首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate the influence of pectin type on complex formation between whey protein isolate (WPI) and high methoxy pectins with varying degrees of esterification (DE), and their pH stability. The biopolymer particles with protein-to-polysaccharide mass ratio set to 2:1 were formed at pH 3–7 by heating at 85 °C for 20 min. The particle size, electrical charge, turbidity and microstructure of the biopolymer complexes were evaluated. The optimal conditions for forming WPI-pectin complexes were at the initial pH of 4.5–4.75, just below the isoelectric point of the WPI, where complex formation occurs. At this pH range, the smallest biopolymer complexes (d?=?225–300 nm) could be created. Pectins with 50, 55, 62 and 70 % DE formed relatively small and monomodal complexes with WPI, except for pectin with 71 % DE, which showed major aggregation. The pH stability against aggregation was best with the biopolymer complexes assembled from pectins with 50 % DE (stable at pH 3.5–6.0) and with 62 % DE (stable at pH 3.0–6.0). The results suggest that pectins with varying DE can be used to form small particles and therefore can offer new possibilities in designing novel hierarchical structures and delivery systems.  相似文献   

2.
Microgels formed from beta-lactoglobulin were used to prepare oil-in-water emulsions in order to examine their emulsifying capacity. Corn oil emulsions prepared with microgels of pure beta-lactoglobulin at pH 5.8 were initially stable, but a fraction of the droplets quickly flocculated to form a creamed layer that could not be dispersed by shear, which was attributed to hydrophobic attractions between the microgels on adjoining droplets. Emulsions prepared from microgels of beta-lactoglobulin and pectin at pH 4.75 possessed greater droplet sizes at lower concentrations, yet all emulsions were relatively stable to irreversible flocculation. Increased stability of emulsions stabilized by BP-gels was attributed to the presence of pectin on the surface of microgels, which increased repulsions between adjoining droplets. Stable corn oil emulsions were still prepared from microgels that were previously dialyzed to remove non-aggregated protein, which verified that the microgels were responsible for stabilizing emulsion droplets. Equilibrium surface pressure of corn oil droplets was similar between microgels and the unheated beta-lactoglobulin and pectin, yet the dynamic surface pressure was reduced at intermediate times and indicated a slow relaxation and deformation of the microgels at the interface. Microgels formed with pectin stabilized emulsions containing 90 % limonene for up to 5 days of room temperature storage, demonstrating the capacity of such protein microgels to stabilize flavor oil emulsions.  相似文献   

3.
Recombined cream (RC, 23 % fat w/w) and standardised commercial cream (CC, 28 % fat w/w) were studied to understand the effects of manipulating fat globule size at the micron-/nano-scale on the stability and rheological properties of cream. All samples were adjusted to a fat: protein ratio of 5:1 and a fat: emulsifier (Tween 80) ratio of 30:1 to stabilize emulsion. For both CC and RC, different emulsions with droplet sizes covering micron- (3.9 μm), sub-micron (0.5 – 0.6 μm) and nano-metric scales (0.13 – 0.29 μm) were obtained using either the homogeniser (7/3 MPa) or the microfluidiser (85 MPa and 42 MPa). Fat globules from both RC and CC had high zeta potential values (-28 to -43 mV) and maintained their reduced size after 1 month of storage at 4 °C, providing evidence of emulsion stability. Droplet size had a significant effect on rheological characteristics of all creams produced. Nano-sized RC tended to have a rigid structure (solid/gel-like form) as compared to micron-sized RC (liquid-like form) as reflected by higher phase angle. Surprisingly, the rheological properties of CC exhibited an opposite tendency to that of RC. This implies that the observed rheological properties of CC and RC could not be fully explained by the discrepancy in droplet size. Differences in interfacial properties between RC and CC might also play a role in the rheological behaviour of the creams. Results indicated the stable high milk fat emulsions could be successfully created by reducing the globule size. These findings would be useful in understanding how micron-/nano-sized emulsions can be utilised in further application or processing of creams.  相似文献   

4.
The influence of lipase, bile salts, and polysaccharides (pectin and maltodextrin) on the properties and digestibility of lecithin/chitosan-stabilized tuna oil-in-water multilayer emulsions were studied when they were subjected to an in vitro digestion model. All emulsions became unstable to creaming after passing through the digestion model, as deduced from the formation of large visible brown clumps on the top of the emulsions. The release of free fatty acids and glucosamine from the emulsions suggested that lecithin/chitosan-coated droplets were degraded by lipase under simulated gastrointestinal conditions. The amount of free fatty acids released per unit amount of emulsion was higher when bile salt was included in the digestion model or anionic polysaccharide (pectin) was present in the emulsions. These results have important implications for the utilization of multilayered emulsions for the encapsulation, protection, and delivery of n-3 fatty acids and other bioactive lipids.  相似文献   

5.
The suitability of water-in-oil-in-water multiple emulsions to encapsulate resveratrol was assessed. Multiple emulsions were prepared by emulsifying a primary emulsion (40 wt.%) in water containing 0.5 wt.% sodium caseinate and 0.1 M NaCl. Four primary emulsions of canola oil (20 wt.%) stabilized by 8 wt.% polyglycerol polyricinoleate were chosen. The dispersed phase of the primary emulsions contained 0.1 M NaCl and either water, 20 wt.% ethanol in water, 2.5 wt.% whey protein isolate (WPI) in water, or 2.5 wt.% WPI and 5 wt.% gelatine in water. Resveratrol was incorporated into these primary emulsions at 0.25 wt.% to give a final 0.02 wt.% resveratrol in the multiple emulsions. Slight increase in particle size with storage at 23 °C for up to 2 weeks was observed. Further, less than 10% of the total encapsulated resveratrol is released to the external, continuous, aqueous phase. This work demonstrates the potential of multiple emulsions to encapsulate resveratrol for food applications.  相似文献   

6.
The impact of gum arabic (GA), ghatti gum (GG), and sugar beet pectin (SBP) on the digestion rate of emulsified lipids is investigated in vitro under model duodenal digestion condition. The aim was to understand the role of the interfacial layer surrounding the lipid droplets on lipid hydrolysis in order to control lipid digestion. The emulsifier concentration required to provide the same emulsion droplet size decreased in the order: GA > GG > SBP, demonstrating the best emulsifying activity of SBP. The rate and extent of free fatty acid release during lipid digestion did not differ significantly among the three types of gums in emulsions with D[2,3] < 2 μm. However, considerable difference was observed in emulsions with D[2,3] > 2 μm, and the digestive rate decreased in the order: GA > SBP > GG. The difference in digestion rate was attributed to the stability of the emulsified lipid droplets in the stimulated intestinal juice and the resistance of interfacial layer against displacement by bile salts. The difference of resisting against displacement by bile salts for the interfacial layers was detected with bile salts concentration of 0.025 mg/mL, and all of the pre-adsorbed emulsifiers could be completely displaced from interface by bile salts at 5 mg/mL. Emulsions with SBP were susceptible to Ca2+ and Na+ in simulated intestinal juice, resulting in the flocculation and coalescence of emulsion droplets. A reduction of the surface area of lipids would contribute to a slow digestion. Emulsion stabilized by GG was very effective at retarding lipolysis mainly due to the affinity of linked protein moieties of GG and its hydrophobic binding with bile salts. The knowledge gained in the study has important implications in designing proper emulsion-based systems for controlling lipid digestibility at specific sites within the gastrointestinal tract.  相似文献   

7.
The objectives of the present work were to prepare castor oil-based nano-sized emulsion containing cationic droplets stabilized by poloxamer–chitosan emulgator film and to assess the kinetic stability of the prepared cationic emulsion after subjecting it to thermal processing and freeze–thaw cycling. Presence of cryoprotectants (5%, w/w, sucrose +5%, w/w, sorbitol) improved the stability of emulsions to droplet aggregation during freeze–thaw cycling. After storing the emulsion at 4°C, 25°C, and 37°C over a period of up to 6 months, no significant change was noted in mean diameter of the dispersed oil droplets. However, the emulsion stored at the highest temperature did show a progressive decrease in the pH and zeta potential values, whereas the emulsion kept at the lowest temperatures did not. This indicates that at 37°C, free fatty acids were formed from the castor oil, and consequently, the liberated free fatty acids were responsible for the reduction in the emulsion pH and zeta potential values. Thus, the injectable castor oil-based nano-sized emulsion could be useful for incorporating various active pharmaceutical ingredients that are in size from small molecular drugs to large macromolecules such as oligonucleotides.  相似文献   

8.
The formation, stability and in vitro digestion of milk fat globule membrane (MFGM) proteins stabilized emulsions with 0.2 wt% β-carotene were investigated. The average particle size of β-carotene emulsions stabilized with various MFGM proteins levels (1%, 2%, 3%, 4%, 5% wt%) decreased with the increase of MFGM proteins levels. When MFGM proteins concentration in emulsions is above 2%, the average particle size of β-carotene emulsions is below 1.0 μm. A quite stable emulsion was formed at pH 6.0 and 7.0, but particle size increased with decrease in acidity of the β-carotene emulsion. β-carotene emulsions stabilized with MFGM proteins were stable with a certain salt concentrations (0–500 mMNaCl). β-carotene emulsions were quite stable to aggregation of the particles at elevated temperature and time (85 °C for 90 min). At the same time, β-carotene emulsions were stable against degradation under heat treatment conditions. In vitro digestion of β-carotene emulsion showed the mean particle size of β-carotene emulsions stabilized with MFGM proteins in the simulated stomach conditions and intestinal conditions is larger than that of initial emulsions and simulated mouth conditions. Confocal laser scanning microscopy of β-carotene MFGM proteins emulsions also showed the corresponding results to different vitro digestion model. There was a rapid release of free fatty acid (FFA) during the first 10 min and after this period, an almost constant 70% digestion extent was reached. Approximately 80% of β-carotene was released within 2 h of incubation under the simulated intestinal fluid. These results showed that MFGM protein can be used as a good emulsifier in emulsion stabilization, β-carotene rapid release as well as lipophilic bioactive compounds delivery.  相似文献   

9.
Chitosan, a natural, cationic polysaccharide, may be a hydrocolloid strategic to formulate acidic food products, as it can act as both bio-functional and technofunctional constituent. Typically, acetic acid is used to disperse chitosan in aqueous media, but the use of this acid is limited in food formulations due to its flavor. In this study, chitosan was firstly dispersed (0.1% m/V) in lactic acid aqueous solutions (pH 3.0, 3.5 or 4.0), and then evaluated regarding its thickener and emulsion stabilizer properties. O/W emulsions were prepared and characterized in terms of rheological properties, droplets average diameters and droplets ζ-potential. Emulsions containing chitosan were 3 times more viscous than controls without chitosan, and presented storage modulus (G’) higher than loss modulus (G”). Furthermore, they displayed two different populations of droplets (average diameters of 44 and 365 nm) and positive ζ-potential values (+50 mV). Droplets average diameters and ζ-potential did not present significant changes (p > 0.05) after storage at 25 °C during 7 days. This study showed that i) food organic acids other than acetic acetic acid can be used to disperse chitosan for technological purposes, and ii) chitosan dispersed at very low concentrations (0.1 m/V %) had relevant effects on rheological and physicochemical aspects of food-grade emulsions.  相似文献   

10.
Proteins originating from dry legumes are not that much used in food formulations, yet, they are interesting components from a sustainability point of view, and could have interesting functional properties, e.g. for emulsion preparation. Therefore, this work focuses on the potential of the water soluble part of pea, chickpea and lentil protein isolates under acidic emulsions (pH 3.0) using a novel mild technique: premix membrane emulsification. Pea proteins (PP) and chickpea proteins (CP) lower the interfacial tension in the same way as whey protein isolate (WPI), which suggests that they could facilitate emulsion droplet formation similarly as WPI, while lentil proteins (LP) are slightly less effective. It is possible to make oil-in-water (O/W) emulsions with an average droplet diameter (d 4,3 ) of ~5 μm after 5 cycles in the premix system. The droplet size distribution of the emulsions remained constant during one day of storage, indicating that legume proteins are able to form and kinetically stabilize O/W emulsions. CP and PP exhibited emulsifying properties comparable to those of WPI, whereas LP is slightly less efficient, therewith indicating the great potential and that pea and chickpea protein isolates hold as emulsifiers in acidic food formulations.  相似文献   

11.
The objective of this study was to investigate the influence of interfacial composition and electrical charge on the in vitro digestion of emulsified fats by pancreatic lipase. An electrostatic layer-by-layer deposition technique was used to prepare corn oil-in-water emulsions (3 wt% oil) that contained droplets coated by (1) lecithin, (2) lecithin–chitosan, or (3) lecithin–chitosan–pectin. Pancreatic lipase (1.6 mg mL−1) and/or bile extract (5.0 mg mL−1) were added to each emulsion, and the particle charge, droplet aggregation, and free fatty acids released were measured. In the presence of bile extract, the amount of fatty acids released per unit amount of emulsion was much lower in the emulsions containing droplets coated by lecithin–chitosan (38 ± 16 μmol mL−1) than those containing droplets coated by lecithin (250 ± 70 μmol mL−1) or lecithin–chitosan–pectin (274 ± 80 μmol mL−1). In addition, there was much more extensive droplet aggregation in the lecithin–chitosan emulsion than in the other two emulsions. We postulated that lipase activity was reduced in the lecithin–chitosan emulsion as a result of the formation of a relatively thick cationic layer around each droplet, as well as the formation of large flocs, which restricted the access of the pancreatic lipase to the lipids within the droplets. Our results also suggest that droplets initially coated by a lecithin–chitosan–pectin layer did not inhibit lipase activity, which may have been because the chitosan–pectin desorbed from the droplet surfaces thereby allowing the enzyme to reach the lipids; however, further work is needed to establish this. This information could be used to create food emulsions with low caloric level, or to optimize diets for individuals with lipid digestion problems.  相似文献   

12.
The main objective of this work was to investigate the electrostatic interaction between lysolecithin and chitosan in two-layer tuna oil-in-water emulsions using nuclear magnetic resonance (NMR) spectroscopy. The influence of chitosan concentration on the stability and properties of these emulsions was also evaluated. The 5 wt% tuna oil one-layer emulsion (lysolecithin-stabilized oil droplets without chitosan) and two-layer emulsions (lysolecithin-chitosan stabilized oil droplets) containing 5 wt% tuna oil, 1 wt% lysolecithin and various chitosan concentrations (0.025–0.40 wt%) were prepared. The one-dimensional (1D) 31P and 1H NMR spectra of emulsions were then recorded at 25 °C. The results showed that addition of chitosan affected the stability and properties of lysolecithin-stabilized one-layer emulsions. The 31P NMR peak of the choline head group on lysolecithin molecules disappeared when chitosan was added at concentrations above neutralization concentration (> 0.05 wt%). The 1H NMR peak intensity monitoring free amino groups (?NH 3 +) of chitosan showed a strong positive linear relationship to the chitosan concentration with a high correlation coefficient (R2 ≈ 0.99). This 1H NMR peak in emulsions could not be detected for chitosan in emulsions lower than saturation concentration (< 0.15 wt%). These phenomena indicate an electrostatic interaction between lysolecithin and chitosan at droplet surface in emulsion and were consistent with the results from zeta-potential measurements. The T 2* relaxation time of the choline head group (N-(CH 3)3) signal of lysolecithin also confirmed that lysolecithin-chitosan electrostatic interaction occurs at the surface of oil droplets in two-layer emulsions. The results suggest that NMR spectroscopy can be used as an alternative method for monitoring the electrostatic interaction between surfactant and oppositely charged electrolytes or biopolymers in two-layer emulsions.  相似文献   

13.
Water-in-oil (w/o) emulsions can be used to compartmentalize and select large gene libraries for a predetermined function. The aqueous droplets of the w/o emulsion function as cell-like compartments in each of which a single gene is transcribed and translated to give multiple copies of the protein (e.g., an enzyme) it encodes. While compartmentalization ensures that the gene, the protein it encodes, and the products of the activity of this protein remain linked, it does not directly afford a way of selecting for the desired activity. Here we show that re-emulsification of w/o emulsions gives water-in-oil-in-water (w/o/w) emulsions with an external (continuous) water phase through which droplets containing fluorescent markers can be isolated by fluorescence-activated cell sorting (FACS). These w/o/w emulsions can be sorted by FACS, while the content of the aqueous droplets of the primary w/o emulsion remains intact. Consequently, genes embedded in these water droplets together with a fluorescent marker can be isolated and enriched from an excess of genes embedded in water droplets without a fluorescent marker. The ability of FACS instruments to sort up to 40000 events per second may endow this technology a wide potential in the area of high-throughput screening and the directed evolution of enzymes.  相似文献   

14.
Microparticles continue to receive widespread attention from food professionals because of their potential use as carriers of bioactive substances. This study demonstrates a novel method to prepare casein microparticles, which co-assemble with α-tocopherol (αT) into emulsion droplets. When the particles were extracted from the pectin matrix via enzymatic degradation, they remained stable in a buffer solution for at least 3 weeks. Optical microscopy showed that the size distribution of the microparticles is between 5 μm and 50 μm, which is in accordance with previous observations in blend films. High-performance liquid chromatography revealed that the amounts of αS1- and κ-casein in the microparticles are significantly higher than those in native casein micelles. Confocal Raman microscopy showed that in the presence of α-tocopherol, the microparticles assemble into emulsion droplets, with phenol in the core and casein in the shell. Herein, we demonstrate a new method to form casein-based emulsion droplets for potential use as carriers of bioactive substances.  相似文献   

15.
16.
Co-enzyme Q10 (CoQ10), a lipophilic compound that widely used in the food and pharmaceutical products was formulated in a κ-carrageenan coated oil-in-water (O/W) emulsion. In this work, we examined the solubility of CoQ10 in different carrier oils and effects of emulsifier type on the formation and stability of CoQ10-loaded O/W emulsion. Nine vegetable oils and four types of emulsifiers were used. CoQ10 was found significantly (p?<?0.05) more soluble in medium chain oils (coconut oil and palm kernel oil) as compared to other vegetable oils. The O/W emulsions were then prepared with 10 % (w/w) coconut oil and palm kernel oil containing 200 g CoQ10/L oil stabilized by 1 % (w/v) emulsifiers (sucrose laurate (SEL), sodium stearoyl lactate (SSL), polyglycerol ester (PE), or Tween 80 (Tw 80)) in 1 % (w/v) κ-carrageenan aqueous solution. Particle size distribution and physical stability of the emulsions were monitored. The droplet sizes (surface weighted mean diameter, D[3,2]) of fresh O/W emulsion in the range of 2.79 to 5.83 μm were observed. Irrespective of the oil used, results indicated that complexes of SSL/κ-carrageenan provided the most stable CoQ10-loaded O/W emulsion with smaller and narrower particle size distribution. Both macroscopic and microscopic observations showed that O/W emulsion stabilized by SSL/κ-carrageenan is the only emulsion that exhibited no sign of coalescence, flocculation, and phase separation throughout the storage period observed.  相似文献   

17.
The study reported here aims to obtain information on how thickener type and concentration, and oil content influence rheology, particle size, particle charge and microstructure in o/w model emulsions. Emulsions were prepared at two oil concentrations (5 and 30 % wt/wt), each with three CMC concentrations (0.2, 0.3, and 0.4 % wt/wt), or three starch concentrations (2, 3, and 4 % wt/wt). For each oil concentration, a sample without any added thickener was prepared as reference. Both CMC and swollen starch granules showed a dominating effect on emulsion flow behavior, although the presence and concentration of fat droplets also played an important role. Viscoelasticity of CMC-based emulsions mainly depended of oil concentration whilst in starch-based emulsions the most influential ingredient was starch. A similar situation was detected in terms of particle size distribution; CMC effect was dependent on oil content and starch effect was mainly related to the volume occupied by swollen granules. Differences in microstructure and particle size distribution between CMC and starch emulsions were related to their rheological behavior. Apart from enabling the acquisition of food emulsions with different composition but with similar rheological behavior by adding different hydrocolloids, here we consider thickener effect on other properties in order to obtain food emulsions with adequate characteristics.  相似文献   

18.
Salminen  Hanna  Sachs  Melody  Schmitt  Christophe  Weiss  Jochen 《Food biophysics》2022,17(3):460-471

Complex formation (leading to either coacervation or precipitation) offers a tool to generate plant-based novel food structures and textures. This study investigated the formation of complexes between soluble pea proteins and apple pectin upon varying the protein-to-pectin ratio (r?=?2:1 to 10:1), pH (3–7), and temperature (25 and 85 °C) with a total biopolymer concentration set to 1% (w/w). The results showed that predominantly soluble biopolymer complexes were formed at pH 5, and at low ratio (r?=?2:1), whereas lowering the pH to more acidic condition, and to higher ratios (r?=?4:1–10:1) induced the formation of more insoluble biopolymer complexes. In general, the mean particle sizes of the biopolymer complexes ranged between approximately 20 and 100 μm. Upon heating to 85 °C, the amount of insoluble biopolymer complexes increased at pH 3–5 at all ratios, except at r?=?2:1. In addition, the complex sizes became somewhat larger at r?=?2:1 to 6:1 upon heat treatment, whereas only trivial size changes were observed at higher ratios (r?=?8:1 to 10:1). Overall, electrostatic and hydrophobic interactions played a major role in the complex formation between the soluble pea proteins and apple pectin. These findings are important for designing solely plant-based food structures.

  相似文献   

19.
This work attempts to determine any relationship between certain endogenous parameters and the oxidative deterioration of protein-stabilized oil-in-water emulsions. The contribution of compositional factors (e.g., type and amount of emulsifier, fat phase, etc.) is further elucidated. Among 10% cottonseed o/w emulsions prepared by 1% emulsifier (Tween, sodium caseinate, or whey protein), lipid autoxidation (at 40°C) was much faster in the Tween emulsion than in the protein ones, with whey protein presenting a clear antioxidant effect. Increase in protein concentration (0.5–2% w/w) led to a decrease in droplet size but an increase in oxidative stability, in terms of conjugated diene hydroperoxides formation at 232 nm. The type of lipid phase significantly affected the rate of thermal oxidation at 60°C. In the most oxidatively vulnerable sunflower-oil-based emulsions, an increase in fat content (10–40%) resulted in a reduction of oxidative deterioration. By selecting a more concentrated emulsion (20% o/w, 2% emulsifier), in order to structurally approach real novel food products, any influence of the composition of the emulsifier (combination of Tween and sodium caseinate preparation) was subsequently tested. An increase in protein proportion in the emulsifier was found to inhibit proportionally the oxidative instability of the emulsions, as evaluated by the determination of both primary (conjugated diene and lipid hydroperoxides) and secondary [thiobarbituric acid-reactive substances (TBARS)] oxidation products.  相似文献   

20.
This study describes the influence of environmental stresses on the stability of emulsions prepared by a natural sugar beet extract (Beta vulgaris L.). The emulsion stabilizing performance was compared to that of Quillaja extract, which is widely used within the food and beverage industry as natural surfactant. We investigated the influence of pH, ionic strength, heating and freeze-thawing on the mean particle size, ζ-potential and microstructure of oil-in-water emulsions (10% w/w oil, 0.75% w/w emulsifier). The emulsions stabilized by the anionic sugar beet extract were stable at pH 5–8 and against thermal treatments up to 60 °C. However, the prepared emulsions were unstable at acidic (pH 2–4) and basic pH conditions (pH 9), at high temperature (>60 °C), and at salt additions (> 0.1 M NaCl / CaCl2). Moreover, they also phase separated upon freeze-thawing. Our results show that sugar beet extract is capable of stabilizing emulsions and may therefore be suitable as natural emulsifier for selected applications in the food and beverage industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号