首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and release of the potent vasoconstrictor peptide endothelin-1 (ET-1) increases following cerebral ischemia and has previously been shown to mediate the delayed hypoperfusion associated with transient global ischemia. In this study we assessed the impact of ET-1 on perfusion and infarct volume in a focal model of cerebral ischemia by use of the selective ET(A) receptor antagonist Ro 61-1790 (affinity for ET(A) receptor 1000 fold greater than ETB receptor). Control rats subjected to permanent middle cerebral artery occlusion (MCAO) showed extensive reductions in microvascular perfusion 4 h post-MCAO that were significantly attenuated by Ro 61-1790 pretreatment (10 mg/kg, i.v.). Ro 61-1790 concomitantly and significantly reduced the ischemic lesion volume in the same animals. This effect was maintained 24 h post-MCAO providing that the animals received additional i.v. injections of 5 mg/kg Ro 61-1790 at 5 h and 8 h after MCAO. These findings demonstrate that ET(A) receptor antagonism partially preserves tissue perfusion following focal ischemia and that this effect is associated with significant neuroprotection. The results also support the hypothesis that vasoactive mediators, and ET-1 in particular, are important contributors to the pathogenesis of cerebral ischemic injury.  相似文献   

2.
The antiepileptic drug Levetiracetam (Lev) has neuroprotective properties in experimental stroke, cerebral hemorrhage and neurotrauma. In these conditions, non-convulsive seizures (NCSs) propagate from the core of the focal lesion into perilesional tissue, enlarging the damaged area and promoting epileptogenesis. Here, we explore whether Lev neuroprotective effect is accompanied by changes in NCS generation or propagation. In particular, we performed continuous EEG recordings before and after the permanent occlusion of the middle cerebral artery (pMCAO) in rats that received Lev (100 mg/kg) or its vehicle immediately before surgery. Both in Lev-treated and in control rats, EEG activity was suppressed after pMCAO. In control but not in Lev-treated rats, EEG activity reappeared approximately 30-45 min after pMCAO. It initially consisted in single spikes and, then, evolved into spike-and-wave and polyspike-and-wave discharges. In Lev-treated rats, only rare spike events were observed and the EEG power was significantly smaller than in controls. Approximately 24 hours after pMCAO, EEG activity increased in Lev-treated rats because of the appearance of polyspike events whose power was, however, significantly smaller than in controls. In rats sacrificed 24 hours after pMCAO, the ischemic lesion was approximately 50% smaller in Lev-treated than in control rats. A similar neuroprotection was observed in rats sacrificed 72 hours after pMCAO. In conclusion, in rats subjected to pMCAO, a single Lev injection suppresses NCS occurrence for at least 24 hours. This electrophysiological effect could explain the long lasting reduction of ischemic brain damage caused by this drug.  相似文献   

3.
目的通过观察肢端缺血预处理(1imbisehemicpreconditioning,LIP)对大鼠脑缺血性损伤后重要炎症因子表达的影响,探讨LIP诱导的脑缺血耐受与炎症反应之间的关系。方法选取72只SD大鼠,实验组(LIP组)30只、缺血组30只和对照组12只。实验组和缺血组设立5个时间点:6h、12h、24h、48h和72h,每点6只。通过线栓法建立大鼠大脑中动脉阻塞(middlecerebralarteryocclusion,MCAO)的局灶性脑缺血模型及LIP法建立脑缺血耐受模型,采用HE观察每组大鼠的脑组织形态学改变、QRT—PCR和ELISA方法检测脑组织中炎症因子IL-17及IL-6的表达变化。结果实验组脑组织学病理改变明显轻于缺血组。与缺血组相比:实验组的IL-17和IL-6的基因和蛋白表达在整体水平均呈下降趋势;mRNA水平提示实验组在缺血12h、24h和48h后脑组织中IL-17、IL-6的表达量显著减少(P〈0.01);蛋白水平提示实验组在缺血24h和48h后脑组织中的IL-6以及在缺血12h、24h和48h后脑组织中IL-17的表达量均降低(P〈0.05)。结论LIP诱导脑缺血耐受,可以减轻脑缺血后的炎症反应,对缺血性脑损伤有一定的保护作用。  相似文献   

4.
Numerous studies support the hypothesis that reperfusion following cerebral ischemia contributes substantially to ischemic injury and that mitochondrial dysfunction plays a central role. Defining the mechanisms by which mitochondrial dysfunction occurs may be important for the development of new therapies against delayed neuronal cell death. Ischemic preconditioning (IP) increases an organ's resistance to ischemic injury. There are two windows for IPC, one that requires several hours to develop and another one with a rapid setting (rapid window). However, the rapid window only provides neuroprotection for few days. We have recently determined that this lack of chronic protection by the rapid window was due to lack of protection against mitochondrial dysfunction.  相似文献   

5.
原花青素对脑缺血再灌损伤大鼠模型的影响   总被引:1,自引:0,他引:1  
目的研究原花青素对脑缺血/再灌损伤(ischemia/reperfusion,I/R)大鼠神经功能评分(neurologicaldeficit score,NDS)、脑梗死体积、脑含水量等指标的药理作用。方法采用大鼠大脑中动脉阻断(middle cerebralartery occlusion,MCAO)法复制类似人类缺血性卒中的I/R损伤模型。结果该模型各时间点内均有程度不同的神经功能缺失,原花青素给药组神经功能评分明显低于对照组(P0.05),假手术组大鼠均无神经功能缺失,脑水肿情况均较对照组明显改善(P0.05),脑梗死体积与盐水对照组相比差异有显著性(P0.05),而假手术组均未见有梗死灶。结论原花青素具有一定的保护大鼠I/R后受损脑组织的作用,可供后续研究,并可为缺血性卒中使用原花青素治疗提供确凿的理论依据。  相似文献   

6.
The present study was designed to examine the effect of a calcium antagonist isradipine (PN200-110: PN) on local cerebral blood flow and brain tissue metabolism after 1-hour supratentorial ischemia induced by bilateral carotid artery ligation (BCL) in spontaneously hypertensive rats (SHR). PN, dissolved in ethanol plus polyethylene glycol 400, diluted with saline to make the final concentration of 0.25mg/ml and 2.5mg/ml, was administered subcutaneously either 30 min prior to BCL or just after the induction of incomplete cerebral ischemia (n = 7 in each group). Vehicle injection was served as a control group (n = 7). Cerebral blood flow in the parietal cortex (CBF) and the cerebellar cortex (CeBF) was measured by hydrogen clearance technique, and the supra- and infratentorial metabolites of the brain frozen in situ were determined by the enzymatic method. Blood pressure was lowered, but CBF was increased by PN administration in pre-BCL treatment study. After 1 hour of BCL, CBF decreased to around 10% or less of the resting value, being insignificant among the groups. Brain adenosine triphosphate was better preserved in PN-administered groups. The increase in lactate level tended to reduce dose dependently by PN treatment. PN also reduced the metabolic alterations in brain tissue with significance, even when administered just after the induction of forebrain ischemia. It is considered that pre- as well as post-BCL administration of PN is beneficial to attenuate the metabolic alterations in incomplete forebrain ischemia in SHR.  相似文献   

7.
Anesthetics such as propofol can provide neuroprotective effects against cerebral ischemia. However, the underlying mechanism of this beneficial effect is not clear. Therefore, we subjected male Sprague–Dawley rats to 2 h of middle cerebral artery occlusion and investigated how post-ischemic administration of propofol affected neurologic outcome and the expression of basic fibroblast growth factor (bFGF). After 2 h of ischemia, just before reperfusion, the animals were randomly assigned to receive either propofol (20 mg kg?1 h?1) or vehicle (10 % intralipid, 2 ml kg?1 h?1) intravenously for 4 h. Neurologic scores, infarct volume, and brain water content were measured at different time points after reperfusion. mRNA level of bFGF was measured by real-time PCR, and the protein expression level of bFGF was analyzed by immunohistochemistry and Western blot. At 6, 24, 72 h, and 7 days of reperfusion, infarct volume was significantly reduced in the propofol-treated group compared to that in the vehicle-treated group (all P < 0.05). Propofol post-treatment also attenuated brain water content at 24 and 72 h and reduced neurologic deficit score at 72 h and 7 days of reperfusion (all P < 0.05). Additionally, in the peri-infarct area, bFGF mRNA and protein expression were elevated at 6, 24, and 72 h of reperfusion compared to that in the vehicle-treated group (all P < 0.05). These results show that post-ischemic administration of propofol provides neural protection from cerebral ischemia–reperfusion injury. This protection may be related to an early increase in the expression of bFGF.  相似文献   

8.
目的:探讨白藜芦醇预处理对大鼠脑缺血再灌损伤的保护作用及其分子机制.方法:大鼠随机分成假手术组、缺血溶剂组、白藜芦醇预处理组,四动脉阻塞(4-VO)法建立前脑缺血模型,缺血10min/再灌22h,试剂盒检测大鼠海马组织SOD活力及NO、MDA含量变化,RT-PCR法观察GRP78 mRNA的表达.结果:缺血溶剂组海马组织SOD活性明显低于假手术组,NO、MDA含量高于假手术组;缺血前白藜芦醇预处理能显著反转缺血诱导的SOD活力和NO、MDA水平变化,脑缺血能明显上调GRP78 mRNA水平;白藜芦醇预处理能有效抑制缺血诱导的GRP78表达,与缺血组比有显著性差异.结论:白藜芦醇能通过上调SOD活力,减少NO、MDA的生成来抑制缺血后自由基的生成和积累,继而缓解内质网应激、下调GRP78的表达,减轻缺血性脑组织损伤.  相似文献   

9.
Li Y  Lu ZY  Ogle M  Wei L 《Neurochemical research》2007,32(12):2132-2141
Recombinant human erythropoietin (rhEPO), a neurovascular protective agent, therapeutically supports angiogenesis after stroke by enhancing endogenous up-regulation of vascular endothelial growth factor (VEGF). Increased VEGF expression has been characterized to negatively impact the integrity of the blood brain barrier (BBB), causing brain edema and secondary injury. The present study investigated the rhEPO-induced BBB protection after stroke and how it might be achieved by affecting VEGF pathway. rhEPO treatment (5,000 U/kg, i.p., 30 min before stroke and once a day for three days after stroke) reduced Evans blue leakage and brain edema after ischemia. The expression of the BBB integrity markers, occludin, α-catenin and β-catenin, in the brain was preserved in animals received rhEPO. rhEPO up-regulated VEGF expression; however, the expression of VEGF receptor-2 (fetal liver kinase receptor, Flk-1) was significantly reduced in rhEPO-treated animals three days after stroke. We propose that, disregarding increased VEGF levels, rhEPO protects against ischemia-induced BBB damage at least partly by down-regulating Flk-1 expression and the response to VEGF signaling in the acute phase after stroke.  相似文献   

10.
目的:通过研究缺血预适应对小鼠脑缺血再灌注损伤血脑屏障通透性的影响,探讨缺血预适应的脑保护作用及相关分子机制。方法:取清洁健康成年小鼠72只,随机分为脑缺血预适应组(brain ischemic precondition,BIP),脑缺血再灌注组(middle cerebral artery occlusion and reperfusion,MCAO/R)和假手术组(sham group),每组均24只,采用zealonga线栓法栓塞小鼠大脑中动脉建立BIP模型和MCAO/R模型,通过氯化三苯基四氮唑(triphenyl tetrazolium chloride,TTC)染色计算脑梗死面积,改良神经功能缺损评分(modified neurological severity scores,m NSS)对脑缺血再灌注神经损伤程度进行评估,测干-湿重法以及伊文氏蓝(Evans blue,EB)示踪结合脑组织EB定量法评价血脑屏障(blood brain barrier,BBB)的损伤程度,采用免疫组化法检测各组脑组织低氧诱导因子-1α(HIF-1α)和血管内皮生长因子(VEGF)的表达。结果:与MCAO组相比,BIP组显著降低缺血再灌注后m NSS评分,缩小了梗死面积并减轻脑水肿,有效的保护BBB功能,BIP组再灌注24 h时脑梗死灶周围皮质区HIF-1α及VEGF的表达均明显上调,差异有统计学意义(P0.05)。结论:BIP对小鼠脑缺血再灌注损伤模型BBB有一定的保护作用,其机制可能与其诱导HIF-1α及VEGF的表达上调有关。  相似文献   

11.

Background

Ischemic postconditioning (IPOC), or relief of ischemia in a stuttered manner, has emerged as an innovative treatment strategy to reduce programmed cell death, attenuate ischemic injuries, and improve neurological outcomes. However, the mechanisms involved have not been completely elucidated. Recent studies indicate that autophagy is a type of programmed cell death that plays elusive roles in controlling neuronal damage and metabolic homeostasis. This study aims to determine the role of autophagy in IPOC-induced neuroprotection against focal cerebral ischemia in rats.

Methodology/Principal Findings

A focal cerebral ischemic model with permanent middle cerebral artery (MCA) occlusion plus transient common carotid artery (CCA) occlusion was established. The autophagosomes and the expressions of LC3/Beclin 1/p62 were evaluated for their contribution to the activation of autophagy. We found that autophagy was markedly induced with the upregulation of LC3/Beclin 1 and downregulation of p62 in the penumbra at various time intervals following ischemia. IPOC, performed at the onset of reperfusion, reduced infarct size, mitigated brain edema, inhibited the induction of LC3/Beclin 1 and reversed the reduction of p62 simultaneously. Rapamycin, an inducer of autophagy, partially reversed all the aforementioned effects induced by IPOC. Conversely, autophagy inhibitor 3-methyladenine (3-MA) attenuated the ischemic insults, inhibited the activation of autophagy, and elevated the expression of anti-apoptotic protein Bcl-2, to an extent comparable to IPOC.

Conclusions/Significance

The present study suggests that inhibition of the autophagic pathway plays a key role in IPOC-induced neuroprotection against focal cerebral ischemia. Thus, pharmacological inhibition of autophagy may provide a novel therapeutic strategy for the treatment of stroke.  相似文献   

12.
目的 初步观察PPARβ激动剂对大鼠全脑缺血/再灌注损伤的影响.方法 采用双侧颈总动脉夹闭合并低血压的方法建立大鼠全脑缺血/再灌注模型.GW0742(22μg、67μg和200 μg)于建模前30 min脑室注射给予,Morris水迷宫测定大鼠空间学习记忆能力,HE染色观察海马神经元形态变化,生化法检测大鼠海马SOD活性和MDA含量变化.结果 全脑缺血/再灌注大鼠空间学习记忆能力明显下降、海马神经元核固缩,海马SOD活性降低、MDA含量增加;GW0742给予能明显改善全脑缺血再灌注对大鼠空间学习记忆能力的损害和海马神经元损伤,并能明显阻遏全脑缺血再灌注大鼠海马的SOD活性降低、MDA含量增加.结论 PPARβ激动剂对全脑缺血/再灌注大鼠脑损伤有明显保护作用,其神经保护作用机制可能与通过PPARβ激动从而抑制氧化应激反应有关.  相似文献   

13.
14.
Patients affected by nonketotic hyperglycinemia (NKH) usually present severe neurological symptoms and suffer from acute episodes of intractable seizures with leukoencephalopathy. Although excitotoxicity seems to be involved in the brain damage of NKH, the mechanisms underlying the neuropathology of this disease are not fully established. The objective of the present study was to investigate the in vitro effects of glycine (GLY), that accumulate at high concentrations in the brain of patients affected by this disorder, on important parameters of oxidative stress, such as lipid peroxidation (thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence) and the most important non-enzymatic antioxidant defense reduced glutathione (GSH) in cerebral cortex from 30-day-old rats. GLY significantly increased TBA-RS and chemiluminescence values, indicating that this metabolite provokes lipid oxidative damage. Furthermore, the addition of high doses of the antioxidants melatonin, trolox (soluble vitamin E) and GSH fully prevented GLY-induced increase of lipid peroxidation, indicating that free radicals were involved in this effect. GLY also decreased GSH brain concentrations, which was totally blocked by melatonin treatment. Finally, GLY significantly reduced sulfhydryl group content from a commercial GSH solution, but did not oxidize reduced cytochrome C. Our data indicate that oxidative stress elicited in vitro by GLY may possibly contribute at least in part to the pathophysiology of the neurological dysfunction in NKH.  相似文献   

15.
高浓度的异丙酚可导致动物和人类发生脑损伤,而右美托咪定对多种脑损伤动物模型具有一定的神经保护作用。为了考察右美托咪定对异丙酚麻醉所致新生大鼠脑损伤的保护作用及机制,本研究对7日龄清洁级SD大鼠分别腹腔注射异丙酚(60 mg/kg)、右美托咪定(80μg/kg)和异丙酚(60 mg/kg)+右美托咪定(80μg/kg)。Morris水迷宫实验发现高剂量的异丙酚可显著增加大鼠的逃避潜伏期并减少穿越平台次数,然而右美托咪定预处理则可显著降低大鼠的逃避潜伏期并提高穿越平台次数(p<0.05)。异丙酚单独处理导致大鼠的海马神经元细胞凋亡程度显著增加,而右美托咪定预处理则可显著抑制神经元细胞的凋亡(p<0.05)。异丙酚单独处理可显著下调PSD95蛋白的表达,但右美托咪定预处理则可有效抑制PSD95蛋白的下调(p<0.05)。高剂量的异丙酚可明显下调大鼠海马组织P13K、Akt和GSK-3βmRNA的表达,而右美托咪定预处理则可抑制P13K、Akt和GSK-3βmRNA的下调。此外,右美托咪定预处理可显著提高p-Akt/Akt和p-GSK-3β/GSK-3β蛋白比值。本研究表明,右美托咪定可有效抑制异丙酚诱导的神经元细胞凋亡,改善大鼠的学习和记忆能力。右美托咪定的神经保护作用与其对PI3K/AKT/GSK-3β信号通路的激活有关。  相似文献   

16.
卢奎  胡斌  黎捷  刘中华  周敏  吴文军 《生物磁学》2013,(35):6806-6809
目的:研究神经调节素及基质金属蛋白酶-9对于小鼠大脑缺血再灌注损伤后炎症反应的抑制作用和机制。方法:选取100只成年雄性大鼠,随机分成对照和治疗组。采用线栓方法由颈内到颈外进行插线处理,造成大脑中动脉处于闭塞状态的再灌注动物模型。治疗组颈动脉进行注射少量NRG-1β干预性治疗,通过氯化三苯基四氮唑(TTC)检查脑梗塞范围,细胞凋亡采用原住脱氧核糖核苷酸末端转移酶介导缺口末端进行标记,采用免疫组织化学、免疫荧光双标记法及免疫印迹法观察脑组织基质金属蛋白酶-9(MMP-9)表达。结果:脑缺血再灌注损伤后,随时间延长及缺氧,对照组大鼠大脑皮质和纹状体区脑组织细胞凋亡,并且胶质细胞MMP-9蛋白表达逐渐增加。治疗组大鼠经注射NRG-1β干预性治疗后,缺血脑组织梗死范围及其细胞凋亡数量相对呈明显下降趋势。胶质细胞MMP-9表达呈降低趋势。结论:大鼠脑缺血再灌注损伤后体内NRG-1β抑制胶质细胞MMP-9的表达,控制缺血脑组织梗死的范围并抑制正常细胞的凋亡,发挥了重要的抗炎作用,可作为对于大脑缺血再灌注损伤的研究新靶点。  相似文献   

17.
Streptozotocin-Induced Diabetes Reduces Brain Serotonin Synthesis in Rats   总被引:3,自引:3,他引:3  
The rate of brain 5-hydroxytryptamine (serotonin) synthesis and turnover in streptozotocin-diabetic rats was assessed using three separate methods: the rate of 5-hydroxytryptophan accumulation following decarboxylase inhibition with Ro 4-4602; the decline in 5-hydroxyindoleacetic acid levels following monoamine oxidase inhibition with pargyline; and the rate of 5-hydroxyindoleacetic acid accumulation following blockade of acid transport with probenecid. Each of the three methods revealed that 5-hydroxytryptamine synthesis and turnover is decreased by 44-71% in diabetic rats with plasma glucose levels of between 500 and 600 mg%. In addition, the levels of free and bound plasma tryptophan were measured and the levels of the free amino acid were found to be the same in control and diabetic rats. Since diabetic rats exhibit a 40% decrease in brain tryptophan, the free tryptophan level in plasma does not predict brain tryptophan levels in diabetic rats. These data are discussed within the context of psychiatric disturbances experienced by diabetic patients.  相似文献   

18.
Remote ischemic perconditioning (RIPer) has been proved to provide potent cardioprotection. However, there are few studies on neuroprotection of RIPer. This study aims to clarify the neuroprotective effect of RIPer and the role of autophagy induced by RIPer against cerebral ischemia reperfusion injury in rats. Using a transient middle cerebral artery occlusion (MCAO) model in rats to imitate focal cerebral ischemia. RIPer was carried out 4 cycles of 10 min ischemia and 10 min reperfusion, with a thin elastic band tourniquet encircled on the bilateral femoral arteries at the start of 10 min after MCAO. Autophagy inhibitor 3-methyladenine (3-MA) and autophagy inducer rapamycin were administered respectively to determine the contribution of autophagy in RIPer. Neurologic deficit scores, infarct volume, brain edema, Nissl staining, TUNEL assay, immunohistochemistry and western blot was performed to analyze the neuroprotection of RIPer and the contribution of autophagy in RIPer. RIPer significantly exerted neuroprotective effects against cerebral ischemia reperfusion injury in rats, and the autophagy-lysosome pathway was activated by RIPer treatment. 3-MA reversed the neuroprotective effects induced by RIPer, whereas rapamycin ameliorated the brain ischemic injury. Autophagy activation contributes to the neuroprotection by RIPer against focal cerebral ischemia in rats.  相似文献   

19.
目的:通过大蒜素预处理,观察全脑缺血再灌注大鼠海马区ICAM-1 的表达,从而探讨大蒜素的脑保护机制。方法:雄性 Wistar 大鼠30 只,随机分为5 组:假手术组、缺血再灌注组、缺血再灌注+ 大蒜素10、20、30 mg/kg 组。采用四血管闭塞法制备大 鼠全脑缺血再灌注模型,于再灌注24 h 取出海马,硫堇染色观察海马组织的形态学改变,免疫组织化学染色测定海马CA1 区 ICAM-1 免疫反应阳性细胞面积和积分光密度值。结果:通过给予大鼠全脑缺血8 min 再灌注24 h处理,海马CA1 区组织形态学 改变显著,神经元密度明显降低;ICAM-1的表达显著增加。静脉给予大蒜素可使缺血再灌注海马组织形态学改变明显改善,存活 神经元数目增加,ICAM-1 表达显著较少。结论:大蒜素可以通过减少ICAM-1 的表达抑制全脑缺血再灌注后的炎症损失从而发 挥脑保护作用。  相似文献   

20.
Docosahexaenoic acid complexed to albumin (DHA-Alb) is highly neuroprotective after temporary middle cerebral artery occlusion (MCAo), but whether a similar effect occurs in permanent MCAo is unknown. Male Sprague-Dawley rats (270–330 g) underwent permanent MCAo. Neurological function was evaluated on days 1, 2 and 3 after MCAo. We studied six groups: DHA (5 mg/kg), Alb (0.63 or 1.25 g/kg), DHA-Alb (5 mg/kg+0.63 g/kg or 5 mg/kg+1.25 g/kg) or saline. Treatment was administered i.v. at 3 h after onset of stroke (n = 7–10 per group). Ex vivo imaging of brains and histopathology were conducted on day 3. Saline- and Alb-treated rats developed severe neurological deficits but were not significantly different from one another. In contrast, rats treated with low and moderate doses of DHA-Alb showed improved neurological score compared to corresponding Alb groups on days 2 and 3. Total, cortical and subcortical lesion volumes computed from T2 weighted images were reduced following a moderate dose of DHA-Alb (1.25 g/kg) by 25%, 22%, 34%, respectively, compared to the Alb group. The total corrected, cortical and subcortical infarct volumes were reduced by low (by 36–40%) and moderate doses (by 34–42%) of DHA-Alb treatment compared to the Alb groups. In conclusion, DHA-Alb therapy is highly neuroprotective in permanent MCAo in rats. This treatment can provide the basis for future therapeutics for patients suffering from ischemic stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号