首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods for the control of ovulation with GnRH or the GnRH analog D-Phe6 -LHRH (GnRH-A), were evaluated in gilts and sows as the last step in development of a fixed-time Al protocol. This involved 3 field trials using 2,744 gilts (10 units) and 71,628 sows (33 units). In Trial 1, the GnRH-A (75 microg) was given subsequent to treatment with altrenogest for cycle control or eCG for the stimulation of uniform follicle development in gilts. The release of LH was followed by ovulations which commenced within 36.4 +/- 3.3 hr and were terminated at 39.0 +/- 2.8 hr after administration of GnRH-A. This degree of synchronization of ovulations enabled the use of fixed-time AI. Consequently, subsequent to pretreatment with altrenogest and eCG, in 10 production units 1,285 gilts received 50 microg GnRH-A and 1,459 gilts 500 IU hCG serving as positive controls (Trial 2); all the gilts were inseminated 24 and 42 hr after treatment. Pregnancy rate and piglet index (n of piglets per 100 first inseminations) following GnRH-A vs hCG were 78.8% and 779 vs 74.4% and 728, respectively (P < 0.05). In field trials with first litter gilts and multiparous sows (33 units holding from 250 to 6,000 sows), 1,000 IU eCG was used for estrus control after weaning and 25 microg or 50 microg GnRH-A were given 55 to 58 hours after eCG (n = 19,954 and 20,701) (Trial 3). Sows treated during the same time period with 300 microg GnRH plus 300 IU. hCG (n = 30,973) served as positive controls; all sows were inseminated 24 and 42 hours after treatment. Pregnancy rates for 50 microg GnRH-A, 25 microg GnRH-A and 300 microg GnRH plus 300 IU hCG were 83.0%, 81.7% and 80.7%, and the piglet indices 913, 899 and 880, respectively (P < 0.05). Unit size and parity had significant effects on fertility and productivity. In all studies, results with 50 microg GnRH-A were superior. In year-long studies, highest levels of fertility in response to these treatments were seen from December to May.  相似文献   

2.
In gilts, seminal plasma treatment before or during the LH-surge has been found to advance ovulation in all animals by as much as 8 to 14 h. Two experiments were performed to assess whether such an advancement occurs in multiparous sows in which ovulation is induced by 750 i.u. hCG at 68 h after weaning. In both experiments, seminal plasma was inseminated at 4, 5 and 6 h after hCG (7 and 6 sows, respectively) and control sows (6 and 6 sows, respectively) were not inseminated. In Experiment 1, using Meishan semen, all sows ovulated between 38 and 44 h after hCG; no advancement of ovulation was seen due to treatment. In Experiment 2, using GY seminal plasma, 3 and 4 sows, respectively had started ovulation at 44 h after hCG. Again, no advancement of ovulation was seen due to treatment. Therefore, in both experiments, seminal plasma treatment within 4–6 h after hCG failed to advance ovulation to a similar extent as found in spontaneously ovulating gilts. It is unclear what causes this lack of effect. Maybe seminal plasma treatment does not advance hCG-induced ovulation or batches of seminal plasma differ in their ovulation-advancing properties.  相似文献   

3.
Timed artificial insemination (TAI) is an efficient reproductive technology in batch farrowing production that aids management in pig farms. However, the effect of TAI on the reproduction performance is still controversial. This study aimed to evaluate the effects of two TAI protocols on the reproductive performance of primiparous sows. A total of 332 weaned sows were randomly allocated into three treatments. Sows assigned to Control (n = 110) were untreated and inseminated on each day in oestrus after weaning. Sows assigned to eG-TAI (n = 112) received equine chorionic gonadotropin (eCG) 24 h after weaning and gonadotropin-releasing hormone (Gonadorelin: GnRH) at oestrus, and were inseminated at 8 and 32 h later if oestrus at 0800, or 16 and 40 h later if oestrus at 1600. Sows assigned to 2e-TAI (n = 110) received eCG and GnRH 24 h and 96 h after weaning, respectively, and were inseminated 16 and 40 h after GnRH administration. Sows showing oestrus at GnRH administration or 64 h after were inseminated immediately, for a total of three inseminations. Ultrasonographic evaluations were performed to determine the follicular diameter and time of ovulation. Most sows in the 2e-TAI and eG-TAI groups ovulated 0–48 h after the GnRH injection. Our results indicated that oestrus rate within seven days after weaning in the experimental groups was higher, and weaning-to-oestrus interval was shorter than in the control group (99.3 h vs 113.5 h, P < 0.05). The breeding and farrowing rates in the experimental groups were significantly higher than in the control group (P < 0.05), while the numbers of total born, live-born and stillborn were not different among the three groups (Control: 12.7, 11.6 and 1.1; 2e-TAI: 12.4, 11.3 and 1.0; eG-TAI: 12.0, 11.4 and 0.4, respectively). These results indicated that TAI could ensure a high farrowing rate in primiparous sows under batch farrowing management.  相似文献   

4.
The present study was carried out to determine the pregnancy rates, farrowing rates and litter size in sows with either induced or spontaneous ovulation inseminated with flow cytometric sorted spermatozoa using deep intrauterine insemination technology. Spermatozoa were stained with Hoechst 33342 and sorted by flow cytometry/cell sorting but not separated into separate X and Y populations. In Experiment 1, sows (n=200) were weaned and treated for estrus/ovulation induction with eCG/hCG. Inseminations with either sorted (70 or 140 million) or non-sorted (70 or 140 million) spermatozoa were done using a specially designed flexible catheter. Farrowing rates were 39.1 and 78.7% for 70 million of sorted and non-sorted, respectively, and 46.6 and 85.7% for 140 million of sorted and non-sorted, respectively (P<0.05). The litter size in sows inseminated with sorted spermatozoa showed a tendency to be lower than when non-sorted spermatozoa were inseminated. In Experiment 2, sows (n=140) were inseminated as in Experiment 1 except that natural estrus was used. The ovaries of these sows were evaluated by transrectal ultrasonography. Farrowing rates were 25 and 77.2% for 70 million of sorted and non-sorted, respectively, and 32 and 80.9% for 140 million of sorted and non-sorted, respectively (P<0.05). These results show that the Deep Intrauterine Insemination technology can be successfully used to produce piglets from sorted spermatozoa when sows are hormonally treated to induce synchronous post weaning oestrus and ovulation.  相似文献   

5.
Poor estrus expression and anestrus decrease the reproductive efficiency of buffaloes. The objective of this study was to determine whether the addition of equine chorionic gonadotropin (eCG) to an estrous synchronization protocol and timed insemination could improve ovulation and pregnancy rates of anestrous buffalo cows under tropical conditions. The study population comprised 65 lactating Murrah buffalo cows which were assigned to CIDR (n = 33) or CIDR + eCG (n = 32) treatment groups. Cows in the CIDR group were fitted for 8 d with a controlled intravaginal drug release (CIDR) device containing 1.38 g progesterone, received GnRH (10 μg i.m.) on D 0, PGF (750 μg i.m.) on D 7, and GnRH (10 μg i.m.) on D 9; whereas cows in the CIDR + eCG group received the same treatment plus eCG (500 IU, i.m.) at the time of PGF treatment. All cows were inseminated 16-20 h after the second GnRH treatment. Blood samples were obtained 10 d before the start of synchronization treatment (Day -10) and at the onset of treatment (Day 0). Cows with plasma progesterone concentrations <1 ng/mL recorded in both samples (Low-Low levels of P4) were classified as non-cyclic cows. Similarly, when either one or both of the sample pair contained concentrations of serum progesterone ≥1 ng/mL (High-High, Low-High, or High-Low levels of P4), the buffaloes were classified as cyclic cows. Ovulation rate, defined as the number of buffaloes with at least one corpus luteum 10 days after insemination, was significantly higher (P = 0.018) in the CIDR + eCG (84.4%) cows than in the CIDR cows (57.6%). Pregnancy rate was numerically lower in CIDR (27.3%) than CIDR + eCG (40.6%) cows, though differences were not significant (P = 0.25). Pregnancy rates for CIDR + eCG cows were similar to that of cows inseminated after natural estrus (40.9%; 29/71). In the non-cyclic animals, higher ovulation rates (P = 0.026) were recorded for the CIDR + eCG (81%) than for the CIDR cows (47.4%). Our results indicate that the addition of eCG to a progesterone-based estrous synchronization regimen substantially improves the ovulation rate in non-cyclic buffaloes. When this treatment is followed by timed AI, pregnancy rates achieved in anestrous buffaloes, whether cyclic and non-cyclic, may approach the rates observed in cows inseminated at natural estrus.  相似文献   

6.
To evaluate the effects of eCG dosage on recovery and quality of Day 5 embryos and on subsequent development and survival after embryo transfer, batches of 5 to 10 donor sows were treated with 1000 or 1500 IU eCG. Recipients from the same batch were synchronously treated with 800 IU eCG. Ovulation was induced with 750 IU hCG (72 h after eCG) in donors and recipients. Donors were inseminated and embryos were collected at 162 h after hCG (120 h after ovulation). Ovulation rate was lower using 1000 IU eCG (28.5+/-11.7; n=48) than 1500 IU eCG (45.7+/-20.3; n=32; P<0.0001). Embryo recovery rate (82.9+/-16.9%) and percentage expanded blastocysts (56.2+/-31.4%) were similar (P>0.05). Expanded blastocysts from each group of sows were pooled into 2 groups within eCG treatment, containing embryos from normally ovulating sows (< or = 25 corpora lutea [CL]) or from superovulated sows (> 25 CL). Average diameter and number of cells of a random sample of the expanded blastocysts per pool were recorded. The average diameter of blastocysts (160.5+/-11.5 microm) was not affected by eCG dosage or ovulation rate (P>0.10). The average number of cells per embryo was higher in the 1000 IU eCG group (84.3+/-15.3) than in the 1500 IU eCG group (70.2+/-1.9; P<0.05) but was similar for normal and superovulated donors within each eCG group (P>0.10). Of the 4 groups, litters of 28 to 30 blastocysts were nonsurgically transferred to 27 synchronous recipients. Pregnant recipients were slaughtered on Day 37 after hCG treatment to evaluate embryonic development and survival. Pregnancy rate for the 1000 and 1500 IU eCG donor groups was 71% (10/14) and 46% (6/13; P>0.10), respectively. The number of implantations and fetuses for the 1000 IU eCG groups was 12.9+/-3.0 and 11.1+/-2.7, and 14.2+/-7.0 and 10.5+/-4.6, respectively, for the 1500 IU eCG groups (P>0.10). After post-priory categorizing the litters of blastocysts to below or above the average diameter (158 microm) of the transferred embryos, irrespective of eCG dosage or ovulation rate, the pregnancy rate was 43% (6/14) and 77% (10/13; P<0.10), respectively. Post-priory categorizing the transferred litters to below or above the average number of cells per embryo litter, irrespective of eCG dosage or ovulation rate, showed no differences in pregnancy rates or number of implantations and fetuses (P>0.10). It was concluded that eCG dosage affects embryonic development at Day 7 after hCG, and this effect was not due to ovulation rate. Embryonic survival after nonsurgical transfer was not related to eCG dosage but tended to be related to the diameter of the blastocysts.  相似文献   

7.
This study aimed to evaluate the effectiveness of superovulation protocols in improving the efficiency of embryo donors for porcine nonsurgical deep-uterine (NsDU) embryo transfer (ET) programs. After weaning (24 hours), purebred Duroc sows (2–6 parity) were treated with 1000 IU (n = 27) or 1500 IU (n = 27) of eCG. Only sows with clear signs of estrus 4 to 72 hours after eCG administration were treated with 750 IU hCG at the onset of estrus. Nonhormonally treated postweaning estrus sows (n = 36) were used as a control. Sows were inseminated and subjected to laparotomy on Days 5 to 6 (Day 0 = onset of estrus). Three sows (11.1%) treated with the highest dosage of eCG presented with polycystic ovaries without signs of ovulation. The remaining sows from nonsuperovulated and superovulated groups were all pregnant, with no differences in fertilization rates among groups. The number of CLs and viable embryos was higher (P < 0.05) in the superovulated groups compared with the controls and increased (P < 0.05) with increasing doses of eCG. There were no differences among groups in the number of oocytes and/or degenerated embryos. The number of transferable embryos (morulae and unhatched blastocysts) obtained in pregnant sows was higher (P < 0.05) in the superovulated groups than in the control group. In all groups, there was a significant correlation between the number of CLs and the number of viable and transferable embryos, but the number of CLs and the number of oocytes and/or degenerated embryos were not correlated. A total of 46 NsDU ETs were performed in nonhormonally treated recipient sows, with embryos (30 embryos per transfer) recovered from the 1000-IU eCG, 1500-IU eCG, and control groups. In total, pregnancy and farrowing rates were 75.1% and 73.2%, respectively, with a litter size of 9.4 ± 0.6 piglets born, of which 8.8 ± 0.5 were born alive. There were no differences for any of the reproductive parameters evaluated among groups. In conclusion, our results demonstrated the efficiency of eCG superovulation treatments in decreasing the donor-to-recipient ratio. Compared with nonsuperovulated sows, the number of transferable embryos was increased in superovulated sows without affecting their quality and in vivo capacity to develop to term after transfer. The results from this study also demonstrate the effectiveness of the NsDU ET procedure used, making possible the commercial use of ET technology by the pig industry.  相似文献   

8.
The objectives of this study were to measure culling intervals and culling risks in the four stages of the reproductive life of female pigs and to compare culling intervals between the number of services and between herd groups, based on herd productivity. We also compared survival patterns of females pigs between these herd groups. Our data set included lifetime records of 52,792 females born between 2001 and 2004 in 101 commercial herds. Two herd groups were selected on the basis of the upper 25th percentile of pigs weaned per mated female per 5 yr between 2002 and 2006, namely the high-performing herds, and ordinary herds. Culled females were also allocated into four groups based on the stages of their reproductive life when culled: unmated gilts, mated gilts, unmated sows, and mated sows. Culling intervals in unmated gilts and mated gilts were defined as the number of days from birth to culling and from first mating to culling, respectively. Culling intervals in unmated sows and mated sows were the number of days from weaning to culling. The number of services was categorized into two groups: first service and reservice groups. Multilevel linear mixed-effects models and survival analysis were performed. Culling intervals (±SEM) in unmated gilts, mated gilts, unmated sows, and mated sows were 302.9 ± 1.16, 98.4 ± 0.92, 14.3 ± 0.12, and 89.6 ± 0.42 d, respectively. Culling risks in the four groups were 5.6%, 7.1%, 58.0%, and 29.3%, respectively. In unmated gilts, mated gilts, and mated sows, the culling intervals in the high-performing herds were 43.0, 18.9, and 16.0 d shorter than those in ordinary herds, respectively (P < 0.05), but no difference was found between the herd groups for the culling interval of unmated sows. For mated sows in the reservice group, culling intervals of high-performing herds were ≥13.7 d shorter than those of the ordinary herds (P < 0.05), but for mated sows in the first service group, there was no difference in the culling interval between the herd groups. The culling hazard from 8 wk postweaning for mated sows in high-performing herds increased more rapidly than that in ordinary herds. In conclusion, to reduce culling intervals and improve herd productivity, we recommend implementing a strict culling policy for mated gilts and mated sows, especially reserviced females.  相似文献   

9.
The objective of this experiment was to identify the optimal time of insemination relative to the time of ovulation, based on ultrasonographic detection of embryonic survival at 10 days after ovulation, number of sows farrowing, and litter size. Furthermore, the possible value of the interval from weaning to onset of estrus for prediction of the time of ovulation was examined. Crossbred sows (n = 143) that had farrowed 2 to 9 litters were weaned (Day 0) and observed for estrus every 8 h from Day 3 until end of estrus. Ultrasonography was performed every 6 h, from 12 h after onset of estrus until ovulation had been observed. The sows were inseminated once at various time intervals from ovulation. At Day 16, 25 of the sows were slaughtered and their uteri were flushed for embryos. In the remaining sows, the number of viable and dead piglets and mummified fetuses per sow was recorded at farrowing, with the sum of the 3 constituting the total number of piglets born per sow. The highest number of embryos recovered per sow was found after insemination during the interval from 24 h before to 4 h after ovulation. The lowest frequency of non-pregnant sows and the highest total number of piglets born per sow were found after insemination from 28 h before to 4 h after ovulation. Consequently, the optimal time for insemination was found to be in the interval 28 h before to 4 h after ovulation. The interval from weaning to onset of estrus and from onset of estrus to ovulation were negatively correlated, allowing a rough prediction of the time of ovulation from the interval from weaning to onset of estrus.  相似文献   

10.
The ability of peforelin (l-GnRH-III) to stimulate follicular growth, FSH release, and estrus in gilts after altrenogest treatment and in sows after weaning was investigated. In three farrow-to-wean herds, with at least 600 sows and average production performance, 216 gilts, 335 primiparous, and 1299 pluriparous sows were randomly allocated to three treatments: peforelin (M group: Maprelin), eCG (F group: Folligon), and physiological saline solution (C group). Animals were treated 48 hours after their last altrenogest treatment (gilts) or 24 hours after weaning (sows). The weaning-to-estrus interval, estrus duration, estrus rate (ER), pregnancy rate, and total born (TB), live born, and stillborn (SB) numbers were recorded and compared between treatments for the different parity groups (gilts and primiparous and pluriparous sows). Follicle sizes were measured in representative animals from each group on the occasion of their last altrenogest treatment or at weaning, and also on the occasions of their first (FS1) and second (FS2) attempted inseminations. Blood samples were taken to determine FSH concentrations at weaning and 2 hours after injection, and progesterone concentrations 10 days after the first insemination attempt. The relative change in FSH concentrations was calculated. Significant differences were found for ER within 7 days of weaning in pluriparous sows (95%, 91%, and 90% for the M, F, and C groups, respectively, P = 0.005). Gilts in the F-group had high TB numbers, and pluriparous sows in the M group had high SB numbers (TB gilts = 13.6, 15.4, and 14.9 [P = 0.02] and SB pluriparous sows = 1.8, 1.4, and 1.7 [P = 0.05] for the M, F, and C groups, respectively). The M group had the highest FS1 (for gilts) and FS2 (for pluriparous sows) values: FS1 = 5.4, 4.9, and 4.9 mm [P = 0.02] and FS2 = 6.8, 5.3, and 6.3 mm [P = 0.03] for the M, F, and C groups, respectively. There were no significant differences between the different treatments within each parity group with respect to any of the other variables. Overall, peforelin treatment had small but positive effects on the ER and follicle growth in certain parity groups but did not seem to affect litter sizes or FSH and progesterone levels in sows on the occasions of the corresponding examinations.  相似文献   

11.
A field study was conducted to investigate the effectiveness of a treatment with altrenogest, eCG and hCG or the GnRH-analogue D-Phe(6)-LHRH to synchronize estrus and ovulation of sows diagnosed as non-pregnant in order to reintegrate them back into a scheduled fixed-time insemination program. Sows (n=531) diagnosed as non-pregnant by ultrasonography on days 21-35 after insemination were subjected to one of three treatments: (1) 16 mg altrenogest/day/animal orally for 15 days to block follicular growth, followed by injection of 1000 IU eCG intramuscularly (i.m.) 24h after withdrawal of altrenogest to stimulate follicular growth and 500 IU hCG i.m. 78-80 h after eCG to induce ovulation; (2) similar to (1) except that 20mg altrenogest and 800 IU eCG were used and (3) similar to (2) except that 50 microg D-Phe(6)-LHRH was used to induce ovulation. Females were artificially inseminated (AI) twice at 24 and 40 h, respectively, after hCG/D-Phe(6)-LHRH. Success of treatments was checked by ultrasonography of the ovaries. Rates of conception and farrowing (CR, FR), and number of total and live born piglets (TB, LB) were recorded and compared to those of synchronized first served sows. Females had differing ovarian structures prior to treatment. Altrenogest effectively blocked follicular growth in >80% of the females irrespective of dosage, but 16 mg increased the development of polycystic ovarian degeneration. Four to 18% of the females still had corpora lutea after altrenogest. Most females ovulated either between both inseminations or thereafter (P<0.05). Females treated with D-Phe(6)-LHRH tended to ovulate earlier than those injected with hCG. The CR and FR were up to 25% lower for sows diagnosed as non-pregnant than for sows after first service (P<0.05). Among sows diagnosed as non-pregnant the CR was higher in females treated with D-Phe(6)-LHRH (P<0.05). No differences were found in regard to numbers of TB and LB. In conclusion, a treatment with 20mg altrenogest per day per animal, followed by 800 IU eCG and 50 microg the GnRH-analogue D-Phe(6)-LHRH is appropriate to synchronize estrus and ovulation of sows diagnosed as non-pregnant. Whether there might be a need to feed altrenogest for a longer interval of 18 days has to be investigated.  相似文献   

12.
Two experiments were conducted in ewes in order to develop an oestrus-ovulation short time synchronization protocol based on combined FGA, PGF(2α), GnRH, eCG treatments, for use in dairy sheep before natural service (Experiment 1) or for fixed-time artificial insemination (Experiment 2), during the breeding season. In Experiment 1 seventy-five non-lactating dairy ewes were subdivided into 5 treatment groups (N=15): (1) Group Fe - control, which received FGA vaginal sponges (14 days)+eCG (Day 14); (2) Group FPe, FGA (5 days)+PGF(2α) (Day 5)+eCG (Day 5); (3) Group PFe, PGF(2α) (Day 0)+FGA (5 days)+eCG (Day 5); (4) Group PFG, PGF(2α) (Day 0)+FGA (5 days)+GnRH (30h after sponge removal, s.r.); (5) Group GPe, GnRH (Day 0)+PGF(2α) (Day 5)+eCG (Day 5). Ewes were checked for oestrus and hand-mated. Time of ovulation was recorded by laparoscopy for 10 animals from each treatment. The percentages of female in oestrus and the interval to oestrus (h after treatment), fertility and prolificacy rate were recorded. There were no treatment differences in the percentage of females in oestrus. The interval to oestrus was earlier in Fe Group and delayed in FPe Group (P<0.01). Ovulation time was earlier in GPe Group compared to FPe Group (P<0.05). Fertility rates were significantly different (P<0.05) between the PFe and the FPeG Groups compared with the PFG Group. No significant differences were observed in prolificacy among the treatments. In Experiment 2, sixty dry ewes were subdivided (N=20) into the following three experimental treatment groups: (1) Group FP, FGA (5 days)+PGF(2α) (Day 5); (2) Group FPG, FGA (5 days)+PGF(2α) (Day 5)+GnRH (30hs.r.); (3) Group FPeG, FGA (5 days)+PGF(2α) (Day 5)+eCG (Day 5)+GnRH (30hs.r.). These were further subdivided into two groups (N=10) corresponding to 52 and 60hs.r. fixed-time insemination. Laparoscopic intrauterine insemination was performed with frozen semen (80×10(6)spermatozoa/dose) and ovulation time was recorded in a subgroup (N=10). GnRH resulted in an earlier ovulation time (P<0.05) in FPG and FPeG Groups (53.0h vs 61.6h). Fertility rate was higher in FPeG treated ewes inseminated at 60hs.r. (60%, 6/10). In FP and FPG Groups fertility rates were higher following insemination at 52hs.r. (50.0 and 40.0%).  相似文献   

13.
In normal production practices, sows and gilts are inseminated at least twice during estrus because the timing of ovulation is variable relative to the onset of estrus. The objective of this study was to determine if a normal fertilization rate could be achieved with a single insemination of low sperm number given at a precise interval relative to ovulation. Gilts (n=59) were randomly assigned to one of three treatment groups: low dose (LD; one insemination, 0.5 x 10(9) spermatozoa), high dose (HD; one insemination, 3 x 10(9) spermatozoa) or multiple dose (MD; two inseminations, 3 x 10(9) spermatozoa per insemination). Twice daily estrus detection (06:00 and 18:00 h) was performed using fenceline boar contact and backpressure testing. Transrectal ultrasonography was performed every 6 h beginning at the detection of the onset of standing estrus and continuing until ovulation. Gilts in the LD and HD groups were inseminated 22 h after detection of estrus; MD gilts received inseminations at 10 and 22 h after detection of estrus. Inseminations were administered by using an insemination catheter and semen was deposited into the cervix. The uterus was flushed on Day 5 after the onset of estrus and the number of corpora lutea, oocytes, and embryos were counted. Time of insemination relative to ovulation was designated as 40 to >24 h, 24 to >12 h, and 12 to 0 h before ovulation and >0 h after ovulation. The LD gilts had fewer embryos (P<0.04), more unfertilized oocytes (P<0.05) and a lower fertilization rate (P<0.07) compared to MD gilts. The effects of time of insemination relative to ovulation and the treatment by time interaction were not significant. We conclude that a cervical insemination with low spermatozoa concentration may not result in acceptable fertility even when precisely timed relative to ovulation.  相似文献   

14.
Primiparous sows from a commercial pig farm in central Brazil were utilized to investigate the effect of post-weaning gonadotrophins (given during summer) on estrus, time of ovulation and reproductive performance over three parities. One group of sows (PG600) was treated with a combination of 400 IU equine chorionic gonadotrophin (eCG)+200 IU human chorionic gonadotrophin (hCG) (PG600) 24h after weaning (n=420), whereas the control group received saline (n=408). In a subset of sows (n=150), estrus was detected and time of ovulation was determined by transcutaneous ultrasound. Treatment with PG600 increased the percentage of primiparous sows in estrus within 10 days after weaning (94.8% versus 79.7%) and reduced the first weaning-to-estrus interval (5.3 days versus 8.0 days) relative to control sows (P<0.05). Although the duration of estrus was longer (P<0.05) in sows given PG600 (65.7 h versus 61.0 h), the interval from estrus to ovulation was not different (P>0.05) between PG600 and control sows (46.6 h versus 43.3 h). Treatment with PG600 did not affect (P>0.05) rates of return-to-estrus and farrowing over three parities, but it increased the number of total piglets born (P<0.05) in the second parity (11.2 versus 10.4), thereby minimizing the magnitude of second-litter syndrome. Culling rates from the first to the fourth parity were 26.7 and 24.5% (P>0.05) for PG600 and control sows, respectively. In conclusion, PG600 given 24 h after the first weaning reduced the weaning-to-estrus interval and increased the size of the second litter.  相似文献   

15.
A 100 μg dose of triptorelin was tested for synchronizing ovulation in sows. In Experiment 1, conducted in April through June, sows (n = 125) were assigned to Control (untreated), TG-96 (Triptorelin Gel (TG) given intravaginally at 96 h post-weaning), or TG-E (given intravaginally at estrus). To optimize AI timing, sows were inseminated at 2 and 26 h after estrus for Control and TG-E and at 8 and 32 h following TG-96. Ovulation by 48 h post-treatment tended to be affected by treatment (P = 0.08) and more (P < 0.05) TG-96 sows ovulated (57.9%) compared to Controls (34.2%), but TG-E (45.1%) did not differ (P > 0.10). Duration of estrus was reduced (P < 0.005) in TG-96 (51 h) and TG-E (58 h) compared to Controls (65 h). There was no treatment effect on farrowing rate (71%) or total born (10.4). Average follicle size <6.5 mm at 96 h after weaning was associated with reduced (P < 0.01) estrus, ovulation and farrowing rate. Experiment 2 was conducted in August through September using 503 weaned sows. The TG-96 treatment reduced duration of estrus (P = 0.03), but treatment did not affect estrus expression, farrowing rate or total pigs born. In conclusion, use of a 100 μg dose of triptorelin intravaginally at 96 h or at estrus advanced ovulation and when used with timed insemination, resulted in similar farrowing rates and litter sizes comparable to sows mated based on estrus. However, ovulation induction and timed AI success may benefit from an approach that ensures sows have adequate follicle development at time of treatment.  相似文献   

16.
Transport of fertilised and unfertilized ova was studied in 22 crossbred (Landrace x Yorkshire) multiparous sows. Sows in the inseminated group (I-group, n=11) were inseminated once with 100ml of BTS extended semen from two fertile boars with a total of 10 x 10 (9) spermatozoa during the second oestrus after weaning between 18 and 8h prior to estimated time of ovulation, as estimated from the first oestrus after weaning. All the sows were slaughtered between 36 and 48 h after ovulation in the second oestrus after weaning by stunning and bleeding. After slaughter, the reproductive tract was immediately recovered, the isthmus was divided into three equal segments, and the number of ova was determined in each segment and in the upper third of the uterine horn from the UTJ. There were no significant differences (P>0.05) either in the intervals from ovulation to slaughter (42.3+/-6.2h versus 43.2+/-5.4h) or in the numbers of corpora lutea (CL) (18.2+/-5.5 versus 15.9+/-3.5) between the non-inseminated (N-group) and the inseminated groups (I-group), respectively. Ova recovery rate was 92.5% in the N-group and 82.9% in the I-group (P>0.05). In the I-group, ova had passed 2.2+/-0.3 segments whereas in the N-group, ova had passed 2.6+/-0.3 segments (P=0.38). It can be concluded that there is no difference in the transportation of either fertilised or unfertilized ova in the reproductive tract of pigs.  相似文献   

17.
Fixed-time artificial insemination (FTAI) technology uses exogenous reproductive hormones to regulate the sexual cycle and ovulation of sows without oestrus identification, which improves the sow breeding utilisation rate, reduces the number of non-productive days, and elevates the efficiency of pig farm management. In this study, we aimed to optimise FTAI procedures. Healthy 190-day-old and about 90 kg Large White × Landrace crossing breed replacement gilts (n = 166) which were of unknown reproductive status were randomly selected and divided into three groups: a control group (n = 62), an eCG-15D group in which the gilts were pretreated with equine chorionic gonadotropin (eCG) injection 15 days before starting FTAI (n = 50), and an eCG-20D group pretreated with eCG injection 20 days before starting FTAI (n = 54). All three groups were then subjected to the same conventional FTAI procedure. Pigs were orally administered Altrenogest (ALT, 20 mg per pig per day) for 18 days and then 42 h after ALT feeding was stopped, they were injected with 1 000 IU eCG followed by 100 μg GnRH 80 h later. The gilts were inseminated for the first time 24 h after gonadotropin-releasing hormone (GnRH) injection and then again 16 h later. After 42 h of ALT feeding, gilts in the eCG-15D group displayed a higher follicular diameter until artificial insemination (AI) than those from the other groups (P < 0.05). In addition, the ovulation times were the most synchronised in the eCG-15D group, with 100% of the gilts ovulating before the second AI on day 25 of FTAI. Furthermore, the gilts in the eCG-15D group achieved the highest pregnancy rate (92%), farrowing rate (90%), total pigs born (11.59), and pigs born alive (11.18). Together, the findings of this study demonstrate that reproductive performance can be optimised by pretreating gilts with eCG 15 days before conventional FTAI.  相似文献   

18.
We examined the effect of inseminating mixed parity sows (n = 231) once with fewer sperm at different times relative to ovulation. Lactation length was 19 days and sows received an IM injection of 600 IU equine chorionic gonadotrophin (eCG) 12 h before weaning. At 80 h after eCG injection, sows received an IM injection of 5 mg porcine luteinizing hormone (pLH). Predicted time of ovulation (PTO) was 38 h after pLH injection. Sows were assigned by parity to receive a single transcervical artificial insemination (AI) at either 6 or 24 h before PTO with semen doses containing either 2.5 or 1.25 × 109 sperm. A positive control group of sows (n = 49) was subject to conventional AI 24 and 6 h before PTO. Detection of estrus was performed in the presence of a boar and only sows exhibiting estrous behavior at the assigned time of AI were included in the study. Farrowing rate for sows receiving 2.5 × 109 sperm at 6 h before PTO was greater than that for sows receiving 1.25 × 109 sperm at 24 h before PTO (85% versus 61%, P < 0.05). All other groups were intermediate. There was no effect of time of AI or sperm numbers on subsequent litter size. These data indicate that single insemination of fewer sperm may compromise sow fertility, even when performed transcervically, if not appropriately timed relative to ovulation.  相似文献   

19.
The duration of ovulation in pigs was studied by transrectal ultrasonography. The number of preovulatory follicles was counted on both ovaries at 30-minute intervals from 36 hours after the onset of estrus (Group A: naturally ovulating sows that were group-housed and were inseminated and caged during scanning) or 40 hours after treatment with human chorionic gonadotropin (hCG) (Group B: tethered sows that had been induced to ovulate but were not inseminated). The duration of ovulation was (mean+/-SD) 1.8+/-0.6 hours (range 0.75 to 3.25) in Group A (n=13) and 4.6+/-1.7 hours (range 2.0 to 7.0) in Group B (n=8). The difference was significant (P<0.01). In Group A and B sows, respectively, the course of ovulation, expressed as the relation between the relative follicle count (percentage of the maximum follicle count; Y) and the time (percentage of the duration of ovulation; X) was: Y = 104.3( *)e(-0.023( *)X) (R(2)=0.95) and Y = 98.9( *)e(-0.018( *)X) (R(2)=0.92). The onset of ovulation occurred at approximately two-thirds of the duration of the estrus (Group A: 67+/-6%; Group B: 60+/-10%). Group A sows were artificially inseminated and were slaughtered at 98+/-8 hours (range 77 to 110) after ovulation. The difference between the maximum follicle count and the corpora lutea count was zero or only 1 in 81% (21 26 ) of the ovaries. Embryonic diversity (within-litter SD of the number of nuclei or of the number of cell cycles) was not related to the duration of ovulation, neither at the level of ovary nor of sow (P>0.05). In conclusion, transrectal ultrasonography was found to be an appropriate nonsurgical method of studying the duration of ovulation in pigs. The duration of ovulation varied both between sows and between groups of sows, and was not related to early embryonic diversity.  相似文献   

20.
The objectives of this study were to determine the optimal time of insemination in the pre-ovulatory period (from 32 to 0 h before ovulation) and to evaluate once-daily versus twice-daily inseminations in gilts. In Experiment 1, pre-puberal gilts (n=102) were observed for estrus every 8h and ultrasonography was performed every 8h from the onset of estrus to confirmation of ovulation. The gilts were inseminated once with 4 x 10(9) spermatozoa at various intervals prior to ovulation. Pregnancy detection was conducted 24 days after AI and gilts were slaughtered 4-6 days later. Corpora lutea and the number of viable embryos were counted and the embryo recovery rate was calculated (based on the percentage of corpora lutea). Inseminations performed <24h before ovulation resulted in a higher embryo recovery rate (P=0.02) and produced 2.1 more embryos (P=0.01) than inseminations >or=24h before ovulation. However, the pregnancy rate was reduced when inseminations were performed >16 h before ovulation (P=0.08). In Experiment 2, pre-puberal gilts (n=105) were observed for estrus every 12h and ultrasonography was performed every 12h from the onset of estrus to confirmation of ovulation. Gilts were inseminated (with 4 x 10(9) spermatozoa) 12h after the onset of estrus, with inseminations repeated either every 12h (twice-daily) or 24h (once-daily) during estrus. The gilts were allowed to farrow. There were no differences (between gilts bred twice-daily versus once-daily) for return to estrus rate (P=0.36) and adjusted farrowing rate (P=0.19). However, gilts inseminated once-daily had 1.2 piglets less than those inseminated twice-daily (P=0.09). In conclusion, gilts should be inseminated up to 16 h before ovulation, as intervals >16 h reduced pregnancy rate and litter size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号