首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has been reported that early development of wave 3 in three-wave interovulatory intervals occurs during the luteolytic period, and the frequency of the ipsilateral relationship between the preovulatory follicle and CL is lower (e.g., 33%) than for the contralateral relationship (67%). In this study, luteolysis was induced with PGF2α when the largest follicle of wave 2 reached 8.5 mm or more (diameter at expected deviation). A two-way interaction (P < 0.004) of follicle (first follicle to reach 8.5 mm and the next-largest follicle) by group (ipsilateral and contralateral relationship between the 8.5-mm follicle and CL) represented smaller posttreatment diameter difference between the two follicles within the ipsilateral group than within the contralateral group; the 8.5-mm follicle was smaller and the next-largest follicle was larger in the ipsilateral than in the contralateral group. Switching in the destiny of the 8.5-mm follicle from dominant to subordinate occurred in 3 of 8 (41%) and 0 of 5 (0%) heifers in the ipsilateral and contralateral groups, respectively. These novel findings supported the hypothesis that follicle deviation during luteolysis may result in decreased diameter of the largest follicle and increased frequency of switching of the largest follicle from future dominant to subordinate status when the follicle and CL are ipsilateral. Support for the switching hypothesis indicated that the reported lower frequency of an ipsilateral than contralateral relationship between the preovulatory follicle and CL for wave 3 of three-wave interovulatory intervals can be attributed to development of the wave during luteolysis.  相似文献   

2.
Post-vitellogenic female rainbow trout (Oncorhynchus mykiss) were assayed in vitro for follicular maturational competence (FMC). Ovarian follicles were stimulated with a range of concentrations of partially purified gonadotropin. The efficient concentration for 50% germinal vesicle breakdown (GVBD) was calculated and used as an indicator of FMC. Before in vitro assay, ovarian tissue was sampled in order to quantify mRNA abundance of specific genes in the ovarian follicle by real-time PCR. In addition, maturation-inducing steroid (MIS, 17, 20 beta-dihydroxy-4-pregnen-3-one) and estradiol (E2) plasma levels were measured by radioimmunoassay. The mRNA expression of several genes such as luteinizing hormone receptor (LH-r), follicular stimulating hormone receptor (FSH-r), insulin-like growth factor 1 (IGF1), insulin-like growth factor 2 (IGF2), insulin-like growth factor receptor 1a (IGF-r1a), and 20 beta-hydroxysteroid dehydrogenase (20 beta-HSD) that are putatively expressed in the preovulatory ovary, was studied in females of varying FMC using real-time PCR. FMC acquisition is characterized by an increase of MIS circulating levels and a concomitant drop of E2 levels. At the ovarian level, no significant variation of LH-r, 20 beta-HSD, IGF1, and IGF-r1a mRNA abundance was observed among females of varying FMC. In contrast, FSH-r and IGF2 mRNA levels were significantly higher in females exhibiting high FMC. In addition, correlation analyses showed that IGF2 and FSH-r, mRNA levels were positively correlated with FMC. These results indicate that FMC acquisition is associated with an increased expression of these gene products that may be useful markers of FMC.  相似文献   

3.
Bone morphogenetic proteins are known to be involved in determining ovulation rate in mammals. The mechanisms through which these proteins determine follicle fate are incompletely understood. In the present study, we used cattle as a model to evaluate the regulation of BMP15 and GDF9 receptors in granulosa cells during dominant follicle (DF) selection. Before follicular deviation (day 2 of the follicular wave), BMPR2 mRNA abundance tended to be higher in the second largest follicles (F2; P < 0.1) compared to the future dominant follicle (F1). At the expected time of follicular deviation (day 3), BMPR2 and BMPR1B mRNA levels were higher in subordinate follicles (SFs; P < 0.05) compared to dominant follicles (DFs). After deviation (on day 4), BMPR1B mRNA and protein were significantly more abundant in atretic SFs (as assessed by cleaved caspase 3) than in DFs. The fact that BMPR1B is more expressed in atretic follicles was further confirmed by using intrafollicular treatment with two agents known to induce atresia, namely an estradiol receptor antagonist (fulvestrant) and FGF10. In conclusion, the fact that BMPR-1B and -2 are more expressed in the second largest follicles before and at the expected time of follicular deviation is indicative of their inhibitory role in follicle differentiation and steroidogenesis. BMPR1B also seems to have a pivotal role during follicle regression since it is upregulated in advanced atretic follicles.  相似文献   

4.
In cattle and mares, free insulin-like growth factor 1 (IGF-1) is higher in the future dominant follicle (F1) than in the future largest subordinate follicle (F2) before deviation in diameter or selection is manifested between the two follicles. The effect of IGF-1 on other follicular-fluid factors and on the destiny of F2 were studied in two experiments in each species, using a total of 40 heifers and 42 mares. An injection of IGF-1 was made into F2 at the expected beginning of deviation (heifers, F1 >or= 8.5 mm; mares, F1 >or= 20.0 mm; Hour 0). In heifers, follicular fluid was taken from F2 at Hours 3, 6, 12, or 24; each heifer was sampled only once. In mares, sequential F2 samples were taken from each mare at Hours 0, 6, and 24 or at Hours 12 and 24. Transvaginal ultrasound guidance was used for treatment and sample collection. In heifers, IGF-1 treatment of F2 stimulated the secretion of estradiol (P < 0.05) between Hours 3 and 6 and androstenedione (P < 0.05) between Hours 3 and 12. In F2 of control heifers, estradiol decreased (P < 0.05) and androstenedione did not change significantly. In mares, IGF-1 treatment of F2 did not affect the concentrations of estradiol during the 24-h posttreatment period; androstenedione decreased (P < 0.04) in the IGF-1 group and increased (P < 0.006) in the controls. Compared with control mares, the IGF-1 group had higher (P < 0.04) activin-A at Hours 12 and 24 and higher (P < 0.0006) inhibin-A at Hour 24. After ablating F1 at Hour 24 in mares, F2 became dominant and ovulated in more mares (P < 0.0002) in the IGF-1 group (12/14) than in the control group (2/14). These results are consistent with reported temporal relationships among follicular factors during deviation in both species and indicate that IGF-1 plays a key role in controlling the temporal relationships; however, no indication was found that IGF-1 stimulated estradiol production in mares during the 24 h after treatment.  相似文献   

5.
M.O. Gastal  M.A. Beg 《Theriogenology》2010,73(9):1202-1209
The objective of this study was to evaluate the effect of short-term feed restriction on characteristics of the preovulatory follicle and on concentrations of systemic hormones (leptin, follicle-stimulating hormone [FSH], luteinizing hormone [LH]) and follicular fluid hormones and growth factors (leptin, estradiol, inhibin-A, activin-A, free insulin-like growth factor-1 [IGF1], insulin-like growth factor binding protein 2 [IGFBP2], vascular endothelial growth factor [VEGF]). Mares were submitted to a short-term (48 h) feed restriction when the expected ovulatory follicle was ≥27 mm (Hour 0) or served as controls (n = 8/group). No effect of short-term feed restriction was detected for systemic concentrations of FSH and LH and for intrafollicular concentrations of estradiol, activin-A, free IGF1, and IGFBP2. Restricted mares had decreased systemic concentrations of leptin at Hour 24 (approached significance) and at Hours 36 and 48 (P < 0.04). Follicular fluid of restricted mares at Hour 48 had lower (P < 0.02) concentration of leptin and a tendency (P < 0.1) for greater concentrations of inhibin-A and VEGF. The percentage of wall of the preovulatory follicle with color-Doppler signals of blood flow at Hour 48 was greater (P < 0.04) in the restricted group. Intrafollicular concentration of leptin (combined groups) was positively correlated with score for body condition (r = +0.60; P < 0.002) and negatively correlated with the percentage of the follicle wall with blood-flow signals (r = −0.60; P < 0.02). Our favored interpretation is that the preovulatory follicle seems to compensate for a nutritional deficiency by increasing the blood flow in the follicle wall.  相似文献   

6.
Insulin-like growth factor 1 (IGF1) is a crucial growth factor, that regulates skeletal muscles development during cell growth and repair. Recently, its alternative splicing variant, named IGF1Ec, also named mechano-growth factor (MGF), has gained attentions as a new damage repair factor. However, the structure-function relationships of IGF1Ec have not been fully clarified due to contradictory reports. In this study, we systematically investigated physiologic responses of C2C12 muscle cells to IGF1Ec, IGF1 and MGF E peptide. Our data indicate that while the N-terminal sequence of IGF1Ec, which is homolog in part with IGF1, promotes proliferation; the C-terminal sequence of IGF1Ec, which is identical to MGF E, promotes differentiation and migration of C2C12 cells. Our results suggest that MGF E cannot completely replace all the functions of IGF1Ec on muscle repair and regeneration, and elucidate the relationships between structure and function of IGF1Ec.  相似文献   

7.
Denbinobin, which is a phenanthraquinone derivative present in the stems of Ephemerantha lonchophylla, has been demonstrated to display antitumor activity. Recent reports suggest that the enhanced activity of insulin-like growth factor-1 receptor (IGF-1R) is closely associated with tumor angiogenesis and growth. This study aims at investigating the roles of denbinobin in suppressing these effects and at further elucidating the underlying molecular mechanisms. In the present study, we used an in vivo xenograft model antitumor and the Matrigel implant assays to show that denbinobin suppresses lung adenocarcinoma A549 growth and microvessel formation. Additionally, crystal violet and capillary-like tube formation assays indicated that denbinobin selectively inhibits insulin-like growth factor-1 (IGF-1)-induced proliferation (GI50=1.3×10−8 M) and tube formation of human umbilical vascular endothelial cells (HUVECs) without influencing the effect of epidermal growth factor; vascular endothelial growth factor and basic fibroblast growth factor. Furthermore, denbinobin inhibited the IGF-1-induced migration of HUVECs in a concentration-dependent fashion. Western blotting and immunoprecipitation demonstrated that denbinobin causes more efficient inhibition of IGF-1-induced activation of IGF-1R and its downstream signaling targets, including , extracellular signal-regulated kinase, Akt, mTOR, p70S6K, 4EBP and cyclin D1. All of our results provide evidences that denbinobin suppresses the activation of IGF-1R and its downstream signaling pathway, which leads to the inhibition of angiogenesis. Our findings suggest that denbinobin may be a novel IGF-1R kinase inhibitor and has potential therapeutic abilities for angiogenesis-related diseases such as cancer.  相似文献   

8.
Investigation of published sequence data from the porcine insulin-like growth factor 1 (IGF1) gene, resulted in the detection of a microsatellite in the first intron of the gene. Polymerase chain reaction (PCR) primers flanking the (CA)19 repeat were constructed. Polymorphism and Mendelian segregation were documented in a three-generation pedigree and allele frequencies were determined in 74 unrelated animals from four different breeds. Seven alleles were encountered. Linkage analysis was performed in a large pedigree established for gene mapping. Linkage between the IGF1 microsatellite and an anonymous microsatellite marker, S0005, was detected. Furthermore, IGF1 and S0005 was found to be linked to the porcine submaxillary gland mucin (MUC) gene, previously assigned to chromosome 5. The results presented here extend the linkage group on pig chromosome 5 and are in accordance with conserved synteny between human chromosome 12, cattle chromosome 5, mouse chromosome 10 and pig chromosome 5.  相似文献   

9.
10.
It is well documented that incidence of fertility problems is high in lactating cows but not in heifers of the same genetic merit. Understanding the metabolic and molecular differences between fertile heifers and relatively infertile lactating cows will help us understand the pathogenesis of infertility in dairy cows. Follicular waves in lactating cows (30–50 days in milk; n = 12) and heifers (n = 10) were synchronized by ultrasound-guided follicle ablation. Follicular fluid and granulosa cells of the dominant follicle were collected by ultrasound-guided aspiration along with blood sampling on Day 6 after synchronization. Dominant and subordinate follicles were larger in lactating cows than in heifers. Metabolic stress in lactating cows was evidenced by lower glucose and higher ß-hydroxy butyric acid compared with heifers. Insulin-like growth factor 1 signaling was reduced in the dominant follicle in lactating cows through reduced insulin-like growth factor 1 concentrations in plasma and follicular fluid of the dominant follicle, and reduced expression of pregnancy-associated plasma protein A (PAPPA) in their granulosa cells. We also found increased levels of total bile acids in the follicular fluid of the dominant follicle of lactating cows compared with heifers. Granulosa cells of the dominant follicle had higher expression of SLC10A2 and GPBAR1 (bile acid transporter and receptor, respectively) in lactating cows. These novel data are indicative of increased bile acid signaling within the dominant follicles of lactating cows compared with heifers. Overall, we demonstrate in the present study the metabolic, endocrine, and molecular differences within the microenvironment of the dominant follicles in lactating cows and heifers. These differences in follicular microenvironment may contribute toward abnormal ovarian function in lactating dairy cows.  相似文献   

11.
We present a mathematical simulation which integrates the mechanisms that are currently believed to govern the concentration of the growth factor, IGF1, in cartilage. Articular cartilage is treated as a two-layer continuum: a thin surface layer, exposed to synovial fluid, with a higher cell density, and a deeper layer with impermeable bony endplate. A system of differential equations accounts for diffusion of IGF1 from synovial fluid into, and throughout, the cartilage; IGF1 synthesis, its reactions with soluble binding protein, with cell receptors, and with immobile binding sites on the extracellular matrix. We have collected all available physiologic data relevant to the solution of these equations and used it to compute numerical solutions that yield time dependent profiles for free and complex IGF1 throughout the depth of normal cartilage. Equations for osteoarthritic cartilage were formulated as well. Numerical results indicate a time-scale of several days for IGF1 profiles to settle down after a disturbance. The number of cell receptors for IGF1 appears to be more important than their rate of internalization. There is a lower bound to the number of cell receptors and of immobile binding sites. Parameters that await experimental determination are identified.  相似文献   

12.
Signalling through the IGF1R [type 1 IGF (insulin-like growth factor) receptor] and canonical Wnt signalling are two signalling pathways that play critical roles in regulating neural cell generation and growth. To determine whether the signalling through the IGF1R can interact with the canonical Wnt signalling pathway in neural cells in vivo, we studied mutant mice with altered IGF signalling. We found that in mice with blunted IGF1R expression specifically in nestin-expressing neural cells (IGF1RNestin−KO mice) the abundance of neural β-catenin was significantly reduced. Blunting IGF1R expression also markedly decreased: (i) the activity of a LacZ (β-galactosidase) reporter transgene that responds to Wnt nuclear signalling (LacZTCF reporter transgene) and (ii) the number of proliferating neural precursors. In contrast, overexpressing IGF-I (insulin-like growth factor I) in brain markedly increased the activity of the LacZTCF reporter transgene. Consistently, IGF-I treatment also markedly increased the activity of the LacZTCF reporter transgene in embryonic neuron cultures that are derived from LacZTCF Tg (transgenic) mice. Importantly, increasing the abundance of β-catenin in IGF1RNestin−KO embryonic brains by suppressing the activity of GSK3β (glycogen synthase kinase-3β) significantly alleviated the phenotypic changes induced by IGF1R deficiency. These phenotypic changes includes: (i) retarded brain growth, (ii) reduced precursor proliferation and (iii) decreased neuronal number. Our current data, consistent with our previous study of cultured oligodendrocytes, strongly support the concept that IGF signalling interacts with canonical Wnt signalling in the developing brain to promote neural proliferation. The interaction of IGF and canonical Wnt signalling plays an important role in normal brain development by promoting neural precursor proliferation.  相似文献   

13.
14.
Several experimental and epidemiological studies have suggested a role for the use of cyclooxygenase (COX)-2 inhibitors in the prevention of breast cancer. The relative lack of toxicity associated with these compounds favors their use as chemopreventive agents, but the underlying mechanism of their chemopreventive effect remains unclear. We have observed that the COX-2 inhibitor celecoxib inhibits growth and induces apoptosis in the immortalized breast epithelial cell line 184htert. Microarray gene expression analysis of 184htert cells treated with 50 microM celecoxib for 6h revealed the modulation of several genes of interest, including a significant induction of expression of the mRNA encoding insulin-like growth factor binding protein-3 (IGFBP-3). IGFBP-3 is a potent pro-apoptotic protein and growth inhibitor of breast cancer cells, which acts mainly by inhibiting the access of the mitogens IGF-I and IGF-II to their cell surface receptor, but also via IGF-independent effects. Quantitative real-time RT PCR demonstrated that 50 microM celecoxib induced a approximately 3-fold increase in expression of IGFBP-3 mRNA after 6h. Furthermore, ligand blot analysis revealed that celecoxib treatment was associated with the upregulation of IGFBP-3 at the protein level. IGFBP-3 (500 ng/ml) treatment of 184htert cells inhibited IGF-I and serum-induced proliferation, but had no effect on cell growth under serum-free conditions, indicating that IGF-independent effects of IGFBP-3 are not observed in this system. Our results suggest that celecoxib may decrease IGF-I-associated breast cancer risk by a mechanism involving induction of expression of IGFBP-3 and subsequent reduced proliferation of at-risk breast epithelial cells.  相似文献   

15.
BACKGROUND: The hamster strain CHF147 presents a progressive dilated cardiomyopathy (DCM) due to a large deletion of the delta-sarcoglycan gene that leads to heart failure. This cardiomyopathy induces premature death. We have previously shown that a short-term treatment using IGF-1 preserves cardiac structure and improves function of the CHF147 hamster. METHODS: In the current study, we measured long-term effects of short-term treatment with recombinant human IGF-1 (rhIGF-1) in CHF147 hamsters. CHF147 hamsters (7-8 months old) were implanted under the skin with an osmotic pump filled either with saline or with recombinant human IGF-1 at a total dose of 25 microg. The osmotic pump allowed a continuous delivery of the protein for a mean duration of 19 days. RESULTS: We observed a significant increase in overall survival, as well as preservation of cardiac function, in the rhIGF-1-treated group. At the time of death, hearts of treated animals did not present any macroscopical or histological differences compared to those of sham hamsters. These results show that rhIGF-1 treatment slows down the evolution of the DCM in the CHF147 hamster. Moreover, the low dose treatment did not increase IGF-1 serum levels. CONCLUSIONS: This study is the first one reporting beneficial effects of IGF-1 treatment on survival of an animal model presenting DCM. Our results raise hopes for a new therapeutic approach of this pathology.  相似文献   

16.
17.
Overexpression of type 1 insulin-like growth factor receptor (IGF1R) contributes to the progression and metastasis of liver cancer, implying that IGF1R gene is a suitable target of RNA interference (RNAi) for liver cancer therapy. To investigate the possible regulation of IGF1R by P53, we examined the level of IGF1R expression in liver cancer cell lines in response to adriamycin. Levels of IGF1R mRNA and protein in cell lines with wild-type P53 decreased dramatically after P53 induction, but no such reduction of IGF1R was observed in cell lines with mutated P53. Inhibition of wild-type P53 in HEPG2 cells by small interfering RNA (siRNA) significantly upregulated the expression of IGF1R. IGF1R inhibition by siRNA in Huh7 cells with mutated P53 significantly depressed cell proliferation. To investigate the sensitivity of cancer cells to adriamycin after inhibition of IGF1R, we depressed IGF1R expression using siRNA, and then added adriamycin at an IC50 dose. After a further 48 h incubation with adriamycin, proliferation was significantly depressed in the cells treated with siRNA targeting IGF1R, in comparison with siRNA targeting scramble. Furthermore, both TUNEL and pro-caspase-3 expression assay showed a significant increase in apoptosis after combined treatment with adriamycin and siRNA targeting IGF1R. Our results demonstrate that IGF1R is downregulated by P53, and that siRNA targeting of IGF1R increases liver cancer cells sensitivity to adriamycin and promotes apoptosis. siRNA targeting of IGF1R could be potentially useful for increasing sensitivity to anti-cancer drugs, especially in drug-resistant cells with mutated P53.  相似文献   

18.
Wang HS  Wasa M  Okada A 《Life sciences》2002,71(2):127-137
Insulin-like growth factor I (IGF-I) and IGF-II stimulate cancer cell proliferation via interaction with the type I IGF receptor (IGF-IR). We put forward the hypothesis that IGF-IR mediates cancer cell growth by regulating amino acid transport, both when sufficient nutrients are present and when key nutrients such as glutamine are in limited supply. We examined the effects of alphaIR3, the monoclonal antibody recognizing IGF-IR, on cell growth and amino acid transport across the cell membrane in a human neuroblastoma cell line, SK-N-SH. In the presence of alphaIR3 (2 micro/ml), cell proliferation was significantly attenuated in both control (2 mM glutamine) and glutamine-deprived (0 mM glutamine) groups. Glutamine deprivation resulted in significantly increased glutamate (system X(AG)(-)), MeAIB (system A), and leucine (system L) transport, which was blocked by alphaIR3. Glutamine (system ASC) and MeAIB transport was significantly decreased by alphaIR3 in the control group. Addition of alphaIR3 significantly decreased DNA and protein biosynthesis in both groups. Glutamine deprivation increased the IGF-IR protein on the cell surface. Our results suggest that activation of IGF-IR promotes neuroblastoma cell proliferation by regulating trans-membrane amino acid transport.  相似文献   

19.
Both Insulin and insulin-like growth factor 1 are members of insulin superfamily. They share homologous primary and tertiary structure as well as weakly overlapping biological activity. However, their folding behavior is different: insulin and its recombinant precursor (PIP) fold into one unique tertiary structure, while IGF-1 folds into two disulfides isomers with similar thermodynamic stability. To elucidate the molecular mechanism of their different folding behavior, we prepared a singlechain hybrid of insulin and IGF-1, [B10Glu]Ins/IGF-1(C), and studied its folding behavior compared with that of PIP and IGF-1. We also separated a major non-native disulfides isomer of the hybrid and studied its refolding. The data showed that the C-domain of IGF-1 did not affect the folding thermodynamics of insulin, that is, the primary structure of the hybrid encoded only one thermodynamically stable disulfides linkage. However, the folding kinetics of insulin was affected by the C-domain of IGF-1.  相似文献   

20.
Both Insulin and insulin-like growth factor 1 are members of insulin superfamily. They share homologous primary and tertiary structure as well as weakly overlapping biological activity. However, their folding behavior is different: insulin and its recombinant precursor (PIP) fold into one unique tertiary structure, while IGF-1 folds into two disulfides isomers with similar thermody-namic stability. To elucidate the molecular mechanism of their different folding behavior, we prepared a single-chain hybrid of insulin and IGF-1, [B10Glu]lns/IGF-1(C), and studied its folding behavior compared with that of PIP and IGF-1. We also separated a major non-native disulfides iso-mer of the hybrid and studied its refolding. The data showed that the C-domain of IGF-1 did not affect the folding thermodynamics of insulin, that is, the primary structure of the hybrid encoded only one thermodynamically stable disulfides linkage. However, the folding kinetics of insulin was affected by the C-domain of IGF-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号