known about the representation of volatile chemical stimuli at an early stage in the trigeminal system, the trigeminal ganglion (TG), which contains neurons directly projecting to the nasal cavity. We have established an in vivo preparation that allows high-resolution imaging of neuronal population activity from a large region of the rat TG using voltage-sensitive dyes (VSDs). Application of different chemical stimuli to the nasal cavity elicited distinct, stimulus-category specific, spatiotemporal activation patterns that comprised activated as well as suppressed areas. Thus, our results provide the first direct insights into the spatial representation of nasal chemosensory information within the trigeminal ganglion imaged at high temporal resolution.  相似文献   

8.
We constructed and analyzed a new cell line called HT5-1, which stably expresses an enhanced green fluorescent protein-tagged version of the rat vanilloid receptor 1 (VR1/TRPV1). The fluorescent receptor allowed easy measurement of receptor expression and expression level-based purification of cells via fluorescence-activated cell sorting. The HT5-1 cell line was compared to cells transiently transfected with the fluorescent receptor, to cells expressing the native rat vanilloid receptor, and to isolated capsaicin-sensitive rat trigeminal sensory neurons. Fura-2 microfluorimetry measurements of the calcium influx upon capsaicin induction showed that, by contrast to transiently transfected cells, HT5-1 cells respond uniformly to the stimulation, due to the similar level of receptor expression in individual cells. HT5-1 cells showed similar behaviour to isolated trigeminal root ganglion neurons, including marked tachyphylaxis upon repeated capsaicin induction, and a lack of calcium ion release from intracellular storage sites.  相似文献   

9.
Recent advances in peripheral taste physiology now suggest that the classic linear view of information processing within the taste bud is inadequate and that paracrine processing, although undemonstrated, may be an essential feature of peripheral gustatory transduction. Taste receptor cells (TRCs) express multiple neurotransmitters of unknown function that could potentially participate in a paracrine role. Serotonin is expressed in a subset of TRCs with afferent synapses; additionally, TRCs respond physiologically to serotonin. This study explored the expression and cellular localization of serotonin receptor subtypes in TRCs as a possible route of paracrine communication. RT-PCR was performed on RNA extracted from rat posterior taste buds with 14 prime sets representing 5-HT(1) through 5-HT(7) receptor subtype families. Data suggest that 5-HT(1A) and 5-HT(3) receptors are expressed in taste buds. Immunocytochemistry with a 5-HT(1A)-specific antibody demonstrated that subsets of TRCs were immunopositive for 5-HT(1A). With the use of double-labeling, serotonin- and 5-HT(1A)-immunopositive cells were observed exclusively in nonoverlapping populations. On the other hand, 5-HT(3)-immunopositive taste receptor cells were not observed. This observation, combined with other data, suggests 5-HT(3) is expressed in postsynaptic neural elements within the bud. We hypothesize that 5-HT release from TRCs activates postsynaptic 5-HT(3) receptors on afferent nerve fibers and, via a paracrine route, inhibits neighboring TRCs via 5-HT(1A) receptors. The ole of the 5-HT(1A)-expressing TRC within the taste bud remains to be explored.  相似文献   

10.
Taste receptor cells (TRCs)respond to acid stimulation, initiating perception of sour taste.Paradoxically, the pH of weak acidic stimuli correlates poorly with theperception of their sourness. A fundamental issue surrounding sourtaste reception is the identity of the sour stimulus. We tested thehypothesis that acids induce sour taste perception by penetratingplasma membranes as H+ ions or as undissociated moleculesand decreasing the intracellular pH (pHi) of TRCs. Our datasuggest that taste nerve responses to weak acids (acetic acid andCO2) are independent of stimulus pH but strongly correlatewith the intracellular acidification of polarized TRCs. Taste nerveresponses to CO2 were voltage sensitive and were blockedwith MK-417, a specific blocker of carbonic anhydrase. Strong acids(HCl) decrease pHi in a subset of TRCs that contain apathway for H+ entry. Both the apical membrane and theparacellular shunt pathway restrict H+ entry such that alarge decrease in apical pH is translated into a relatively smallchange in TRC pHi within the physiological range. Weconclude that a decrease in TRC pHi is the proximate stimulus in rat sour taste transduction.

  相似文献   

11.
Some compounds that are bitter-tasting to humans, both alkaloidal (quinine, quinidine, atropine, caffeine) and non-alkaloidal (denatonium benzoate, sucrose octaacetate, naringin), deterred feeding and oviposition by Heliothis virescens (F.) in laboratory and field cage experiments. Preliminary electrophysiological studies of gustatory sensilla on the ovipositor of H. virescens provided evidence of 3 neurons, one of which is responsive to sucrose. Preliminary indications are that responses of this neuron may be inhibited by quinine and denatonium benzoate.  相似文献   

12.
A growing literature suggests taste stimuli commonly classified as "bitter" induce heterogeneous neural and perceptual responses. Here, the central processing of bitter stimuli was studied in mice with genetically controlled bitter taste profiles. Using these mice removed genetic heterogeneity as a factor influencing gustatory neural codes for bitter stimuli. Electrophysiological activity (spikes) was recorded from single neurons in the nucleus tractus solitarius during oral delivery of taste solutions (26 total), including concentration series of the bitter tastants quinine, denatonium benzoate, cycloheximide, and sucrose octaacetate (SOA), presented to the whole mouth for 5 s. Seventy-nine neurons were sampled; in many cases multiple cells (2 to 5) were recorded from a mouse. Results showed bitter stimuli induced variable gustatory activity. For example, although some neurons responded robustly to quinine and cycloheximide, others displayed concentration-dependent activity (p<0.05) to quinine but not cycloheximide. Differential activity to bitter stimuli was observed across multiple neurons recorded from one animal in several mice. Across all cells, quinine and denatonium induced correlated spatial responses that differed (p<0.05) from those to cycloheximide and SOA. Modeling spatiotemporal neural ensemble activity revealed responses to quinine/denatonium and cycloheximide/SOA diverged during only an early, at least 1 s wide period of the taste response. Our findings highlight how temporal features of sensory processing contribute differences among bitter taste codes and build on data suggesting heterogeneity among "bitter" stimuli, data that challenge a strict monoguesia model for the bitter quality.  相似文献   

13.
Larvae of the black blowfly, Phormia regina (Meigen) (Diptera: Calliphoridae) were exposed for 24 h to artificial diets that contained one of the following alkaloids: arecoline, caffeine, nicotine, quinine, sparteine or strychnine at either 1000 or 100 p.p.m. Each of the alkaloids caused reduced weight gain, relative to a control population in a no-choice bioassay and, with the exception of quinine, all alkaloids caused reduced larval weights in a choice bioassay. Larvae were unable to move away from diets containing arecoline (1000 and 100 p.p.m) and congregated away from diets containing 1000 p.p.m. quinine. Arecoline (1000 p.p.m) and both concentrations of nicotine caused significant mortality of larvae. Over a longer period (120 h), 10 and 1 p.p.m. nicotine resulted in significant numbers of larvae congregating away from a treated diet. Ten p.p.m. nicotine caused reduced weight gain over 120 h, although larvae provided with a choice were less affected. Exposure of larvae to dried residues of nicotine for 2 h did not affect subsequent development.  相似文献   

14.
Mechanical and chemical sensitivity of the palatine nerve, ramus palatinus facialis, innervating the anterior palate of the puffer, Fugu pardalis, and their central projection to the primary taste center were investigated. Application of horseradish peroxidase (HRP) to the central cut end of the palatine nerve resulted in retrogradely labeled neurons in the geniculate ganglion but no such neurons in the trigeminal ganglion, suggesting that the palatine nerve is represented only by the facial component. Tracing of the facial sensory root in serial histological sections of the brain stem suggested that the facial sensory nerve fibers project only to the visceral sensory column of the medulla. Peripheral recordings from the palatine nerve bundle showed that both mechanical and chemical stimuli caused marked responses. Mechanosensitive fibers were rather uniformly distributed in the nerve bundle. Intra-cranial recordings from the trigeminal and facial nerves at their respective roots revealed that tactile information produced in the anterior palate was carried by the facial nerve fibers. Elimination of the sea water current over the receptive field also caused a marked response in the palatine nerve bundle or facial nerve root while this did not cause any detectable responses in the trigeminal nerve root. Single fiber analyses of the mechanical responsiveness of the palatine nerve were performed by recording unit responses of 106 single fibers to mechanical stimuli (water flow), HCl (0.005 M), uridine-5'-monophosphate (UMP, 0.001 M), proline (0.01 M), CaCl2 (0.5 M), and NaSCN (0.5 M). All these fibers responded well to one of the above stimuli; however, most taste fibers did not respond well to the inorganic salts. The palatine fibers (n = 36), identified as mechanosensitive, never responded to any of the chemical stimuli, whereas chemosensitive fibers (n = 70) did not respond to mechanical stimuli at all. The chemosensitive units showed a high specificity to the above stimuli: they tended to respond selectively to hydrochloric acid, UMP, or proline. The responses of the mechanosensitive units consisted of phasic and tonic impulse trains and the sensitivity of the units varied considerably. The results reveal that the facial nerve fibers innervating the anterior palate of the puffer contain two kinds of afferent fibers, chemosensory and mechanosensory respectively, and suggest that the convergence of the tactile and gustatory information first occurs in the neurons of the primary gustatory center in the medulla.  相似文献   

15.
Bitter taste avoidance behavior (BAB) plays a fundamental role in the avoidance of toxic substances with a bitter taste. However, the molecular basis underlying the development of BAB is unknown. To study critical developmental events by which taste buds turn into functional organs with BAB, we investigated the early phase development of BAB in postnatal mice in response to bitter-tasting compounds, such as quinine and thiamine. Postnatal mice started to exhibit BAB for thiamine and quinine at postnatal day 5 (PD5) and PD7, respectively. Histological analyses of taste buds revealed the formation of microvilli in the taste pores starting at PD5 and the localization of type 2 taste receptor 119 (TAS2R119) at the microvilli at PD6. Treatment of the tongue epithelium with cytochalasin D (CytD), which disturbs ACTIN polymerization in the microvilli, resulted in the loss of TAS2R119 localization at the microvilli and the loss of BAB for quinine and thiamine. The release of ATP from the circumvallate papillae tissue due to taste stimuli was also declined following CytD treatment. These results suggest that the localization of TAS2R119 at the microvilli of taste pores is critical for the initiation of BAB.  相似文献   

16.
Taste reception is fundamental for proper selection of food and beverages. Chemicals detected as taste stimuli by vertebrates include a large variety of substances, ranging from inorganic ions (e.g., Na+, H+) to more complex molecules (e.g., sucrose, amino acids, alkaloids). Specialized epithelial cells, called taste receptor cells (TRCs), express specific membrane proteins that function as receptors for taste stimuli. Classical view of the early events in chemical detection was based on the assumption that taste substances bind to membrane receptors in TRCs without permeating the tissue. Although this model is still valid for some chemicals, such as sucrose, it does not hold for small ions, such as Na+, that actually diffuse inside the taste tissue through ion channels. Electrophysiological, pharmacological, biochemical, and molecular biological studies have provided evidence that indeed TRCs use ion channels to reveal the presence of certain substances in foodstuff. In this review, we focus on the functional and molecular properties of ion channels that serve as receptors in taste transduction.  相似文献   

17.
Neural responses and aversion to bitter stimuli in rats   总被引:1,自引:0,他引:1  
Gustatory responses of rats to quinine, nicotine, caffeine,MgCl2 and bitter peptides such as glycyl-L-phenylalanine (Gly-Phe)and glycyl-L-isoleucine (Gly-lle), were studied by recordingintegrated responses to bitter stimuli from the chorda tympaniand IXth nerve as well as by measuring fluid intakes with atwo-bottle choice method. In addition, the effect of L-glutamyl-L-glutamicacid (Glu-Glu), which has an ability of masking bitterness inhumans, on the IXth nerve response was examined. Quinine, nicotine and caffeine elicited aversive behavior atconcentrations similar to those eliciting the IXth nerve responses,while MgCl2 induced aversion above 0.1 M although it producedneural responses at much lower concentrations in both nerves.No aversion was produced by the bitter peptides at 30 mM, althougha small response was elicited by Gly-Phe in the chorda tympaniand by Gly-Ile in the IXth nerve. Responses in the IXth nerveto mixtures of Glu-Glu with bitter substances was smaller thanthe sum of those for single solution alone, indicating depressionof nerve responses to bitter stimuli by Glu-Glu.  相似文献   

18.
The beta-2 subunit of the mammalian brain voltage-gated sodium channel (SCN2B) was examined in the rat trigeminal ganglion (TG) and trigeminal sensory nuclei. In the TG, 42.6 % of sensory neurons were immunoreactive (IR) for SCN2B. These neurons had various cell body sizes. In facial skins and oral mucosae, corpuscular nerve endings contained SCN2B-immunoreactivity. SCN2B-IR nerve fibers formed nerve plexuses beneath taste buds in the tongue and incisive papilla. However, SCN2B-IR free nerve endings were rare in cutaneous and mucosal epithelia. Tooth pulps, muscle spindles and major salivary glands were also innervated by SCN2B-IR nerve fibers. A double immunofluorescence method revealed that about 40 % of SCN2B-IR neurons exhibited calcitonin gene-related peptide (CGRP)-immunoreactivity. However, distributions of SCN2B- and CGRP-IR nerve fibers were mostly different in facial, oral and cranial structures. By retrograde tracing method, 60.4 and 85.3 % of TG neurons innervating the facial skin and tooth pulp, respectively, showed SCN2B-immunoreactivity. CGRP-immunoreactivity was co-localized by about 40 % of SCN2B-IR cutaneous and tooth pulp TG neurons. In trigeminal sensory nuclei of the brainstem, SCN2B-IR neuronal cell bodies were common in deep laminae of the subnucleus caudalis, and the subnuclei interpolaris and oralis. In the mesencephalic trigeminal tract nucleus, primary sensory neurons also exhibited SCN2B-immunoreactivity. In other regions of trigeminal sensory nuclei, SCN2B-IR cells were very infrequent. SCN2B-IR neuropil was detected in deep laminae of the subnucleus caudalis as well as in the subnuclei interpolaris, oralis and principalis. These findings suggest that SCN2B is expressed by various types of sensory neurons in the TG. There appears to be SCN2B-containing pathway in the TG and trigeminal sensory nuclei.  相似文献   

19.
Herbivorous animals may benefit from the capability to discriminate the taste of bitter compounds since plants produce noxious compounds, some of which toxic, while others are only unpalatable. Our goal was to investigate the contribution of the peripheral taste system in the discrimination of different bitter compounds by an herbivorous insect using the larvae of Papilio hospiton Géné as the experimental model, showing a narrow choice range of host plants. The spike activity from the lateral and medial styloconic sensilla, housing two and one bitter-sensitive gustatory receptor neurons (GRNs), respectively, was recorded following stimulation with nicotine, caffeine, salicin and quercitrin and the time course of the discharges was analyzed. Nicotine and caffeine activated all three bitter-sensitive GRNs, while salicin and quercitrin affected only two of them. In feeding behavior bioassays, intact larvae ate glass-fiber disks moistened with salicin and quercitrin, but rejected those with nicotine and caffeine, while lateral sensillum-ablated insects also ate the disks with the two latter compounds. The capability to discriminate bitter taste stimuli and the neural codes involved are discussed.  相似文献   

20.
The responses of 3687 neurons in the macaque primary taste cortex in the insula/frontal operculum, orbitofrontal cortex (OFC) and amygdala to oral sensory stimuli reveals principles of representation in these areas. Information about the taste, texture of what is in the mouth (viscosity, fat texture and grittiness, which reflect somatosensory inputs), temperature and capsaicin is represented in all three areas. In the primary taste cortex, taste and viscosity are more likely to activate different neurons, with more convergence onto single neurons particularly in the OFC and amygdala. The different responses of different OFC neurons to different combinations of these oral sensory stimuli potentially provides a basis for different behavioral responses. Consistently, the mean correlations between the representations of the different stimuli provided by the population of OFC neurons were lower (0.71) than for the insula (0.81) and amygdala (0.89). Further, the encoding was more sparse in the OFC (0.67) than in the insula (0.74) and amygdala (0.79). The insular neurons did not respond to olfactory and visual stimuli, with convergence occurring in the OFC and amygdala. Human psychophysics showed that the sensory spaces revealed by multidimensional scaling were similar to those provided by the neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号