首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions of echinomycin and the DNA decamer [d(ACGTATACGT)]2 were studied by proton NMR. Echinomycin binds cooperatively as a bisintercalator at the CpG steps. The terminal A.T base pairs are Hoogsteen base paired, but none of the four central A.T base pairs are Hoogsteen base paired. However, binding of the drug induces unwinding of the DNA which is propagated to the central ApT step. All four central A.T base pairs are destabilized relative to those in the free DNA. Furthermore, based on these and other results from our laboratory, we conclude that the formation of stable Hoogsteen base pairs may not be the relevant structural change in vivo. The structural changes propagated between adjacent ACGT binding sites are the unwinding of the duplex and destabilization of the base pairing between binding sites.  相似文献   

2.
Hoogsteen base pairs have been demonstrated to occur in base pairs adjacent to the CpG binding sites in complexes of triostin A and echinomycin with a variety of DNA oligonucleotides. To understand the relationship of these unusual base pairs to the sequence specificity of these quinoxaline antibiotics, the conformation of the base pairs flanking the YpR binding sites of the 2:1 drug-DNA complexes of triostin A with [d(ACGTACGT)]2 and of the TpA specific [N-MeCys3, N-MeCys7] TANDEM with [d(ATACGTAT)]2 have been studied by 1H NMR spectroscopy. In both the 2:1 triostin A-DNA complex and the 2:1 [N-MeCys3, N-MeCys7] TANDEM-DNA complex, the terminal A.T base pairs are Hoogsteen base paired with the 5' adenine in the syn conformation. This indicates that both TpA specific and CpG specific quinoxaline antibiotics are capable of inducing Hoogsteen base pairs in DNA. However, in both 2:1 complexes, Hoogsteen base pairing is limited to the terminal base pairs. In the 2:1 triostin A complex, the internal adenines are anti and in the 2:1 [N-MeCys3, N-MeCys7] TANDEM-DNA complex, the internal guanines are anti regardless of pH, which indicates that the central base pairs of both complexes form Watson-Crick base pairs. This indicates that the sequence dependent nature of Hoogsteen base pairing is the same in TpA specific and CpG specific quinoxaline antibiotic-DNA complexes. We have calculated a low resolution three-dimensional structure of the 2triostin A-[d(ACGTACGT)]2 complex and compared it with other CpG specific quinoxaline antibiotic-DNA complexes. The role of stacking in the formation of Hoogsteen base pairs in these complexes is discussed.  相似文献   

3.
Powell SW  Jiang L  Russu IM 《Biochemistry》2001,40(37):11065-11072
Nuclear magnetic resonance spectroscopy has been used to characterize opening reactions and stabilities of individual base pairs in two related DNA structures. The first is the triplex structure formed by the DNA 31-mer 5'-AGAGAGAACCCCTTCTCTCTTTTTCTCTCTT-3'. The structure belongs to the YRY (or parallel) family of triple helices. The second structure is the hairpin double helix formed by the DNA 20-mer 5'-AGAGAGAACCCCTTCTCTCT-3' and corresponds to the duplex part of the YRY triplex. The rates of exchange of imino protons with solvent in the two structures have been measured by magnetization transfer from water and by real-time exchange at 10 degrees C in 100 mM NaCl and 5 mM MgCl2 at pH 5.5 and in the presence of two exchange catalysts. The results indicate that the exchange of imino protons in protonated cytosines is most likely limited by the opening of Hoogsteen C+G base pairs. The base pair opening parameters estimated from imino proton exchange rates suggest that the stability of individual Hoogsteen base pairs in the DNA triplex is comparable to that of Watson-Crick base pairs in double-helical DNA. In the triplex structure, the exchange rates of imino protons in Watson-Crick base pairs are up to 5000-fold lower than those in double-helical DNA. This result suggests that formation of the triplex structure enhances the stability of Watson-Crick base pairs by up to 5 kcal/mol. This stabilization depends on the specific location of each triad in the triplex structure.  相似文献   

4.
Effective sequence-specific recognition of duplex DNA is possible by triplex formation with natural oligonucleotides via Hoogsteen H-bonding. However, triplex formation is in practice limited to pyrimidine oligonucleotides that bind duplex A-T or G-C base pair DNA sequences specifically at homopurine sites in the major groove as T·A-T and C+ ·G-C triplets. Here we report the successful modelling of novel unnatural nucleosides that recognize the C-G DNA base pair by Hoogsteen-like major groove interaction. These novel Hoogsteen nucleotides are examined within model A-type and B-type conformation triplex structures since the DNA triplex can be considered to incorporate A-type and/or B-type configurational properties. Using the same deoxyribose-phosphodiester and base-deoxyribose dihedral angle configuration, a triplet comprised of a C-G base pair and the novel Hoogsteen nucleotide, Y2, replaces the central T·A-T triplet in the triplex. The presence of any structural or energetic perturbations due to the central triplet in the energy-minimized triplex is assessed with respect to the unmodified energy minimized (T·A-T)11 starting structures. Incorporation of this novel triplet into both A-type and B-type natural triplex structures provokes minimal change in the configuration of the central and adjacent triplets.  相似文献   

5.
8-Halogenated guanine (haloG), a major DNA adduct formed by reactive halogen species during inflammation, is a promutagenic lesion that promotes misincorporation of G opposite the lesion by various DNA polymerases. Currently, the structural basis for such misincorporation is unknown. To gain insights into the mechanism of misincorporation across haloG by polymerase, we determined seven x-ray structures of human DNA polymerase β (polβ) bound to DNA bearing 8-bromoguanine (BrG). We determined two pre-catalytic ternary complex structures of polβ with an incoming nonhydrolyzable dGTP or dCTP analog paired with templating BrG. We also determined five binary complex structures of polβ in complex with DNA containing BrG·C/T at post-insertion and post-extension sites. In the BrG·dGTP ternary structure, BrG adopts syn conformation and forms Hoogsteen base pairing with the incoming dGTP analog. In the BrG·dCTP ternary structure, BrG adopts anti conformation and forms Watson-Crick base pairing with the incoming dCTP analog. In addition, our polβ binary post-extension structures show Hoogsteen BrG·G base pair and Watson-Crick BrG·C base pair. Taken together, the first structures of haloG-containing DNA bound to a protein indicate that both BrG·G and BrG·C base pairs are accommodated in the active site of polβ. Our structures suggest that Hoogsteen-type base pairing between G and C8-modified G could be accommodated in the active site of a DNA polymerase, promoting G to C mutation.  相似文献   

6.
Effective sequence-specific recognition of duplex DNA is possible by triplex formation with natural oligonucleotides via Hoogsteen H-bonding. However, triplex formation is in practice limited to pyrimidine oligonucleotides binding duplex A-T or G-C base-pair DNA sequences specifically at homopurine sites in the major groove as T·A-T and C+·G-C triplets. Here we report the successful modeling of novel unnatural nucleosides that recognize the T-A DNA base pair by Hoogsteen interaction. Since the DNA triplex can be considered to assume an A-type or B-type conformation, these novel Hoogsteen nucleotides are tested within model A-type and B-type conformation triplex structures. A triplet consisting of the T-A base pair and one of the novel Hoogsteen nucleotides replaces the central T·A-T triplet in the triplex using the same deoxyribose-phosphodiester and base-deoxyribose dihedral angle configuration. The entire triplex is energy minimized and the presence of any structural or energetic perturbations due to the central triplet is assessed with respect to the unmodified energy-minimized (T·A-T)11 proposed starting structures. Incorporation of these novel triplets into both A-type and B-type natural triplex structures provokes minimal change in the configuration of the central and adjacent triplets. The plan is to produce a series of Hoogsteen-like bases that preferentially bind the T-A major groove in either an A-type or B-type conformation. Selective recognition of the T-A major groove with respect to the G-C major groove, which presents similar keto and amine placement, is also assessed with configurational preference. Evaluation of the triplex solution structure by using these unnatural bases as binding conformational probes is a prerequisite to the further design of triplet forming bases. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
We have used high-resolution NMR spectroscopy and molecular dynamics simulations to determine the solution structure of DNA containing the genotoxic lesion 1, N (2)-etheno-2'-deoxyguanosine (epsilonG), paired to dC. The NMR data suggest the presence of a major, minimally perturbed structure at neutral pH. NOESY spectra indicate the presence of a right-handed helix with all nucleotides in anti, 2'-deoxyribose conformations within the C2'-endo/C1'-exo range and proper Watson-Crick base pair alignments outside the lesion site. The epsilonG residue remains deeply embedded inside the helix and stacks between the flanking base pairs. The lesion partner dC is extrahelical and is located in the minor groove of the duplex, where it is highly exposed to solvent. Upon acidification of the sample, a second conformation at the lesion site of the duplex emerges, with protonation of the lesion partner dC and possible formation of a Hoogsteen base pair. Restrained molecular dynamics simulations of the neutral-pH structure generated a set of three-dimensional models that show epsilonG inside the helix, where the lesion is stabilized by stacking interactions with flanking bases but without participating in hydrogen bonding. The lesion counterbase dC is displaced in the minor groove of the duplex where it can form a hydrogen bond with the sugar O4' atom of a residue 2 bp away.  相似文献   

8.
D E Gilbert  J Feigon 《Biochemistry》1991,30(9):2483-2494
The complexes formed between the cyclic octadepsipeptide antibiotic echinomycin and the two DNA octamers [d(ACGTACGT)]2 and [d(TCGATCGA)]2 have been investigated by using one- and two-dimensional proton NMR spectroscopy techniques. The results obtained for the two complexes are compared to each other, to the crystal structures of related DNA-echinomycin complexes, and to enzymatic and chemical footprinting results. In the saturated complexes, two echinomycin molecules bind to each octamer by bisintercalation of the quinoxaline moieties on either side of each CpG step. Binding of echinomycin to the octamer [d(ACGTACGT)]2 is cooperative so that only the two-drug complex is observed at lower drug-DNA ratios, but binding to [d(TCGATCGA)]2 is not cooperative. At low temperatures, both the internal and terminal A.T base pairs adjacent to the binding site in the [d(ACGTACGT)]2-2 echinomycin complex are Hoogsteen base paired (Gilbert et al., 1989) as observed in related crystal structures. However, as the temperature is raised, the internal A.T Hoogsteen base pairs are destabilized and are observed to be exchanging between the Hoogsteen base-paired and an open (or Watson-Crick base-paired) state. In contrast, in the [d(TCGATCGA)]2-2 echinomycin complex, no A.T Hoogsteen base pairs are observed, the internal A.T base pairs appear to be stabilized by drug binding, and the structure of the complex does not change significantly from 0 to 45 degrees C. Thus, the structure and stability of the DNA in echinomycin-DNA complexes depends on the sequence at and adjacent to the binding site. While we conclude that no single structural change in the DNA can explain all of the footprinting results, unwinding of the DNA helix in the drug-DNA complexes appears to be an important factor while Hoogsteen base pair formation does not.  相似文献   

9.
Do Hoogsteen base pairs occur in DNA?   总被引:1,自引:0,他引:1  
The importance of the Watson-Crick complementary base-pairing scheme has rather overshadowed alternative types of base pairs in DNA. One of these alternative base pairings, which is known as Hoogsteen pairing, is now receiving attention. Its presence in crystals of oligonucleotides bound to some antibiotics, and its possible existence in solution (and within long DNA fragments) remains to be unambiguously estimated. However, variability in DNA conformation appears to play an important biological role, and thus we should consider the presence of Hoogsteen base pairs as an interesting factor in inducing such changes.  相似文献   

10.
Joseph N  Sawarkar R  Rao DN 《DNA Repair》2004,3(12):265-1577
Haemophilus influenzae DNA mismatch repair proteins, MutS, MutL and MutH, are functionally characterized in this study. Introduction of mutS, mutL and mutH genes of H. influenzae resulted in complementation of the mismatch repair activity of the respective mutant strains of Escherichia coli to varying levels. DNA binding studies using H. influenzae MutH have shown that the protein is capable of binding to any DNA sequence non-specifically in a co-operative and metal independent manner. Presence of MutL and ATP in the binding reaction resulted in the formation of a more specific complex, which indicates that MutH is conferred specificity for binding hemi-methylated DNA through structural alterations mediated by its interaction with MutL. To study the role of conserved amino acids Ile213 and Leu214 in the helix at the C-terminus of MutH, they were mutated to alanine. The mutant proteins showed considerably reduced DNA binding and nicking, as well as MutL-mediated activation. MutH failed to nick HU bound DNA whereas MboI and Sau3AI, which have the same recognition sequence as MutH, efficiently cleaved the substrate. MutS ATPase activity was found to be reduced two-fold in presence of covalently closed circular duplex containing a mismatched base pair whereas, the activity was regained upon linearization of the circular duplex. This observation possibly suggests that the MutS clamps are trapped in the closed DNA heteroduplex. These studies, therefore, serve as the basis for a detailed investigation of the structure-function relationship among the protein partners of the mismatch repair pathway of H. influenzae.  相似文献   

11.
HOX homeodomain proteins bind short core DNA sequences to control very specific developmental processes. DNA binding affinity and sequence selectivity are increased by the formation of cooperative complexes with the PBX homeodomain protein. A conserved YPWM motif in the HOX protein is necessary for cooperative binding with PBX. We have determined the structure of a PBX homeodomain bound to a 14-mer DNA duplex. A relaxation-optimized procedure was developed to measure DNA residual dipolar couplings at natural abundance in the 20-kDa binary complex. When the PBX homeodomain binds to DNA, a fourth alpha-helix is formed in the homeodomain. This helix rigidifies the DNA recognition helix of PBX and forms a hydrophobic binding site for the HOX YPWM peptide. The HOX peptide itself shows some structure in solution and suggests that the interaction between PBX and HOX is an example of "lock and key" binding. The NMR structure explains the requirement of DNA for the PBX-HOX interaction and the increased affinity of DNA binding.  相似文献   

12.
N1-meA and N3-meC are cytotoxic DNA base methylation lesions that can accumulate in the genomes of various organisms in the presence of SN2 type methylating agents. We report here the structural characterization of these base lesions in duplex DNA using a cross-linked protein–DNA crystallization system. The crystal structure of N1-meA:T pair shows an unambiguous Hoogsteen base pair with a syn conformation adopted by N1-meA, which exhibits significant changes in the opening, roll and twist angles as compared to the normal A:T base pair. Unlike N1-meA, N3-meC does not establish any interaction with the opposite G, but remains partially intrahelical. Also, structurally characterized is the N6-meA base modification that forms a normal base pair with the opposite T in duplex DNA. Structural characterization of these base methylation modifications provides molecular level information on how they affect the overall structure of duplex DNA. In addition, the base pairs containing N1-meA or N3-meC do not share any specific characteristic properties except that both lesions create thermodynamically unstable regions in a duplex DNA, a property that may be explored by the repair proteins to locate these lesions.  相似文献   

13.
Using (1)H NMR spectroscopy, the base-pair opening dynamics of an antiparallel foldback DNA triplex and the corresponding duplex has been characterized via catalyzed imino proton exchange. The triplex system was found to be in an equilibrium between a duplex and a triplex form. The exchange rate between the two forms (i.e., the on/off-rate of the third strand) was measured to be 5 s(-1) at 1 degrees C, and the base-pair dynamics of both forms were investigated separately. Both Watson-Crick and reverse Hoogsteen base pairs were found to have base-pair lifetimes in the order of milliseconds. The stability of the Watson-Crick base pairs was, however, substantially increased in the presence of the third strand. In the DNA triplex, the opening dynamics of the reverse Hoogsteen base pairs was significantly faster than the dynamics of the Watson-Crick pairs. We were able to conclude that, for both Watson-Crick and reverse Hoogsteen base pairs, spontaneous and individual opening from within the closed base triplet is the dominating opening pathway.  相似文献   

14.
The 8-aza-7-deazaadenine (pyrazolo[3,4-d]pyrimidin-4-amine) N(8)-(2'-deoxyribonucleoside) (2) which has an unusual glycosylation position was introduced as a universal nucleoside in oligonucleotide duplexes. These oligonucleotides were prepared by solid-phase synthesis employing phosphoramidite chemistry. Oligonucleotides incorporating the universal nucleoside 2 are capable of forming base pairs with the four normal DNA nucleosides without significant structural discrimination. The thermal stabilities of those duplexes are very similar and are only moderately reduced compared to those with regular Watson-Crick base pairs. The universal nucleoside 2 belongs to a new class of compounds that form bidentate base pairs with all four natural DNA constituents through hydrogen bonding. The base pair motifs follow the Watson-Crick or the Hoogsteen mode. Also an uncommon motif is suggested for the base pair of 2 and dG. All of the new base pairs have a different shape compared to those of the natural DNA but fit well into the DNA duplex as the distance of the anomeric carbons approximates those of the common DNA base pairs.  相似文献   

15.
It is fundamental to explore in atomic detail the behavior of DNA triple helices as a means to understand the role they might play in vivo and to better engineer their use in genetic technologies, such as antigene therapy. To this aim we have performed atomistic simulations of a purine-rich antiparallel triple helix stretch of 10 base triplets flanked by canonical Watson–Crick double helices. At the same time we have explored the thermodynamic behavior of a flipping Watson–Crick base pair in the context of the triple and double helix. The third strand can be accommodated in a B-like duplex conformation. Upon binding, the double helix changes shape, and becomes more rigid. The triple-helical region increases its major groove width mainly by oversliding in the negative direction. The resulting conformations are somewhere between the A and B conformations with base pairs remaining almost perpendicular to the helical axis. The neighboring duplex regions maintain a B DNA conformation. Base pair opening in the duplex regions is more probable than in the triplex and binding of the Hoogsteen strand does not influence base pair breathing in the neighboring duplex region.  相似文献   

16.
DNA sequences d-TGAGGAAAGAAGGT (a 14-mer) and d-CTCCTTTCTTCC (a 12-mer) are complementary in parallel orientation forming either Donahue (reverse Watson-Crick) base pairing at neutral pH or Hoogsteen base pairing at slightly acidic pH. The structure of the complex formed by dissolving the two strands in equimolar ratio in water has been investigated by nmr. At neutral pH, the system forms an ordered antiparallel duplex with five A : T and four G : C Watson-Crick base pairs and three mismatches, namely G-T, A-C, and T-C. The nuclear Overhauser effect cross-peak pattern suggests an overall B-DNA conformation with major structural perturbations near the mismatches. The duplex has a low melting point and dissociates directly into single strands with a broad melting profile. The hydrogen-bonding schemes in the mismatched base pairs have been investigated. It has been shown earlier that in acidic pH, the system prefers a triple-stranded structure with two pyrimidine strands and one purine strand. One of the pyrimidine strands has protonated cytosines, forms Hoogsteen base pairing, and is aligned parallel to the purine strand; the other has nonprotonated cytosines and has base-pairing scheme similar to the one discussed in this paper. The parallel duplex is therefore less stable than either the antiparallel duplex or the triplex, in spite of its perfect complementarity. © 1997 John Wiley & Sons, Inc. Biopoly 41: 773–784, 1997  相似文献   

17.
Although water is an integral part of DNA structures, the effects of water molecules on various DNA structures which are formed by not only Watson-Crick but also Hoogsteen base pairs are still unclear. Here, we studied quantitatively the effects of molecular crowding on the thermodynamics of a parallel G-quadruplex formation of [d(TG 4)2]4 with Hoogsteen base pairs. It was demonstrated that molecular crowding conditions stabilized the parallel G-quadruplex. Moreover, the plot of stability of the parallel G-quadruplex structure versus water activity suggested that water molecules were released through the G-quadruplex formation. The stabilization of the DNA structures consisting of Hoogsteen base pairs under cell-like conditions may lead to a structural polymorphism of various DNA sequences regulated by water molecules.  相似文献   

18.
RecA protein promotes homologous pairing by a reaction in which the protein first binds stoichiometrically to single-stranded DNA in a slow presyn-aptic step, and then conjoins single-stranded and duplex DNA, thereby forming a ternary complex. RecA protein did not pair molecules that shared only 30 bp homology, but, with full efficiency, it paired circular single-stranded and linear duplex molecules in which homology was limited to 151 bp at one end of the duplex DNA. The initial rate of the pairing reaction was directly related to the length of the heterologous part of the duplex DNA, which we varied from 0 to 3060 base pairs. Since interactions involving the heterologous part of a molecule speed the location of a small homologous region, we conclude that RecA protein promotes homologous alignment by a processive mechanism involving relative motion of conjoined molecules within the ternary complex.  相似文献   

19.
Human DNA polymerase iota (hPoliota), a member of the Y family of DNA polymerases, differs in remarkable ways from other DNA polymerases, incorporating correct nucleotides opposite template purines with a much higher efficiency and fidelity than opposite template pyrimidines. We present here the crystal structure of hPoliota bound to template G and incoming dCTP, which reveals a G.C + Hoogsteen base pair in a DNA polymerase active site. We show that the hPoliota active site has evolved to favor Hoogsteen base pairing, wherein the template sugar is fixed in a cavity that reduces the C1'-C1' distance across the nascent base pair from approximately 10.5 A in other DNA polymerases to 8.6 A in hPoliota. The rotation of G from anti to syn is then largely in response to this curtailed C1'-C1' distance. A G.C+ Hoogsteen base pair suggests a specific mechanism for hPoliota's ability to bypass N(2)-adducted guanines that obstruct replication.  相似文献   

20.
Guanine residues in the lac operator were replaced by 2-aminopurine or purine analogues, pairing the modified nucleotides with C. The observed equilibrium dissociation constants for lac repressor binding to substituted operators were measured in 10 mM Tris, 150 mM KCl, 0.1 mM EDTA, 0.1 mM DTE, pH 7.6 at 25 degrees C. These measurements revealed five positions that destabilized the complex when substituted with either analogue. Two positions, which are related by a 2-fold symmetry, are in the major groove of the operator thought to directly interact with the protein. Three sites were in the central region of the operator. A purine analogue at a sixth site perturbed the local DNA structure and destabilized the complex. Alkylation interference experiments of the 2-aminopurine substituted operators demonstrated that, of the five affected, two substitutions displayed altered phosphate interference patterns at the phosphate adjacent to the substituted base. For these operators, complex formation was measured in different concentrations of KCl to assess the contribution of counterion release to the bimolecular process. The results indicated that both complexes were similar to wild-type, although minor changes were observed. The Kobs of the complex was then measured when 2-aminopurine or purine analogues were paired with uracil nucleotide, a base pair that serves to stabilize the DNA. The introduction of the new base pairs revealed two effects on the bimolecular interaction. For those operator sites that are thought to perturb the interaction directly, the affinity of the complex was weakened to levels observed for the singly-substituted operators. In contrast, the nucleotides of 2-aminopurine paired with uracil positioned in the central region of the operator served to enhance the stability of the complex. The purine-uracil base pair substitution on the other hand had a significant destabilizing effect on the interaction. We propose that the central base pairs modulate binding of the complex by altering the intrinsic properties of the DNA. Two specific attributes are required to achieve the lowest free energy of interaction. The DNA must have two interstrand hydrogen bonds to stabilize the duplex and it must have properties associated with directional bending or unwinding. This analysis does not rule out contributions by direct interactions between the protein and the central region of the operator but underscores how indirect effects play a major role in complex formation in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号