首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Transected ganglion cell axons from the adult retina are capable of reinnervating their central targets by growing into transplanted peripheral nerve (PN) segments. Injury of the optic nerve causes various metabolic and morphological changes in the retinal ganglion cell (RGC) perikarya and in the dendrites. The present work examined the dendritic trees of those ganglion cells surviving axotomy and of those whose severed axons re-elongated in PN grafts to reach either the superior colliculus (SC), transplanted SC, or transplanted autologous thigh muscle. The elaboration of the dendritic trees was visualized by means of the strongly fluorescent carbocyanine dye DiI, which is taken up by axons and transported to the cell bodies and from there to the dendritic branches. Alternatively, retinofugal axons regrowing through PN grafts were anterogradely filled from the eye cup with rhodamine B-isothiocyanate. The transection of the optic nerve resulted in characteristic changes in the ganglion cell dendrites, particularly in the degeneration of most of the terminal and preterminal dendritic branches. This occurred within the first 1 to 2 weeks following axotomy. The different types of ganglion cells appear to vary in their sensitivity to axotomy, as reflected by a rapid degeneration of certain cell dendrites after severance of the optic nerve. The most vulnerable cells were those with small perikarya and small dendritic fields (type II), whereas larger cells with larger dendritic fields (type I and III) were slower to respond and less dramatically affected. Regrowth of the lesioned axons in peripheral nerve grafts and reconnection of the retina with various tissues did not result in a significant immediate recovery of ganglion cell dendrites, although it did prevent some axotomized cells from further progression toward posttraumatic cell death.  相似文献   

2.
When cat retina is incubated in vitro with the fluorescent dye, 4',6-diamidino-2-phenyl-indole (DAPI), a uniform population of neurons is brightly labelled at the inner border of the inner nuclear layer. The dendritic morphology of the DAPI-labelled cells was defined by iontophoretic injection of Lucifer yellow under direct microscopic control: all the filled cells had the narrow-field bistratified morphology that is distinctive of the AII amacrine cells previously described from Golgi-stained retinae. Although the AII amacrines are principal interneurons in the rod-signal pathway, their density distribution does not follow the topography of the rod receptors, but peaks in the central area like the cone receptors and the ganglion cells. There are some 512 000 AII amacrines in the cat retina and their density ranges from 500 cells per square millimetre at the superior margin to 5300 cells per square millimetre in the centre (retinal area is 450 mm2). The isodensity contours are kite-shaped, particularly at intermediate densities, with a horizontal elongation towards nasal retina. The cell body size and the dendritic dimensions of AII amacrines increase with decreasing cell density. The lobular dendrites in sublamina a of the inner plexiform layer span a restricted field of 16-45 microns diameter, while the arboreal dendrites in sublamina b form a varicose tree of 18-95 microns diameter. The dendritic field coverage of the lobular appendages is close to 1.0 (+/- 0.2) at all eccentricities whereas the coverage of the arboreal dendrites doubles within the first 1.5 mm and then remains constant at 3.8 (+/- 0.7) throughout the periphery.  相似文献   

3.
4.
Targeting of axons and dendrites to particular synaptic laminae is an important mechanism by which precise patterns of neuronal connectivity are established. Although axons target specific laminae during development, dendritic lamination has been thought to occur largely by pruning of inappropriately placed arbors. We discovered by in vivo time-lapse imaging that retinal ganglion cell (RGC) dendrites in zebrafish show growth patterns implicating dendritic targeting as a mechanism for contacting appropriate synaptic partners. Populations of RGCs labeled in transgenic animals establish distinct dendritic strata sequentially, predominantly from the inner to outer retina. Imaging individual cells over successive days confirmed that multistratified RGCs generate strata sequentially, each arbor elaborating within a specific lamina. Simultaneous imaging of RGCs and subpopulations of presynaptic amacrine interneurons revealed that RGC dendrites appear to target amacrine plexuses that had already laminated. Dendritic targeting of prepatterned afferents may thus be a novel mechanism for establishing proper synaptic connectivity.  相似文献   

5.
The mammalian retina has more diversity of neurons than scientists had once believed in order to establish complicated vision processing. In the monkey retina, morphological diversity of retinal ganglion cells (RGCs) besides dominant midget and parasol cells has been suggested. However, characteristic subtypes of RGCs in other species such as bistratified direction-selective ganglion cells (DSGC) have not yet been identified. Increasing interest has been shown in the common marmoset (Callithrix jacchus) monkey as a “super-model” of neuroscientific research. Here, we established organotypic tissue culture of the adult marmoset monkey retina with particle-mediated gene transfer of GFP to survey the morphological diversity of RGCs. We successfully incubated adult marmoset monkey retinas for 2 to 4 days ex vivo for transient expression of GFP. We morphologically examined 121 RGCs out of more than 3240 GFP-transfected cells in 5 retinas. Among them, we identified monostratified or broadly stratified ganglion cells (midget, parasol, sparse, recursive, thorny, and broad thorny ganglion cells), and bistratified ganglion cells (recursive, large, and small bistratified ganglion cells [blue-ON/yellow-OFF-like]). By this survey, we also found a candidate for bistratified DSGC whose dendrites were well cofasciculated with ChAT-positive starburst dendrites, costratified with ON and OFF ChAT bands, and had honeycomb-shaped dendritic arbors morphologically similar to those in rabbits. Our genetic engineering method provides a new approach to future investigation for morphological and functional diversity of RGCs in the monkey retina.  相似文献   

6.
Retinal ganglion cell dendritic development and its control   总被引:2,自引:0,他引:2  
The way in which central neurons acquire their complex and precise dendrite arbors is of considerable developmental interest. Using retinal ganglion cells (RGCs) as a model, the mechanisms that pattern dendritic development are beginning to emerge. As in other systems, final dendrite phenotype is achieved by a mixture of intrinsic and extrinsic determinants. The extrinsic determinants of RGC dendrite shape reflect the anatomical constraints of producing a paracrystalline mosaic of arbors that laminates the inner plexiform layer of the retina. In this article, the key features of RGC dendrite development are reviewed. The emerging molecular mechanisms behind dendritic laminar segregation and “dendritic competition” are described. The role of afferent extrinsic influences are contrasted with those of retrograde, activity-dependent target influences that may regulate the final maturational phase of dendrite remodeling.  相似文献   

7.
Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP) was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1–2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.  相似文献   

8.
The vertebrate retina has a very high dynamic range. This is due to the concerted action of its diverse cell types. Ganglion cells, which are the output cells of the retina, have to preserve this high dynamic range to convey it to higher brain areas. Experimental evidence shows that the firing response of ganglion cells is strongly correlated with their total dendritic area and only weakly correlated with their dendritic branching complexity. On the other hand, theoretical studies with simple neuron models claim that active and large dendritic trees enhance the dynamic range of single neurons. Theoretical models also claim that electrical coupling between ganglion cells via gap junctions enhances their collective dynamic range. In this work we use morphologically reconstructed multi-compartmental ganglion cell models to perform two studies. In the first study we investigate the relationship between single ganglion cell dynamic range and number of dendritic branches/total dendritic area for both active and passive dendrites. Our results support the claim that large and active dendrites enhance the dynamic range of a single ganglion cell and show that total dendritic area has stronger correlation with dynamic range than with number of dendritic branches. In the second study we investigate the dynamic range of a square array of ganglion cells with passive or active dendritic trees coupled with each other via dendrodendritic gap junctions. Our results suggest that electrical coupling between active dendritic trees enhances the dynamic range of the ganglion cell array in comparison with both the uncoupled case and the coupled case with cells with passive dendrites. The results from our detailed computational modeling studies suggest that the key properties of the ganglion cells that endow them with a large dynamic range are large and active dendritic trees and electrical coupling via gap junctions.  相似文献   

9.
Retinal ganglion cells in the rat were studied using the heavy metal intensified cytochrome oxidase and horseradish peroxidase histochemical methods.The results show that a population of large retinal ganglion cells was consistently observed with the cytochrome oxidase staining method in retinas of normal rats or rats which received unilateral thalamotomy at birth.These cytochrome oxidase rich ganglion cells appeared to have large somata,3-6 primary dendrites and extensive dendritic arbors,and are comparable to ganglion cells labeled by the wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP).However,the morphological details of some of the cells revealed by the cytochrome oxidase staining method are frequently better than those shown by the HRP histochemical method.These results suggest that the mitochondrial enzyme cytochrome oxidase can be used as a simple but reliable marker for identifying and studying a population of retinal genglion cells with high metabolic rate in the rat.  相似文献   

10.
This paper deals with the dendritic field structure of three large ganglion cell types in the retina of a marine teleost, Pholidapus dybowskii. Cells were retrograde labeled with horseradish peroxidase applied to lesioned fibers of the optic nerve. Their morphology was studied in wholemounted retinae. Dendritic fields of αab cells were more complex. Their structural complexity measured using Kolmogorov and information fractal dimensions exceeded significantly those of αa and biplexiform cells. The latter two types exhibited no significant differences in complexity and spatial heterogeneity of dendritic field. The cell types studied differed dramatically in the relationships between fractal and nonfractal parameters of their dendritic arbors. The functional and evolutionary implications of the dendritic field structure of retinal ganglion cells are discussed.  相似文献   

11.
The morphology of calretinin- and tyrosine hydroxylase-immunoreactive (IR) neurons in adult pig retina was studied. These neurons were identified using antibody immunocytochemistry. Calretinin immunoreactivity was found in numerous cell bodies in the ganglion cell layer. Large ganglion cells, however, were not labeled. In the inner nuclear layer, the regular distribution of calretinin-IR neurons, the inner marginal location of their cell bodies in the inner nuclear layer, and the distinctive bilaminar morphologies of their dendritic arbors in the inner plexiform layer suggested that these calretinin-IR cells were AII amacrine cells. Calretinin immunoreactivity was observed in both A-and B-type horizontal cells. Neurons in the photoreceptor cell layer were not labeled by this antibody. The great majority of tyrosine hydroxylase-IR neurons were located at the innermost border of the inner nuclear layer (conventional amacrines). The processes were monostratified and ran laterally within layer 1 of the inner plexiform layer. Some of the tyrosine hydroxylase-IR neurons were located in the ganglion cell layer (displaced amacrines). The processes of displaced tyrosine hydroxylase-IR amacrine cells were also located within layer 1 of the inner plexiform layer. Some processes of a few neurons were located in the outer plexiform layer. A very low density of neurons had additional bands of tyrosine hydroxylase-IR processes in the middle and deep layers of the inner plexiform layer. The processes of tyrosine hydroxylase-IR neurons extended radially over a wide area and formed large, moderately branched dendritic fields. These processes occasionally had varicosities and formed "dendritic rings". These results indicate that calretinin- and tyrosine hydroxylase-IR neurons represent specific neuronal cell types in the pig retina.  相似文献   

12.
The shape and arrangement of the cholinergic neurons in the rabbit retina   总被引:7,自引:0,他引:7  
The acetylcholine-synthesizing neurons of the rabbit retina were selectively stained by intraocular injection of the fluorescent dye 4,6-diamidino-2-phenylindole (DAPI). Retinas were then isolated from the eye, fixed for 10-30 min with 4% paraformaldehyde, and mounted flat on the stage of a fluorescence microscope. The acetylcholine-synthesizing cells were penetrated under visual control by microelectrodes filled with lucifer yellow CH. When the dye was electrophoretically injected into the cells, complete filling of their dendrites often occurred. Cells were successfully injected as long as one month after fixation of the tissue. Complete or nearly complete filling of 281 cells was accomplished, at retinal locations systematically covering the retinal surface. The cells stained with DAPI were found to form a single morphological population. They have two to seven primary dendrites, which branch repeatedly within a narrow plane and form a round or slightly oval dendritic tree. The branching becomes very fine for the distal one third of the dendritic tree, and the dendrites there are studded with small swellings. The distal dendritic tree lies mainly within one of the two thin strata of the inner plexiform layer where acetylcholine is present. The shape and size of the dendritic tree are continuously graded across the retina, the dendritic tree is narrower and the branching denser in the central retina, wider and sparser in the periphery. From knowledge of the population density and the shape of the neurons, one can reconstruct the array of dendrites that exists within the inner plexiform layer. The overlap of the dendritic fields is an order of magnitude greater than of any other retinal neuron previously described. Because the cells not only overlap widely but branch quite profusely, a very dense plexus of cholinergic dendrites is created.  相似文献   

13.
Retinal ganglion cells receive inputs from multiple bipolar cells which must be integrated before a decision to fire is made. Theoretical studies have provided clues about how this integration is accomplished but have not directly determined the rules regulating summation of closely timed inputs along single or multiple dendrites. Here we have examined dendritic summation of multiple inputs along On ganglion cell dendrites in whole mount rat retina. We activated inputs at targeted locations by uncaging glutamate sequentially to generate apparent motion along On ganglion cell dendrites in whole mount retina. Summation was directional and dependent13 on input sequence. Input moving away from the soma (centrifugal) resulted in supralinear summation, while activation sequences moving toward the soma (centripetal) were linear. Enhanced summation for centrifugal activation was robust as it was also observed in cultured retinal ganglion cells. This directional summation was dependent on hyperpolarization activated cyclic nucleotide-gated (HCN) channels as blockade with ZD7288 eliminated directionality. A computational model confirms that activation of HCN channels can override a preference for centripetal summation expected from cell anatomy. This type of direction selectivity could play a role in coding movement similar to the axial selectivity seen in locust ganglion cells which detect looming stimuli. More generally, these results suggest that non-directional retinal ganglion cells can discriminate between input sequences independent of the retina network.  相似文献   

14.
Application of several silver impregnation methods on whole mounts of the bovine retina selectively elicits the giant ganglion cells of the peripheral retina. As determined by the branching pattern of their dendrites they coudl be classified in three types: 1. predominant branching in one directions; 2. branching in two opposite direction; 2. branching in two opposite directions; 3. branches radiate in all directions. Cells of the first type were mainly found in the temporal and dorsal (superior) segment; those of the second type in the nasal part; those of the third type were present in the ventral (inferior) part of the peripheral retina. The sizes of their dendritic fields differ. Another ganglion cell with a large perikaryon was found infrequently in each retina; its dendrites are located in the inner plexiform layer, ending with occasionally large knob- or clubshaped tips. An axon was never found. Evidently, they show a special topographical relationship to the blood vessels. Their function is as yet unknown.  相似文献   

15.
The dendrites of ganglion cells in the retina have an excess number of spines and branches that are normally lost during the first postnatal month of development. We investigated whether this dendritic remodeling can be prevented when the action potential activity of ganglion cells is abolished by chronic intraocular injections of tetrodotoxin (TTX) during the first 4 or 5 postnatal weeks in the cat. Dendritic tree morphologies of alpha and beta ganglion cells from TTX-treated, non-TTX-treated (contralateral eye), and normal control retinae were compared after intracellular filling with Lucifer yellow. Qualitative observations and quantitative measurements indicate that TTX treatment does not prevent the normally occurring loss of spines and dendritic branches. Indeed, the dendritic trees of both alpha and beta cells in TTX injected eyes actually have even fewer spines and branches than normal cells at equivalent ages. However, because the total dendritic lengths of these cells are also reduced after TTX blockade, spine density is indistinguishable from untreated animals at the same age. In addition, although dendritic field areas are not altered with treatment, the complexity of the dendritic trees is reduced. These observations suggest that dendritic remodeling can occur in the absence of ganglion cell action potential activity. Thus, the factors that influence the dendritic and axonal development of retinal ganglion cells must differ, because similar TTX treatment during the period of axonal remodeling does have profound effects on the final pattern of terminal arborizations.  相似文献   

16.
The dendrites of ganglion cells in the retina have an excess number of spines and branches that are normally lost during the first postnatal month of development. We investigated whether this dendritic remodeling can be prevented when the action potential activity of ganglion cells is abolished by chronic intraocular injections of tetrodotoxin (TTX) during the first 4 or 5 postnatal weeks in the cat. Dendritic tree morphologies of alpha and beta ganglion cells from TTX-treated, non-TTX-treated (contralateral eye), and normal control retinae were compared after intracellular filling with Lucifer yellow. Qualitative observations and quantitative measurements indicate that TTX treatment does not prevent the normally occurring loss of spines and dendritic branches. Indeed, the dendritic trees of both alpha and beta cells in TTX injected eyes actually have even fewer spines and branches than normal cells at equivalent ages. However, because the total dendritic lengths of these cells are also reduced after TTX blockade, spine density is indistinguishable from untreated animals at the same age. In addition, although dendritic field areas are not altered with treatment, the complexity of the dendritic trees is reduced. These observations suggest that dendritic remodeling can occur in the absence of ganglion cell action potential activity. Thus, the factors that influence the dendritic and axonal development of retinal ganglion cells must differ, because similar TTX treatment during the period of axonal remodeling does have profound effects on the final pattern of terminal arborizations.  相似文献   

17.
The shape of a neuron's dendritic arbor is critical for its function as it determines the number of inputs the neuron can receive and how those inputs are processed. During development, a neuron initiates primary dendrites that branch to form a simple arbor. Subsequently, growth occurs by a process that combines the extension and retraction of existing dendrites, and the addition of new branches. The loss and addition of the fine terminal branches of retinal ganglion cells (RGCs) is dependent on afferent inputs from its synaptic partners, the amacrine and bipolar cells. It is unknown, however, whether neural activity regulates the initiation of primary dendrites and their initial branching. To investigate this, Xenopus laevis RGCs developing in vivo were made to express either a delayed rectifier type voltage-gated potassium (KV) channel, Xenopus Kv1.1, or a human inward rectifying channel, Kir2.1, shown previously to modulate the electrical activity of Xenopus spinal cord neurons. Misexpression of either potassium channel increased the number of branch points and the total length of all the branches. As a result, the total dendritic arbor was bigger than for control green fluorescent protein-expressing RGCs and those ectopically expressing a highly related mutant non-functional Kv1.1 channel. Our data indicate that membrane excitability regulates the earliest differentiation of RGC dendritic arbors.  相似文献   

18.
We have carried out a morphometric investigation of the symmetry of intermediate (type II) and large (types III and V) ganglion cells on silver-impregnated retinal wholemounts of frog retina. We selected the nucleolus of theneuron and the axis passing through the nucleolus in the direction of the optic disk (central and bilateral symmetry) as elements of symmetry. We have shown that the dendritic ramification angles of all cell types are smaller than 360° and those of type II cells smaller than 180°; the cell somata do not lie in the center of the dendritic field and consequently the ganglion cells do not possess radial symmetry. In the vast majority of ganglion cells the directions of the start of the axon and dendrites are opposite to each other, the dendrites being oriented in the direction from the retinal center towards the periphery in all quadrants of the retinal map. For the estimation of the bilateral symmetry we measured the distance from the most remote dendritic terminals to the axis on the left and right of the axis, and counted the number of ramification knots and basal dendrites. We established that the majority of ganglion cells are asymmetrical as regards two or three of the characteristics mentioned. Consequently the asymmetrical structure of ganglion cells of the frog is a normal characteristic rather than an exception. The correlation between the asymmetry of the structure of ganglion cells and the functional asymmetry of their receptive fields is discussed.N. I. Lobachevskii Research Institute of Applied Mathematics and Cybernetics, University of Gorki. Translated from Neirofiziologiya, Vol. 17, No. 4, pp. 456–462, July–August, 1985.  相似文献   

19.
The present study compares the structure and function of retinal ganglion and amacrine cell dendrites. Although a superficial similarity exists between amacrine and ganglion cell dendrites, a comparison between the branching pattern of the two cell types reveals differences which can only be appreciated at the microscopic level. Whereas decremental branching is found in ganglion cells, a form of non-decremental or "trunk branching" is observed in amacrine cell dendrites. Physiological differences are also observed in amacrine vs ganglion cells in which many amacrine cells generate dendritic impulses which can be readily distinguished from those of the soma, while separate dendritic impulses in ganglion cell dendrites have not been reported. Despite these differences, both amacrine and ganglion cell dendrites appear to contain voltage-gated ion channels, including TTX-sensitive sodium channels. One way to account for separate dendritic impulses in amacrine cells is to have a higher density of sodium channels and we generally find in modeling studies that a dendritic sodium channel density that is more than about 50% of that in the soma is required for excitatory, synaptic currents to give rise to local dendritic spike activity. Under these conditions, impulses can be generated in the dendrites and propagate for some distance along the dendritic tree. When the soma generates impulse activity in amacrine cells, it can activate, antidromically, the entire dendritic tree. Although ganglion cell dendrites do not appear to generate independent impulses, the presence of voltage-gated ion channels in these structures appears to be important for their function. Modeling studies demonstrate that when dendrites lack voltage-gated ion channels, impulse activity evoked by current applied to the cell body is generated at rates that are much higher than those observed physiologically. However, by placing ion channels in the dendrites at a reduced density compared to those of amacrine cells, the firing rate of ganglion cells becomes more physiological and the relationship between frequency and current (F/I relationship) can be precisely matched with physiological data. Recent studies have demonstrated the presence of T-type calcium channels in ganglion cells and our analysis suggests that they are found in higher density in the dendrites compared to the soma. This is the first voltage-gated ion channel which appears more localized to the dendrites than other cell copartments and this difference alone cries for an interpretation. The presence of a significant T-type calcium channel density in the dendrites can influence their integrative properties in several important ways. First, excitatory synaptic currents can be augmented by the activation of T-type calcium channels, although this is more likely to occur for transient rather than sustained synaptic currents because T-type currents show strong inactivation properties. In addition, T-type calcium channels may serve to limit the electrical load which dendrites impose on the spike initiation process and thus enhance the speed with which impulses can be triggered by the impulse generation site. This role whill enhance the safety factor for impulses traveling in the orthograde direction.  相似文献   

20.
New hair cells are added during postembryonic life in several species of fishes and birds. The production of new hair cells appears to require enlargement of eighth nerve arbors during growth since, at least in fish, eighth nerve neurons are added more slowly than hair cells or not at all. This situation provides an intriguing opportunity to study the mechanisms of growth of the neuronal arbors. In this paper, we report the results of studies on the postembryonic growth of eighth nerve dendritic arbors in the saccular epithelium of the cichlid fish Astronotus ocellatus. Arbor sizes and shapes were compared in small and large fish using the axonal tracer cobaltouslysine. Our data suggest that postembryonic eighth nerve arbors enlarge in 2 ways. First, arbors add new terminal endings to their distal ends. Second, whole new branches appear to be added at locations up to hundreds of micrometers proximal to the terminal endings. These 2 modes of growth suggest that more than one mechanism may be operative in controlling arbor enlargement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号