首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In a previous study, 10-day estradiol implant treatment truncated the FSH peaks that precede follicular waves in sheep, but subsequent ovine FSH (oFSH) injection reinitiated wave emergence. The present study's objectives were to examine the effects of a 20-day estradiol and progesterone treatment on FSH peaks, follicle waves, and responsiveness to oFSH injection. Also, different estradiol doses were given to see whether a model that differentially suppressed FSH peaks, LH pulses, or basal gonadotropin secretion could be produced in order to study effects of these changes on follicular dynamics. Mean estradiol concentrations were 11.8 +/- 0.4 pg/ml, FSH peaks were truncated, wave emergence was halted, and the number of small follicles (2-3 mm in diameter) was reduced (P < 0.05) in cyclic ewes given estradiol and progesterone implants (experiment 1). On Day 15 of treatment, oFSH injection failed to induce wave emergence. With three different estradiol implant sizes (experiment 2), estradiol concentrations were 5.2, 19.0, 27.5, and 34.8 (+/-4.6) pg/ml in control and treated ewes, respectively. All estradiol treatments truncated FSH peaks, except those that created the highest estradiol concentrations. Experiment 2-treated ewes had significantly reduced mean and basal FSH concentrations and LH pulse amplitude and frequency. We concluded that 20-day estradiol treatment truncated FSH peaks, blocking wave emergence, and reduced the small-follicle pool, rendering the ovary unresponsive to oFSH injection in terms of wave emergence. Varying the steroid treatment created differential FSH peak regulation compared with other gonadotropin secretory parameters. This provides a useful model for future studies of the endocrine regulation of ovine antral follicular dynamics.  相似文献   

2.
In this study, the characteristics of ovarian follicular waves and patterns of serum concentrations of follicle-stimulating hormone (FSH), estradiol, and progesterone were compared between cycles with three (n = 9) or four (n = 10) follicular waves in Western White Face (WWF) ewes (Ovis aries). Transrectal ultrasonography and blood sampling were performed daily during one cycle. Estrous cycles were 17.11 ± 0.3 and 17.20 ± 0.2 d long in cycles with three and four waves, respectively (P > 0.05). The first interwave interval and the interval from the emergence of the final wave to the day of ovulation were longer in cycles with three waves compared with those in cycles with four waves (P < 0.05). The growth phase (5.1 ± 0.5 vs. 3.1 ± 0.4 d) and life span (5.67 ± 0.3 vs. 4.3 ± 0.3 d) of the largest follicle growing in the last or ovulatory wave was longer in cycles with three waves compared with that in cycles with four waves (P < 0.05). The maximum diameter of the largest follicle was greater in the first wave and the ovulatory wave compared with that in other waves of the cycle (P < 0.05). The regression phase of the largest follicle growing in the first wave was longer in cycles with three waves compared with that in cycles with four waves (4.44 ± 0.4 vs. 3.4 ± 0.4 d; P < 0.05). The length of the life span, regression phase, and, although not significant in every case, FSH peak concentration and amplitude decreased across the cycle (P < 0.05). We concluded that estrous cycles with three or four follicular waves were confined within the same length of cycle in WWF ewes. In this study, there were no apparent endocrine or follicular characteristics that could explain the regulation of the different number of follicular waves (three vs. four) during cycles of similar length.  相似文献   

3.
Computer-assisted quantitative echotextural analysis was applied to ultrasound images of antral follicles in the follicular waves of an interovulatory interval in sheep. The ewe has three or four waves per cycle. Seven healthy, cyclic Western White Face ewes (Ovis aris) underwent daily, transrectal, ovarian ultrasonography for an interovulatory interval. Follicles in the third wave of the ovulatory interval had a longer static phase than that of those in Waves 1 and 2 (P < 0.05). The numeric pixel value for the wall of anovulatory follicles emerging in the third wave of the cycle was significantly higher than that for Waves 1 and 2 at the time of emergence (156.7 ± 8.09, 101.6 ± 3.72, and 116.5 ± 13.93, respectively), and it decreased as follicles in Wave 3 reached maximum follicular diameter (P < 0.05). The numeric pixel value of the antrum in the ovulatory follicles decreased as follicular diameter increased to ≥5 mm in diameter (P < 0.05). The pixel heterogeneity of the follicular antrum in Wave 1 increased from the end of the growth phase to the end of the regression phase for follicles in that wave (P < 0.05). The total area for the wall and antrum of the follicles studied were correlated with follicular diameter in all follicular waves (r = 0.938, P < 0.01 and r = 0.941, P < 0.01 for the wall and antrum, respectively). Changes in image attributes of the follicular wall and antrum indicate potential morphologic and functional differences among antral follicles emerging at different stages of the interovulatory interval in cyclic ewes.  相似文献   

4.
In the ewe, ovarian follicular waves emerge every 4 to 5 days and are preceded by a peak in FSH secretion. It is unclear whether large antral follicle(s) in a wave suppress the growth of other smaller follicles during the inter-wave interval, as is seen in cattle. In this study, anestrous (n = 6; experiment 1) and cyclic (n = 5; experiment 2) Western white face ewes were given ovine FSH (oFSH) (0.5 microg/kg; two s.c. injections, 8 h apart) during the growth phase (based on ultrasonography) of a follicular wave (wave 1). Control ewes (n = 5 and 6, respectively) received vehicle. In oFSH-treated ewes, serum FSH concentrations reached a peak (P < 0.05) by 12 h after oFSH treatment, and this induced FSH peak did not differ (P > 0.05) from the endogenous FSH peaks. In all ewes, emergence of follicular waves 1 and 2 was seen (P > 0.05). However, in oFSH-treated ewes, an additional follicular wave emerged approximately 0.5 days after treatment: during the interwave interval of waves 1 and 2 without delaying the emergence of wave 2. The growth characteristics and serum estradiol concentrations did not differ (P > 0.05) between oFSH-induced waves and waves induced by endogenous FSH peaks. We concluded that, unlike in cattle, the largest follicle of a wave in sheep has limited direct effect on the growth of other follicles induced by exogenous oFSH. In addition, the largest follicle of a wave may possibly not influence the rhythmicity of follicular wave emergence, as it does in cattle.  相似文献   

5.
Follicle waves are preceded by follicle-stimulating hormone (FSH) peaks in ewes. The purpose of the present study was to see whether estradiol implant treatment would block FSH peaks to create a model in which the effect of the timing and mode of FSH peaks could be studied by ovine FSH (oFSH) injection. In Experiment 1, 10 ewes received estradiol-17beta implants on Day 4 after ovulation (Day 0, day of ovulation); five ewes received large implants, and five ewes received small implants. Five control ewes received empty implants. In Experiment 2, 12 ewes received large implants on Day 4. On Day 9, six ewes received oFSH twice, 8 h apart (0.5 microg/kg; s.c.). Implants were left in place for 10 days in both experiments. In both studies, ovarian ultrasonography and blood sampling was done daily. In Experiment 1, estradiol concentrations were significantly higher in ewes with large implants (10.4 +/- 0.7 pg/ml) compared with controls (3.9 +/- 0.7 pg/ml) and ewes with small implants (5.4 +/- 0.7 pg/ml; P < 0.001). A significant reduction was found in mean FSH peak concentration (31%; P < 0.05) and FSH peak amplitude (45%; P < 0.05) in ewes with large implants compared with controls. Mean and basal FSH concentrations were unaffected by the large implants. The large implants halted follicle-wave emergence between Day 0 and 8 after implant insertion. The small follicle pool (2-3 mm in diameter) was unaffected by the large implants. When oFSH was injected into ewes with large implants, a follicle wave emerged 1.5 +/- 0.5 days after injection; however, in ewes given saline alone, a follicle wave emerged 4.8 +/- 0.8 days after injection (P < 0.01). We concluded that truncation of FSH peaks by estradiol implants prevented follicle-wave emergence, but injection of physiologic concentrations of oFSH reinitiated follicle-wave emergence.  相似文献   

6.
The objective of this study was to determine if pulsatile LH secretion was needed for ovarian follicular wave emergence and growth in the anestrous ewe. In Experiment 1, ewes were either large or small (10 × 0.47 or 5 × 0.47 cm, respectively; n = 5/group) sc implants releasing estradiol-17 beta for 10 d (Day 0 = day of implant insertion), to suppress pulsed LH secretion, but not FSH secretion. Five sham-operated control ewes received no implants. In Experiment 2, 12 ewes received large estradiol-releasing implants for 12 d (Day 0 = day of implant insertion); six were given GnRH (200 ng IV) every 4 h for the last 6 d that the implants were in place (to reinitiate pulsed LH secretion) whereas six Control ewes were given saline. Ovarian ultrasonography and blood sampling were done daily; blood samples were also taken every 12 min for 6 h on Days 5 and 9, and on Days 6 and 12 of the treatment period in Experiments 1 and 2, respectively. Treatment with estradiol blocked pulsatile LH secretion (P < 0.001). In Experiment 1, implant treatment halted follicular wave emergence between Days 2 and 10. In Experiment 2, follicular waves were suppressed during treatment with estradiol, but resumed following GnRH treatment. In both experiments, the range of peaks in serum FSH concentrations that preceded and triggered follicular wave emergence was almost the same as control ewes and those given estradiol implants alone or with GnRH; mean concentrations did not differ (P < 0.05). We concluded that some level of pulsatile LH secretion was required for the emergence of follicular waves that were triggered by peaks in serum FSH concentrations in the anestrous ewe.  相似文献   

7.
We designed three experiments to investigate the relationship between FSH peaks and ovarian follicular waves and to examine whether an endogenous rhythm of FSH peaks exists in sheep. In experiment 1, anestrous ewes were treated with ovine FSH (oFSH) or vehicle (6 ewes per group) at the expected time of an endogenous FSH peak, to double the FSH-peak amplitude in treated ewes. In experiment 2, anestrous ewes were treated with either oFSH or vehicle (6 ewes per group) at the expected time of two consecutive interpeak nadirs, such that the treated ewes had 5 FSH peaks in the time frame of 3 FSH peaks in control ewes. In experiment 3, to measure FSH concentrations, daily blood samples were collected from 5 cyclic ewes for a control period during the estrous cycle and then for three 17-day periods after ovariectomy. Daily blood samples were collected from another group of 8 ovariectomized ewes that were treated with estradiol-releasing implants and intravaginal progestogen sponges. Doubling the FSH-peak amplitude did not alter the characteristics of the following follicular wave. Increasing the frequency of FSH peaks stimulated the emergence of additional follicular waves, but did not alter the rhythmic occurrence of FSH peaks and follicular wave emergence. Endogenous follicular waves in oFSH-treated ewes emerged and grew in the presence of the growing largest follicle of the induced follicular waves. Finally, based on the observation of serum FSH concentrations in ovariectomized ewes, it appears that there exists an endogenous rhythm for peaks in daily serum FSH concentrations, which is, at least in part, independent of regulation by ovarian follicular growth patterns.  相似文献   

8.
The mechanism governing the number of follicle-stimulating hormone (FSH) peaks and emerging follicular waves in ruminants remains unknown. The main purpose of the present study was to examine the relationships between progesterone (P(4)) levels, circulating concentrations of FSH and antral follicular development throughout the interovulatory interval in sheep. We retrospectively analyzed and compared daily serum concentrations of (P4), FSH and estradiol (E2) obtained in cyclic (November-December) Western White Face ewes (Columbia×Rambouillet) that had 3 (n=10) or 4 (n=19) follicular waves per estrous cycle. Follicular growth was monitored in all animals by daily transrectal ultrasonography. Mean P(4) concentrations were greater (p<0.05) in sheep with 4 waves per cycle compared to their counterparts with 3 waves of follicular growth. The ewes with 3 waves exceeded (p<0.05) animals with 4 follicular waves in mean serum FSH concentrations on days 0-2, 6, 7, 9-11, 14 and 15 post-ovulation. Animals with 4 follicular waves exceeded (p<0.05) the ewes with 3 waves in mean serum E(2)> concentrations on days - 1, 2 and 10 of the estrous cycle studied (day 0=ovulation). The present results are supportive of the notion that luteal P(4) is an important endocrine signal, which controls the periodicity of FSH peaks and the number of emerging follicular waves in cyclic ewes.  相似文献   

9.
《Small Ruminant Research》2010,92(2-3):178-185
In the ewe, ovarian antral follicles emerge or grow in a wave-like pattern and each wave is preceded by a peak in the serum FSH level. The purpose of the current study was to investigate whether in anestrous Western White Face ewes, a combination of progesterone and estradiol affects the circulating FSH peak secretion and the number of small ovarian follicles. Five ewes were treated with subcutaneous silastic rubber implants (10 cm × 0.47 cm), containing 10% estradiol-17β w/w (controls) and 5 ewes were treated with the same estradiol implant, along with subcutaneous implants (11 cm × 0.48 cm) containing 10% progesterone w/w for 12 days. Daily transrectal ovarian ultrasonography and blood sampling was performed from 5 days before, to 9 days after the period of implantation. Blood samples were also taken every 12 min for a 6 h period on day −2, 6 and 13 prior to or after implant insertion (day 0, day of implant insertion). Pulsatility in the serum LH levels was eliminated by the implants (P < 0.05). During the implantation period, the serum FSH peak amplitude was lower in ewes treated with implants releasing estradiol and progesterone, compared to ewes treated with implants releasing only estradiol (P < 0.05). No follicular waves emerged during implant treatment in both groups (P < 0.05) and the number of serum FSH peaks did not differ during implantation, compared to before implantation. During the implantation period, the number of small follicles did not differ in ewes with implants releasing estradiol and progesterone, compared to ewes treated with implants releasing only estradiol. To conclude, supra-physiological concentrations of estradiol completely eliminated the serum LH pulsatality and suppressed the follicular wave emergence, while the FSH secretory peaks that preceded the follicular waves were not affected. Supra-physiological concentrations of estradiol-17β with physiological concentrations of progesterone decreased the serum FSH peak amplitude, eliminated the serum LH pulses, but did not decrease the size of the small follicle pool in anestrous ewes.  相似文献   

10.
Daily transrectal ultrasound scanning and twice-daily blood sampling were used to monitor the temporal relationships between FSH concentrations and follicle development during complete interovulatory intervals for ewes in which the ovulation rate in each of the 2 previous years was high or low (> or = 3 and < or = 2 ovulations, respectively). Follicles that reached > or = 5 mm were used to define a follicular wave and were tracked retrospectively to 3 mm (emergence). The hypothesis that FSH surges (identified with a computer program) and follicular waves (retrospectively determined based on ultrasound scanning) are temporally associated was supported in both groups by the emergence of an anovulatory or ovulatory follicular wave near the peak of an FSH surge. Further support for the hypothesis was a significant increase in FSH concentrations before and a significant decrease after follicular-wave emergence in both groups independent of the identification of FSH surges. Ewes with a history of high ovulation rates had smaller follicles (anovulatory and ovulatory) and more ovulations, but the 2 groups were similar in the number of ovulatory follicular waves and associated FSH surges, number and characteristics of the FSH surges, and mean FSH concentrations per interovulatory interval. Surges of FSH were periodic (every 3 or 4 d) regardless of the ovulation-rate group or follicle response. In ewes with a low ovulation rate, the nonovulatory FSH surges were most frequently associated with emergence of detected anovulatory follicular waves. In ewes with a high ovulation rate, more FSH surges were not associated with a detected follicular wave, as defined, presumably because the largest follicle did not reach 5 mm. The results indicated that the factors resulting in a high ovulation rate were not exerted through circulatory patterns or concentrations of FSH but involved a shorter growth phase and smaller maximal diameter of follicles.  相似文献   

11.
Transrectal ultrasonography of ovaries was performed each day in non-prolific Western white-faced (n = 12) and prolific Finn ewes (n = 7), during one oestrous cycle in the middle portion of the breeding season (October-December), to record the number and size of all follicles > or = 3 mm in diameter. Blood samples collected once a day were analysed by radioimmunoassay for concentrations of LH, FSH and oestradiol. A cycle-detection computer program was used to identify transient increases in concentrations of FSH and oestradiol in individual ewes. Follicular and hormonal data were then analysed for associations between different stages of the lifespan of the largest follicles of follicular waves, and detected fluctuations in serum concentrations of FSH and oestradiol. A follicular wave was defined as a follicle or a group of follicles that began to grow from 3 to > or = 5 mm in diameter within a 48 h period. An average of four follicular waves per ewe emerged during the interovulatory interval in both breeds of sheep studied. The last follicular wave of the oestrous cycle contained ovulatory follicles in all ewes, and the penultimate wave contained ovulatory follicles in 10% of white-faced ewes but in 57% of Finn ewes. Transient increases in serum concentrations of FSH were detected in all animals and concentrations reached peak values on days that approximated to follicle wave emergence. Follicular wave emergence was associated with the onset of transient increases in serum concentrations of oestradiol, and the end of the growth phase of the largest follicles (> or = 5 mm in diameter) was associated with peak serum concentrations of oestradiol. Serum FSH concentrations were higher in Finn than in Western white-faced ewes during the follicular phase of the cycle (P < 0.05). There were no significant differences in serum concentrations of LH between Western white-faced and Finn ewes (P > 0.05). Mean serum concentrations of oestradiol were higher in Finn compared with Western white-faced ewes (P < 0.01). It was concluded that follicular waves (follicles growing from 3 to > or = 5 mm in diameter) occurred in both prolific and non-prolific genotypes of ewes and were closely associated with increased secretion of FSH and oestradiol. The increased ovulation rate in prolific Finn ewes appeared to be due primarily to an extended period of ovulatory follicle recruitment.  相似文献   

12.
Follicular Wave 1 and 2 and the associated FSH Surge 1 and 2 were used to designate the first two waves and surges of the interovulatory interval in two experiments in heifers. In experiment 1, a group with early (group E, N = 9) and late (group L, N = 5) development of the dominant follicle of Wave 1 were used as natural models to study FSH/follicle coupling. The day of wave emergence and the day of deviation in diameters between the two largest follicles were not different between groups. Emergence of Wave 2 and maximal FSH concentration in Surge 2 was approximately 1 day later (P < 0.03) in group L. Diameter of the dominant follicle of wave 1 (13.8 ± 0.3 mm vs. 12.0 ± 0.3 mm) and FSH concentrations in Surge 2 (0.29 ± 0.02 ng/mL vs. 0.21 ± 0.03 ng/mL) were first greater (P < 0.05) in group E than in group L at 4 and 5 days, respectively, after wave emergence. In experiment 2, treatment with estradiol (N = 8) when the dominant follicle of Wave 1 was ≥11 mm (Hour 0) resulted in a decrease (P < 0.02) in FSH and slower (P < 0.05) growth rate of the follicle between Hours 0 and 4. Results supported the following hypotheses: (1) the FSH surge that stimulates emergence of a follicular wave is associated with final growth of the dominant follicle of the previous anovulatory wave; and (2) suppression of FSH Surge 2 when the dominant follicle of Wave 1 is ≥11 mm is associated with a decrease in diameter. It is concluded for the first time that two-way FSH/follicle coupling in heifers continues during final growth of the dominant follicle of Wave 1 and that Surge 2 is the FSH source.  相似文献   

13.
Folliculogenesis was studied daily in 16 interovulatory intervals in 5 Polypay ewes from mid February through April using transrectal ultrasonic imaging. The 3-mm follicles attaining > or = 5 mm on Days--1 (ovulation=Day 0) to 11 showed significant peak numbers on Days 0, 5 and 10. The number of 3- and 4-mm follicles that did not reach > 4 mm was not significant, indicating that these follicles did not manifest a wave pattern. A follicular wave was defined as one or more follicles growing to > or = 5 mm; the day the follicles were 3 mm was the day of wave emergence, and the first wave after ovulation was Wave 1. Waves 1, 2 and 3 emerged on Days -1 to 2,4 to 7 and 8 to 10, respectively. Four interovulatory intervals in April were short (9 to 14 d), indicating the end of the ovulatory season. In the remaining 12 intervals, the ovulatory wave was Wave 3 in one interval, Wave 4 in 8 intervals, and Wave 5 or 6 in 3 intervals. The ovulatory wave followed the rhythmic pattern of Waves 1 to 3 by emerging on Days 11 to 14 in 50% of the intervals. In the remaining intervals, either the ovulatory wave was Wave 4 but did not emerge until Day 16 or other waves intervened between Wave 3 and the ovulatory wave. The longest intervals (22, 24 and 24 d) had >4 waves. Based on a cycle-detection program, peak values of FSH fluctuations were temporally associated with the emergence of waves as indicated by the following: 1) tendency (P < 0.08) for an increase in FSH concentrations between 3 and 2 days before emergence of a wave; 2) close agreement between mean number of waves per interval (mean +/- SEM, 4.1 +/- 0.3) and mean number of identified FSH fluctuations (4.5 +/- 0.3); 3) close agreement in length of interwave intervals (4.0 +/- 0.3) and interpeak (FSH) intervals (3.6 +/- 0.2); 4) positive correlation (r(2)=0.8) for number of the 2 events (follicular waves and FSH fluctuations) within intervals; and 5) a closer (P < 0.01) temporal relationship between the 2 events than would have been expected if the events were independent. The results support a relationship between transient increases in FSH concentrations and emergence of follicular waves throughout the interovulatory interval in Polypay ewes, with the 2 events occurring approximately every 4 d.  相似文献   

14.
Concentrations of circulating hormones after Day 14 (Day 0 = ovulation) were determined daily in 87 interovulatory intervals (IOIs) in heifers. The IOIs were grouped into four permutations according to an ipsilateral (Ipsi) or contralateral (Contra) relationship between the CL and the preovulatory follicle and two (2W) or three (3W) follicular waves per IOI. The number of IOIs per group differed (P < 0.005) from equality among the Ipsi-2W (n = 27), Contra-2W (n = 31), Ipsi-3W (n = 9), and Contra-3W (n = 20) groups. A continuous decrease in progesterone (luteolysis) began later (P < 0.05) in the Contra-3W group (Day 18.0 ± 0.4) than in each of the Ipsi-2W (15.4 ± 0.2), Contra-2W (15.6 ± 0.2), and Ipsi-3W (16.2 ± 0.5) groups. Concentrations of LH and estradiol began to increase near the beginning of luteolysis in each group. A minor FSH surge that did not stimulate a major follicular wave developed in about 50% of the IOIs in each group, except that none were detected in the Ipsi-3W group. The minor FSH surge reached a peak about 4 days before ovulation and several days after wave 3 had emerged. The hypothesis that luteolysis begins earliest in two-wave IOIs, intermediate in three-wave IOIs with an ipsilateral CL/follicle relationship, and latest in three-wave IOIs with a contralateral relationship was supported. The hypothesis that a minor FSH surge occurs most frequently in association with three follicular waves was not supported.  相似文献   

15.
The effect of the ovarian follicles on plasma concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) before versus after the expected emergence of the ovulatory follicular wave was studied on Days 0 to 18 (Day 0 = ovulation) in four groups of mares (n = 6/group). In addition to a control group, all follicles ≥6 mm in diameter were ablated on Days 0.5, 6.5, or 12.5 in a herd of mares with reported emergence at 6 mm of the future ovulatory follicle on mean Day 10.5. Concentrations of FSH were not different between the Day-0.5 or Day-6.5 ablation groups and the corresponding controls. However, ablation on Day 12.5 resulted in an immediate FSH increase (group-by-day interaction, P < 0.003). For LH, ablation on Day 0.5 resulted in an interaction (P < 0.02), partially from lower (P < 0.05) concentrations on each of Days 15.5 to 18.0 than that in the controls, whereas ablation on Days 6.5 or 12.5 did not result in a significant group effect or interaction. Testosterone concentration, but not progesterone or estradiol concentration, was lower (P < 0.04) on Day 2 in the Day-0.5 ablation group than that in the controls. We inferred that follicles did not contain adequate FSH suppressors on Days 0.5 and 6.5 and that they were present only in the Day-12.5 ablation group or after the expected emergence of the ovulatory wave. The hypothesis of an association between low postovulatory concentrations of an ovarian steroid and low concentrations of LH after Day 15 was supported.  相似文献   

16.
A standard dose of 500 IU of eCG is commonly given to progestogen pre-treated anestrous ewes for induction of estrus. Twelve seasonally anestrous and 12 cyclic Western White Face ewes were treated for 12 days with intravaginal sponges impregnated with medroxyprogesterone acetate (MAP). In trials in both the breeding and nonbreeding seasons, six randomly selected ewes were given 500 IU of eCG at sponge removal to determine the effects of low dose of eCG on ovarian antral follicular dynamics and ovulation. Ultrasound scanning and blood sampling were done daily. Treatment with eCG did not have marked effects on antral follicular growth. All ewes ovulated, except for five of six control anestrous ewes. Luteal structures and progesterone secretion were confirmed in all but the control anestrous ewes. In the breeding season, peak progesterone concentrations were greater (P<0.05) in eCG-treated compared to control ewes. Daily serum estradiol concentrations were greater in the periovulatory period in eCG-treated compared to control ewes (treatment-by-day interaction; P<0.05), particularly in anestrus. Progestogen-treated ewes ovulated follicles from several follicular waves, in contrast to ovulations of follicles from the final wave of the cycle in untreated, cyclic ewes. Anestrous ewes exhibited more frequent follicular waves and FSH peaks compared to cyclic ewes after a progestogen/eCG treatment. In conclusion, 500 IU of eCG given after 12 days of progestogen treatment had limited effects on the dynamics of ovarian follicular waves. However, eCG treatment increased serum concentrations of estradiol during the periovulatory period, particularly in anestrous ewes; this probably resulted in the synchronous estrus and ovulation in anestrous ewes.  相似文献   

17.
Blood samples were collected and follicle diameters were determined daily beginning on Day 12 (Day 0 = ovulation) in 35 interovulatory intervals (IOIs) in heifers. A minor follicular wave with maximal diameter (6.0 ± 0.3 mm) on Day −4 was detected in six of seven IOIs that were scanned for follicles 4 mm or greater. The number of IOIs with a CV-identified minor FSH surge toward the end of the IOI was greater (P < 0.03) in two-wave IOIs (10/17) than in three-wave IOIs (4/18). The 17 two-wave IOIs were used for study of the temporal relationships among preovulatory follicle, FSH, LH, and estradiol. Daily growth rate of the preovulatory follicle was maximum on Days −11 to −7, minimum (P < 0.05) on Days −7 to −4, and increased (resurged, P < 0.05) on Days −4 to −3. A transient increase in FSH was maximum on mean Day −4, and the peak of a minor FSH surge occurred on Day −4.5 ± 0.2. Concentration of LH and estradiol increased between Days −5 and −4. Results demonstrated resurgence of the preovulatory follicle apparently for the first time in any species. Resurgence seemed more related temporally to the minor FSH surge than to the LH increase, but further study is needed. Results supported the novel hypotheses that a minor FSH surge near the end of the IOI is temporally associated with (1) the emergence of a minor follicular wave and (2) the resurgence in growth rate of the preovulatory follicle.  相似文献   

18.
Characteristics predictive of a 2-wave versus 3-wave pattern of ovarian follicular development during the interovulatory interval (IOI) were examined by ultrasonographic monitoring of 91 IOIs from 31 beef heifers. Repeatability of the wave pattern within individuals and the effects of season and age were determined using a subset of 75 IOIs from 15 heifers examined for multiple IOIs. The 2-wave pattern was detected in 62 of 91 (68%) IOIs, and the 3-wave pattern was detected in 29 of 91 (32%) IOIs. The preponderance of the 2-wave versus 3-wave pattern (P < 0.05) was not influenced by season (P = 0.61) but was even greater in the more mature age group (P = 0.02). The majority of IOIs ≤21 d was of the 2-wave pattern (88%; P < 0.05), whereas the majority of IOIs ≥22 d was of the 3-wave pattern (78%; P < 0.05). The proportion of nonalternating patterns (repeatability) was more than twofold greater than the proportion of alternating patterns (70% vs. 30%; P < 0.01). This relationship was consistent among seasons (P < 0.01) and even more marked in the more mature age group (P = 0.01). Emergence and follicular dominance of Wave 2 were delayed (P < 0.01), and the onset of corpus luteum regression was earlier (P < 0.01) in 2-wave versus 3-wave IOI. In conclusion, the duration of the IOI was predictive of the wave pattern, and the pattern was repeatable within individuals. Factors influencing the period of follicular dominance of Wave 1 in 2-wave versus 3-wave IOI may be responsible for regulating the wave pattern and may be associated with heifer maturity or relative nutritional demand during the postpubertal period. The impact of greater follicular attrition recorded in 3-wave versus 2-wave IOI on ovarian depletion and reproductive senescence is worthy of critical evaluation.  相似文献   

19.
In the ewe, a rise in circulating concentrations of FSH preceding follicular wave emergence begins in the presence of growing follicles from a previous wave. We hypothesized that prostaglandin F(2alpha) (PGF(2alpha)) given at the time of an endogenous FSH peak in cyclic ewes would result in synchronous ovulation of follicles from two consecutive waves, increasing ovulation rate. Twelve Western White Face (WWF) ewes received a single i.m. injection of PGF(2alpha) (15 mg/ewe) at the expected time of a peak in FSH secretion, from Days 9 to 12 after ovulation. The mean ovulation rate after PGF(2alpha) treatment (2.3+/-0.3) did not differ (P>0.05) from the pre-treatment ovulation rate (1.7+/-0.1). Five ewes ovulated follicles from follicular waves emerging before and after PGF(2alpha) injection (3.0+/-0.6 ovulations/ewe) and seven ewes ovulated follicles only from a wave(s) emerging before PGF(2alpha) treatment (2.0+/-0.3 ovulations/ewe; P>0.05). The mean interval from PGF(2alpha) to emergence of the next follicular wave (1.0+/-0.4 and 4.0+/-0.0 d, respectively; P<0.001) and the interval from PGF(2alpha) treatment to the next FSH peak (0 and 3.5+/-0.4d, respectively; P<0.05) differed between the two groups. Six ewes ovulated after the onset of behavioral estrus, with a mean ovulation rate of 1.7+/-0.2, and six ewes ovulated both before and after the onset of estrus (3.0+/-0.5 ovulations/ewe; P<0.05). None of the ovulations that occurred before estrus resulted in corpora lutea (CL) with a full life span. At 24h before ovulation, follicles ovulating before or after the onset of estrus differed in size (4.1+/-0.3 or 5.5+/-0.4mm, respectively; P<0.05) and had distinctive echotextural characteristics. In conclusion, the administration of PGF(2alpha) at the expected time of an FSH peak at mid-cycle in ewes may alter the endogenous rhythm of FSH secretion and was not consistently followed by ovulation of follicles from two follicular waves. In non-prolific WWF ewes, PGF(2alpha)-induced luteolysis disrupted the normal distribution of the source of ovulatory follicles and may be associated with untimely follicular rupture and luteal inadequacy.  相似文献   

20.
The effects of ablation of a dominant follicle and treatment with follicular fluid on circulating concentrations of follicle-stimulating hormone (FSH) were studied and the temporal relationships between surges of FSH and follicular waves were studied in heifers with two or three follicular waves/interovulatory interval. Cauterization of the dominant follicle on Day 3 or Day 5 (ovulation on Day 0) (six control and six treated heifers/day) resulted in a surge (P less than 0.05) in FSH beginning the day after cautery. The FSH surge prior to wave 2 (first post-treatment follicular wave) occurred 4 days (Day 3 cautery) and 2 days (Day 5 cautery) before the surge in control groups, corresponding to a 4-day and a 2-day advance in emergence of wave 2 compared with controls. It was concluded that the dominant follicle on Day 3 and Day 5 was associated with the suppression of circulating FSH concentrations. Heifers (n = 4/group) were untreated or treated intravenously with a proteinaceous fraction of bovine follicular fluid on Days 0-3, 3-6, or 6-11. Concentrations of FSH were suppressed (P less than 0.05) for the duration of treatment, regardless of the days of treatment. Cessation of treatment was followed within 1 day by the start of a surge in FSH. The FSH surge prior to wave 2 occurred 2 days earlier (treatment on Days 0-3), 1 day later (treatment on Days 3-6), and 6 days later (treatment on Days 6-11) than in controls, corresponding to an equivalent advance or delay, respectively, in the emergence of wave 2 compared with controls. The results suggest that the effects of exogenous follicular fluid on follicular development were mediated, in whole or in part, by altering plasma FSH concentrations. Control heifers combined for the two experiments were separated into those with 2-wave (n = 11) or 3-wave (n = 5) interovulatory intervals. Two-wave heifers had two FSH surges and 3-wave heifers had three apparent FSH surges during the interovulatory interval. Results of the cautery and follicular fluid experiments indicated that a surge in FSH necessarily preceded the emergence of a wave. The FSH surges in treated and control heifers began 2-4 days before the detectable (ultrasound) emergence of a follicular wave (follicles of 4 and 5 mm), peaked 1 or 2 days before emergence and began to decrease approximately when the follicles of a wave begin to diverge into a dominant follicle and subordinate follicles (follicles 6-7 mm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号