首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this experimental study was to evaluate the effectiveness of sperm selection using single-layer centrifugation (SLC) prior to freezing on the sperm cryosurvival of boar ejaculates. Twenty-four sperm rich ejaculate fractions (SREF), collected from 24 boars (one per boar), were divided into two groups according to their initial semen traits: standard (n = 15) and substandard (n = 9). Semen samples from each SREF were split in two aliquots, one remained untreated (control samples) and the other was single-layer centrifuged (500g for 20 min) using 15 mL of Androcoll-P Large (SLC samples). The yield of total, motile (assessed by CASA) and viable (cytometrically evaluated after staining with H-42, propidium iodide (PI) and FITC-PNA) sperm after SLC was higher (P < 0.05) in standard than substandard semen samples. The semen samples were cryopreserved using a standard 0.5-mL straw freezing protocol. Post-thaw sperm motility and viability (assessed at 30 and 150 min post-thawing) were higher (P < 0.05) in SLC than in control samples, regardless of the initial semen traits of the ejaculates. Additionally, thawed spermatozoa from SLC samples were more resistant (P < 0.05) to lipid peroxidation (BIOXYTECH MDA-586 Assay Kit) than those from control samples, regardless of the initial semen traits of the ejaculates. The SLC-treatment also influenced the functionality of thawed spermatozoa undergoing an in vitro capacitation process. The percentage of viable sperm showing high membrane fluidity (assessed with merocyanine 540) was lower (P < 0.05) in the SLC than in the control samples, regardless of the initial semen traits of the ejaculates. Thawed viable spermatozoa of SLC samples generated less (P < 0.05) reactive oxygen species (assessed with CM-H2DCFDA) than those of control samples in the substandard ejaculates. These findings indicate that the sperm selection before freezing using SLC improves the freezability of boar sperm.  相似文献   

2.
The objective was to cryopreserve sperm recovered from the canine epididymal cauda immediately after an orchiectomy. The sperm was stored for 12 h at 4 °C using ACP-106c and TRIS as extenders. Sixty adult male dogs were used. The testis–epididymis complex (TEC) was removed, immersed in 0.9% saline and transported to the laboratory. The 60 TEC were divided into groups according to the 4 °C cooling time (0 h or 12 h) and according to the extender used for sperm recovery (ACP-106c or TRIS), forming 4 experimental groups: G0h-ACP, G12h-ACP, G0h-TRIS and G12h-TRIS. The sperm were recovered from the epididymal cauda using the retrograde flow technique. Next, 1.0 mL of ACP-106c or 1.0 mL of TRIS (preheated to 37 °C for 5 min) was added to the sperm of each epididymis. One week later, the sperm was thawed at 37 °C for 1 min, and its morphology, functionality and total and progressive sperm motilities were analyzed. Other parameters were obtained by Computer Assisted Semen Analysis (CASA). The data were submitted to multivariate analysis of variance (MANOVA) (P < 0.05). The total motility values were 52.17 ± 1.78 and 49.8 ± 1.93 for groups G0h-ACP and G12h-ACP and 50.7 ± 2.06 and 43.90 ± 2.51 for groups G0h-TRIS and G12h-TRIS, respectively. A decrease in total sperm motility was observed after 12 h of cooling for both extenders (P < 0.05). ACP-106c can be used as an extender for freezing canine epididymal sperm, and the freezing procedure must be performed immediately after sperm recovery.  相似文献   

3.
We assessed the influences of medium osmolality, cryoprotectant and cooling and warming rate on maned wolf (Chrysocyon brachyurus) spermatozoa. Ejaculates were exposed to Ham’s F10 medium (isotonic control) or to this medium plus NaCl (350–1000 mOsm), sucrose (369 and 479 mOsm), 1 M glycerol (1086 mOsm) or dimethyl sulfoxide (Me2SO, 1151 mOsm) for 10 min. Each sample then was diluted back into Ham’s medium and assessed for sperm motility and plasma membrane integrity. Although glycerol and Me2SO had no influence (P > 0.05), NaCl and sucrose solutions affected sperm motility (P < 0.05), but not membrane integrity. Motility of sperm exposed to <600 mOsm NaCl or sucrose was less (P < 0.05) than fresh ejaculate, but comparable (P > 0.05) to the control. As osmolality of the NaCl solution increased, motility decreased to <5%. In a separate study, ejaculates were diluted in Test Yolk Buffer containing 1 M glycerol or Me2SO and cooled from 5 °C to −120 °C at −57.8 °C, −124.2 °C or −67.0 °C/min, frozen in LN2, thawed in a water bath for 30 s at 37 °C or 10 s at 50 °C, and then assessed for motility, plasma- and acrosomal membrane integrity. Cryopreservation markedly (P < 0.05) reduced sperm motility by 70% compared to fresh samples. Higher (P < 0.05) post-thaw motility (20.0 ± 1.9% versus 13.5 ± 2.1%) and membrane integrity (51.2 ± 1.7% versus 41.5 ± 2.2%) were observed in samples cryopreserved in Me2SO than in glycerol. Cooling rates influenced survival of sperm cryopreserved in glycerol with −57.8 °C/min being advantageous (P < 0.05). The findings demonstrate that although maned wolf spermatozoa are similar to domestic dog sperm in their sensitivity to osmotic-induced motility damage, the plasma membranes tolerate dehydration, and the cells respond favorably to Me2SO as a cryoprotectant.  相似文献   

4.
The purpose of this study was to develop a procedure to collect and preserve semen from wood bison (Bison bison athabascae) and plains bison (Bison bison bison). Semen samples from three wood and three plains bison bulls were collected by electroejaculation from June through October. In addition, sperm was collected from the cauda epididymis of seven plains bison. Semen was cryopreserved using two commercially available cryopreservation media, an egg yolk-based medium (Triladyl), and a medium free of products of animal origin (Andromed). Sperm morphology and motility were recorded on fresh and post-thawed semen samples. Total sperm motility was not different between plains and wood bison for the months of June (50%), July (69%) and October (54%). However, total sperm motility for wood bison was higher (P < 0.05) than plains bison for the months of August and September (August: 80% vs 55%; September: 73% vs 40%). Plains and wood bison did not differ in mean total and mean progressive motility (35 and 15%, respectively) of frozen-thawed sperm samples. The post-thaw motility of Triladyl-treated sperm was higher (P < 0.05) than Andromed-treated sperm (35% vs 13%, respectively). Interestingly, post-thawed epididymal spermatozoa had higher total motility (P < 0.05) than post-thawed electroejaculated sperm when cryopreserved with a medium free of products of animal origin (Andromed; 35% vs 9%, respectively). In conclusion, we used electroejaculation to collect high quality bison semen, and cryopreserved it for future needs.  相似文献   

5.
The objectives of this study were to determine the effects of centrifugation on equine sperm total and progressive motility, viability, and acrosomal integrity. We hypothesized that although high centrifugation forces would be detrimental to equine Equus caballus sperm, recovery rates would increase. Ejaculates from six stallions were collected, extended to a concentration of 25 × 106 cells/mL, and subjected for 10 min to (1) no centrifugation (NC) or (2) centrifugation at 400 × g, (3) 900 × g, or (4) 4500 × g. Before and after centrifugation (Day 0), and after 24 h of cooling (Day 1), sperm motility was assessed by computer-assisted semen analysis, and samples were stained with SYBR-14/propidium iodide (PI) for viability and with PI/fluorescein isothiocyanate (FITC)-Peanut aglutinin (PNA) (Arachis hypogaea) for acrosomal integrity. The effect of treatment and day on motility, viability, and acrosomal integrity was determined using a mixed linear model. Compared with the other treatments, centrifugation at 4500 × g reduced all end points measured (P < 0.05). Both 400 × g and 900 × g yielded lower recovery rates than that of 4500 × g (NC = 100.0 ± 0.0%; 400 × g = 54.4 ± 8.6%; 900 × g = 75.0 ± 7.1%; 4500 × g = 97.9 ± 2.8%; P < 0.05). Centrifugation at 400 × g or 900 × g did not damage equine sperm. Based on these findings, further studies of centrifugal forces between 900 × g and 4500 × g are warranted to determine the optimal force that maximizes recovery rate, minimizes sperm damage, and does not affect fertility.  相似文献   

6.
The collection of semen from tomcats by urethral catheterization (CT) after medetomidine administration offers a novel and easy approach to obtain good quality sperm for in vitro fertilization. This study was designed to compare the sperm quality parameters and in vitro fertilizing capacity of CT spermatozoa with those of spermatozoa retrieved after epididymal slicing (EP). Semen was collected in seventeen adult cats by urethral catheterization, after which the cat was orchiectomized. Motility, morphology, plasma membrane integrity, acrosomal status, and in vitro fertilizing capacity of both fresh CT and EP samples were evaluated. The results showed that both total and progressive motility, as well as the percentage of normal spermatozoa, were higher for EP sperm than for CT sperm (P < 0.01). Epididymal sperm had a lower percentage of spermatozoa with an intact acrosome (P < 0.01), while CT sperm contained more spermatozoa with tail abnormalities (P < 0.01). Other morphological parameters, as well as plasma membrane integrity, did not differ (P > 0.05) between CT and EP sperm. Nevertheless, no difference (P > 0.05) in in vitro fertilizing capacity between spermatozoa collected by means of the two different methods was found. In conclusion, semen collection by means of urethral catheterization after medetomidine administration yields fertilization results similar to epididymal slicing, despite the fact that several sperm variables were different. Since this novel catheterization technique is repeatable, is easy to perform and facilitates semen preparation protocols, it may be preferable for routine IVF experiments with fresh spermatozoa.  相似文献   

7.
The objectives of present study were (a) validation of annexin V/PI assay for estimation of sperm apoptosis in buffalo (Experiment 1) and (b) determining the effect of stages of cryopreservation on sperm apoptosis and its correlation with sperm motility and plasma membrane integrity (Experiment 2). In Experiment 1, different levels of apoptosis were artificially induced in buffalo semen (100 × 106 sperm/aliquot) through graded doses of camptothecin (5, 10 and 20 μM/aliquot). Higher concentrations of camptothecin (10 and 20 μM) successfully (P < 0.05) induced apoptosis as compared to the lower (5 μM) dose and/or control. In Experiment 2, semen samples (n = 9, three pooled semen samples from each of the three buffalo bulls separately) were cryopreserved using vapor freezing. The mean percentage of apoptotic, necrotic and viable sperm did not differ between fresh and before freezing stages. However, freezing and thawing increased (P < 0.05) the percentage of apoptotic sperm (25.4 ± 0.6 vs. 36.5 ± 1.9) while decreased (P < 0.05) the necrotic (35.1 ± 1.2 vs. 29.7 ± 0.7) and viable sperm (37.2 ± 1.3 vs. 32.8 ± 1.9, (P < 0.07). Likewise, the mean percent motility and plasma membrane integrity decreased (P < 0.05) (64 ± 2.1 vs. 49.4 ± 1.3) and (79.6 ± 0.5 vs. 38.7 ± 0.3) respectively, at post thaw compared to other stages. Coefficient of correlation, combined at all stages for each variable revealed that sperm apoptosis was inversely correlated with sperm motility and plasma membrane integrity. It is concluded that (a) the annexin V/PI assay can be used as a tool to determine the buffalo semen apoptosis and (b) freezing and thawing induces apoptosis in buffalo sperm.  相似文献   

8.
《Cryobiology》2010,61(1):89-93
The aim of the present study was to determine the effects of different doses of raffinose and methionine on post-thawed semen quality, lipid peroxidation and antioxidant enzyme activities of Angora buck (Capra hircus ancryrensis) sperm following cryopreservation.Ejaculates collected from three Angora bucks were evaluated and pooled at 37 °C. Semen samples, which were diluted with a Tris-based extender containing the additives raffinose (2.5, 5, 10 mM) and methionine (2.5, 5, 10 mM) and an extender containing no antioxidants (control), were cooled to 5 °C and frozen in 0.25 ml French straws. Frozen straws were thawed individually at 37 °C for 20 s in a water bath for evaluation. The freezing extender supplemented with 2.5 and 5 mM methionine led to higher percentages of CASA motility (63.6 ± 7.0; 63.4 ± 3.1%, respectively), in comparison to the controls (P < 0.01) following the freeze-thawing process. The addition of antioxidants did not provide any significant effect on the percentages of post-thaw subjective and CASA progressive motilities as well as sperm motion characteristics (VSL and VCL), compared to the control groups (P > 0.05). The freezing extender with raffinose (5 and 10 mM) and methionine at three different doses (2.5, 5 and 10 mM) led to lower percentages of acrosome abnormalities, in comparison to the controls (P < 0.001). In the comet test, raffinose (5 and 10 mM) and methionine (10 mM) gave scores lower than those of the controls, and thereby reduced DNA damage (P < 0.05). Malondialdehyde formation was found to be lower (1.8 ± 0.1 nmol/L) in the group of 5 mM raffinose, compared to the controls following the freeze-thawing process (P < 0.01). The additives did not show any effectiveness on the maintenance of SOD, GSH-PX and GSH activities, when compared to the controls (P > 0.05). In conclusion, methionine and raffinose play a cryoprotective role against sperm CASA motility, acrosome abnormality and DNA damage. Raffinose 5 mM exhibited antioxidative properties, decreasing MDA levels. Further studies are required to obtain more concrete results on the characterization of microscopic parameters and antioxidant activities in cryopreserved goat sperm with different additives.  相似文献   

9.
To evaluate the effect of dietary and management factors on boar hormonal status during ejaculation, 39 boars were canulated to determine the profiles of luteinizing hormone (LH), follicle-stimulating hormone (FSH), 17β-estradiol (E2), and testosterone (T) in blood plasma and seminal fluid. Prior to canulation, 18 boars were fed a basal diet (control), whereas the remainder (n = 21) were fed a basal diet supplemented with extra vitamins (supplemented). Within each dietary treatment, two regimens of semen collection were used over the 3 mo preceding the hormonal evaluation: three times per 2 wk (3/2) or three times per wk (3/1). Plasma E2 was lower (P < 0.01) before ejaculation (232.5 ± 22.6 pg/mL) than at the onset of ejaculation (255.2 ± 27.1 ng/mL). Plasma T increased from 5.14 ± 0.72, before ejaculation to 5.87 ± 0.86 ng/mL at the onset of ejaculation in supplemented boars, whereas it decreased from 5.15 ± 0.65 to 4.87 ± 0.70 ng/mL in controls (diet by time, P < 0.05). At the onset of ejaculation, plasma FSH was higher in 3/2 boars (0.436 ± 0.06 ng/mL) than in 3/1 boars (0.266 ± 0.04 ng/mL; P < 0.05). During ejaculation, plasma LH increased linearly (P < 0.01) from 0.59 ± 0.07 to 0.97 ± 0.10 ng/mL, and plasma E2 and T concentrations were correlated (r = 0.62, P < 0.01). Plasma FSH before and during ejaculation was negatively correlated with sperm production (r = −0.60, P < 0.01) and testicular weight (r = −0.50, P < 0.01). In conclusion, dietary and management factors had few impacts on hormonal profiles during ejaculation, but homeostasis of some hormones was related to some criteria of reproductive performance in boars.  相似文献   

10.
The objectives were to compare testicular physical characteristics and post-thaw sperm characteristics and their associations with fertility in Holstein bulls used for AI. Ten Holstein bulls (4-5 y old) were classified as either high-fertility (HF) or low-fertility (LF; n = 5 each), based on adjusted 56-d non-return rates [non-return rate (NRR); range (mean ± SD): 55.6 ± 4.6 to 71.8 ± 1.3%). Testicular physical characteristics were not significantly different between the two groups. Four ejaculates were collected from each bull and cryopreserved. Several indexes of sperm motion (based on computer-assisted sperm analysis) at post-thaw and post-swim-up were correlated with NRR. Sperm from HF bulls were in transition to a hyperactivated motility pattern, whereas those from LF bulls had only a forward progressive motility pattern. In HF vs LF bulls, there was a greater percentage of viable sperm after thawing (60.6 ± 9.7 vs 49.5 ± 8.0%, P < 0.05) and after swim-up (70.9 ± 11.0 vs 63.0 ± 8.8%, P < 0.01); these two end points were positively correlated with fertility (r = 0.45, P < 0.01 and r = 0.78; P < 0.01, respectively). Furthermore, in HF vs LF bulls, the ratio of sperm recovered after swim-up to viable sperm in post-thaw semen was higher (P < 0.001), and the proportion of moribund sperm expressed as a percentage of live sperm differed (12.6 ± 3.4 vs. 16.4 ± 3.1%, P < 0.001) and was negatively correlated (r = −0.33, P < 0.05) with fertility. In conclusion, fertility of Holstein bulls maintained in a commercial AI center was not predicted by testicular physical characteristics, but it was associated with differences in moribund sperm in the inseminate, as well as characteristics of sperm post-thaw and after swim-up.  相似文献   

11.
The objective was to evaluate the effect of Percoll volume, and duration and force of centrifugation on sperm quality characteristics, embryo development, and sex ratio of in vitro-produced (IVP) bovine embryos. Frozen-thawed semen from four bulls were submitted to three Percoll procedures: T1—4 mL of Percoll, centrifuged for 20 min at 700 g; T2—800 μL of Percoll, centrifuged for 20 min at 700 g; and T3—800 μL of Percoll, centrifuged for 5 min at 5000 g. Sperm total motility, morphology and integrity of the sperm acrosome, membrane and chromatin were determined before and after Percoll treatment, and semen was used for in vitro fertilization (IVF) of in vitro-matured oocytes. All Percoll methods increased the proportion of motile sperm (P < 0.05). There were no significant effects of treatment for any sperm characteristic; however, for every end point, there were significant differences among bulls. Similarly, rates of cleavage and blastocyst formation were not affected by the Percoll procedure (P > 0.05), but were affected by sire (P < 0.05). Sex ratio was similar among treatments for Bulls 2 and 3, whereas semen from Bull 1 processed by T1 yielded a greater percentage of male embryos. However, when only treatments were considered, independent of bulls, the proportion of male:female embryos did not differ significantly from an expected 1:1 ratio. In conclusion, decreasing Percoll volume, reducing duration of centrifugation, and using a higher force of centrifugation did not significantly affect sperm quality, embryo development, or sex ratio of in vitro-produced bovine embryos.  相似文献   

12.
13.
《Theriogenology》2009,71(9):1550-1559
Epididymal cat sperm is commonly used for in vitro fertilization. Because of the high variability in preparation protocols and methods of evaluation, sperm quality may vary considerably between experiments and laboratories. The aims of the present study were (1) to describe an epididymal sperm preparation protocol to produce clean, highly motile samples using density gradient centrifugation, (2) to provide reference values of computer-assisted semen analysis (CASA) parameters of fresh epididymal cat sperm after density gradient centrifugation and (3) to investigate the effect of cool storage on various spermatozoa characteristics. After slicing the epididymides, viable and motile sperm cells were isolated using Percoll® centrifugation. Sperm motility parameters were subsequently assessed using CASA in experiment 1. In experiment 2, fresh (day 0) sperm samples were evaluated for motility parameters (HTR) and stained for assessment of acrosomal status (FITC-PSA), morphology (eosin/nigrosin (E/N)), membrane integrity (E/N and SYBR®14-PI) and DNA fragmentation (TUNEL). After addition of a Tris–glucose-citrate diluent containing 20% egg yolk, samples were cooled to 4 °C and reassessed on d1, d3, d5, d7 and d10. Cool storage impaired most motility and velocity parameters: MOT, PMOT, VAP, VSL, VCL, BCF, RAPID and the percentage of normal spermatozoa showed a decrease over time (P < 0.05) as compared to fresh samples. In contrast, STR, ALH, membrane integrity, DNA fragmentation and the percentage of acrosome intact spermatozoa were not affected by cool storage. However, the influence of cool storage of cat spermatozoa on subsequent in vitro embryo development and quality after IVF requires further investigation.  相似文献   

14.
This study was conducted to elucidate the effect of increasing the osmolality of a basic Tris, extender supplemented with sucrose, trehalose or raffinose on post-thawing ram semen quality (sperm motility, viability, acrosome integrity, total sperm abnormalities and membrane integrity). After primary evaluation of the collected ejaculates, only semen samples with more than 70% motile sperm, and a sperm concentration of higher than 3 × 109 sperm/ml were used for cryopreservation. The semen samples were pooled and diluted (1:4) with a Tris-citric acid-fructose-yolk extender, supplemented with different concentrations (50, 70 or 100 mM) of sucrose, trehalose or raffinose. As control, semen was diluted and frozen in the base diluent, without additional sugars. Pooled semen samples were aspirated into 0.25 ml straws, cooled to 5 °C within 90 min and frozen by exposure to liquid nitrogen vapor (4-5 cm above the liquid nitrogen surface) for 10 min - before plunging into liquid nitrogen, for storage. After 24 h, straws were thawed in a water bath (37 °C) for 30 s. The frozen-thawed sperm characteristics were improved significantly (P < 0.05) by increasing the level of the sugars. Optimal results being obtained with 70 and 100 mM trehalose or raffinose. All extenders containing supplemental sugars were superior in terms of sperm quality to the control (P < 0.01) group. The highest sperm motility (60.6 ± 1.9%), viability (60.6 ± 2.5%) and membrane integrity (58.2 ± 2.1%) were recorded using 100 mM trehalose and the lowest with 50 mM sucrose (48.6 ± 1.9%, 51.4 ± 2.5% and 47.9 ± 2.1%, respectively). All sugar concentrations decreased the percentage of acrosomal and total sperm abnormalities (P < 0.05). The extenders containing 100 mM trehalose or raffinose significantly (P < 0.05) decreased the occurrence of sperm abnormalities, compared to the other treatments. The fertility rates obtained after cervical insemination of the frozen-thawed sperm were 46.8%, 44.1% and 16.7% for 100 mM trehalose, 100 mM raffinose and the control with supplementation of the diluents, respectively. The study showed that ram sperm can tolerate hyperosmotic diluents, and that a range of sugar concentrations (50-100 mM) may successfully be incorporated in the ram semen cryopreservation diluents, although further research is warranted.  相似文献   

15.
The aim of this study was to investigate whether single-layer centrifugation (SLC) with Androcoll-C could select good quality spermatozoa, including those with specific motility patterns, from doses of frozen dog semen. Semen from five dogs was collected and cryopreserved following a standard protocol. After thawing, the semen samples were divided in two aliquots, one of which was used as a control and the other one processed by SLC. Assessment of sperm motility (assessed by computer-assisted semen analysis), morphology (Diff-Quick staining), viability (dual staining with propidium iodine/acridine orange), and acrosome integrity (dual staining with propidium iodine/isothiocyanate-labeled peanut [Arachis hypogaea] agglutinin) were performed on aliquots of fresh semen, frozen-thawed control samples, and frozen-thawed SLC-treated preparations. A multivariate clustering procedure separated 57,577 motile spermatozoa into three subpopulations (sP): sP1 consisted of poorly active and nonprogressive spermatozoa (48.8%), sP2 consisted of moderately slow but progressive spermatozoa (13.3%), and sP3 consisted of highly active and/or progressive spermatozoa (37.8%). SLC with Androcoll-C yielded sperm suspensions with improved motility, viability, and acrosome integrity (P < 0.01). The frozen-thawed SLC-treated samples were enriched in sP3, representing 38.5% of the sperm population. Likewise, sP2 was more frequently observed after SLC, but not significantly so. From these results, we concluded that for dog semen samples selected by SLC with Androcoll-C after thawing, the sperm quality parameters, including motility patterns, are better than in frozen-thawed control samples.  相似文献   

16.
Field trials were conducted to increase fertility with AI of flow-sorted, sexed bovine sperm. In the first trial, a novel competitive fertilization approach was used to compare pressures (30 psi vs 50 psi) for sorting sperm. Both X- and Y-sperm were sorted to approximately 95% purity at 30 and at 50 psi; X-50 + Y-30 (and the converse) were mixed in equal numbers for AI of heifers. Fetal sex divulged which treatment produced the pregnancy; 82% of pregnancies resulted from the 30 psi treatment (P < 0.05). Based on a similar approach, a new-pulsed laser did not damage sperm any more than the previous standard continuous wave laser. In a large field trial, sorting sperm at 40 psi increased pregnancy rates in heifers relative to 50 psi (42.3% vs 34.1%, n = 367/group, P < 0.05). Storing sperm for 20 h before sorting at 40 psi decreased pregnancy rates from 42.3% (n = 367) to 36.8% (n = 368; P < 0.05). Breeding heifers with sexed sperm 55-56 h after CIDR removal and PGF resulted in 34% (n = 32) pregnant, compared to 49% (n = 35) with fixed-time insemination 67-68 h after CIDR removal (P > 0.1). Lactating dairy cows pre-screened for normal reproductive tracts when OvSynch injections (GnRH, prostaglandin, GnRH) were initiated, had similar (P > 0.1) pregnancy rates to timed AI, with 10 × 106 sexed sperm (43.9%, n = 57), 2 × 106 sexed sperm (40.5%, n = 57) and 10 × 106 unsexed control sperm (55.6%, n = 58). A final field trial with unselected, lactating dairy cows resulted in similar pregnancy rates for 2 × 106 sexed sperm in 0.25 mL straws (25.0%, n = 708) and 0.5 mL straws (24.4%, n = 776), but lower (P < 0.05) than unsexed control sperm (37.7%, n = 713). Younger cows and those >84 days in milk had the highest pregnancy rates for both sexed and unsexed sperm. These studies improved sperm sexing procedures, and provided insight into appropriate commercial use of sexed sperm.  相似文献   

17.
The method of sperm recovery may influence the initial quality of sperm samples and their response to freezing–thawing. The aim of the present work was to compare two methods for collecting epididymal spermatozoa in order to improve the quality of recovered sperm and reduce possible contamination. Testes were obtained from 23 legally hunted, adult ibex males. The sperm mass of the right epididymis was collected by small longitudinal and transverse cuts made in the cauda epididymidis. The sperm mass of the left epididymis was collected by retrograde flushing from the vas deferens to the cauda epididymidis (using a cannula), employing a Tris, citric acid, glucose, egg yolk-based medium. The flushing method recovered more spermatozoa (P < 0.001) than the cutting method. After freezing–thawing, greater acrosomes damage (P < 0.001) and more morphological abnormalities (P < 0.05) were seen among the sperm cells recovered by the cutting method than among those obtained by retrograde flushing. The method of sperm recovery did not, however, influence the microbial contamination rate. In frozen–thawed samples that were microbially contaminated, motility was significantly reduced (P < 0.05) and membrane integrity tended to be poorer (P = 0.06). In conclusion, retrograde flushing is recommended for ibex sperm collection since it would appear that microbial contamination is no more of a problem than that encountered with the cutting method, while a larger number of sperm cells more resistant to freezing–thawing can be obtained.  相似文献   

18.
Rat sperm cryopreservation is an effective method of archiving valuable strains for biomedical research and handling of rat spermatozoa is very important for successful cryopreservation. The aim of this study was to evaluate changes in rat sperm function during cryopreservation and centrifugation. Epididymal rat spermatozoa were subjected to cooling and freezing–thawing processes and then motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were compared before and after minimum centrifugation force (200×g). Cryopreservation decreased sperm motility, PMI, and MMP (P < 0.05). Basal (without ROS inducer, tert-butyl hydroperoxide [TBHP] treatment) and stimulated ROS (with TBHP treatment) were increased in viable cooled spermatozoa compared to viable fresh spermatozoa (< 0.01), with equal susceptibility to TBHP among fresh, cooled, and frozen–thawed spermatozoa. Centrifugation decreased motility and PMI of frozen–thawed spermatozoa (P < 0.05). Centrifugation decreased basal ROS of all spermatozoa (< 0.01), while it led to higher susceptibility to TBHP in viable cooled spermatozoa, showing higher increased fold in ROS and decreased rate in viability by TBHP in viable cooled spermatozoa (< 0.05). Cooling process was the major step of ROS generation, with loss in sperm motility, PMI, and MMP. Centrifugation affected function of cryopreserved spermatozoa. These data suggest that centrifugation makes rat spermatozoa susceptible to external ROS source, in particular during cooling process. Thus, protection from ROS damage and minimizing centrifugation should be considered during cryopreservation and post-thaw use of cryopreserved epididymal rat spermatozoa.  相似文献   

19.
Three experiments were conducted to evaluate the impact of centrifugation on cooled and frozen preservation of equine semen. A standard centrifugation protocol (600 × g for 10 min = CP1) was compared to four protocols with increasing g-force and decreased time period (600 × g, 1200 × g, 1800 × g and 2400 × g for 5 min for CP2, 3, 4, and 5, respectively) and to an uncentrifuged negative control. In experiment 1, the influence of the different CPs on sperm loss was evaluated by calculating the total number of sperm cells in 90% of the supernatant. Moreover, the effect on semen quality following centrifugation was assessed by monitoring several sperm parameters (membrane integrity using SYBR14-PI, acrosomal status using PSA-FITC, percentage total motility (TM), percentage progressive motility (PM) and beat cross frequency (BCF) obtained with computer assisted sperm analysis (CASA)) immediately after centrifugation and daily during chilled storage for 3 d. The use of CP1 resulted in a sperm loss of 22%. Increasing the centrifugation force to 1800 × g and 2400 × g for 5 min led to significantly lower sperm losses (7.4% and 2.1%, respectively; P < 0.05). Compared to the uncentrifuged samples, centrifugation of semen resulted in a better sperm quality after chilled storage. There were minimal differences between the CPs although total motility was lower for CP2 than for the other treatments (P < 0.005). In experiment 2, the centrifuged samples were cryopreserved using a standard freezing protocol and analyzed immediately upon thawing. Samples centrifuged according to CP2 resulted in a higher BCF (P < 0.005), whereas CP3 and CP5 yielded a lower BCF (P < 0.05) when compared to CP1. There were no post thaw differences between CP1 and CP4. In experiment 3, DNA integrity of the different samples was analyzed using TUNEL. Although DNA integrity decreased over time, CP had no impact. In conclusion, the loss of sperm cells in the supernatant after centrifugation can be substantially reduced by increasing the g-force up to 1800 × g or 2400 × g for a shorter period of time (5 min) compared to the standard protocol without apparent changes in semen quality, resulting in a considerable increase in the number of insemination doses per ejaculate.  相似文献   

20.
After injury or death of a valuable male, recovery of epididymal spermatozoa may be the last chance to ensure preservation of its genetic material. The objective of this research was to study the effect of sperm storage, at 4 °C up to 96 h, in the epididymides obtained from castrated horses and its effect on different functional sperm parameters. Aims were to study the effect of (1) sperm storage on viability and chromatin condensation; (2) pre-incubation of recovered epididymal sperm in the freezing extender, prior cryopreservation, on viability and chromatin condensation; and (3) freezing–thawing on viability, chromatin condensation, ROS generation, protein tyrosine phosphorylation and heterologous fertilization rate (ICSI and IVF using bovine oocytes) of sperm recovered from the epididymis up to 96 h post castration. The average volume (720 ± 159 μL) and the concentration (6.5 ± 0.4 × 109 spermatozoa/mL) of sperm recovered from the epididymis were not affected by storage. Sperm viability after refrigeration at 4 °C for up to72 h was similar (P < 0.01). The effect of sperm dilution in the freezing media showed similar values up to 48 h, while viability was preserved up to 72 h (P < 0.01). Cryopreserved spermatozoa show similar viability between different storage times. Chromatin condensation was not affected by storage time; however, incubation for 30 min in freezing medium and freezing–thawing process induced an increase in the chromatin decondensation. ROS generation was not affected by storage up to 96 h. Epididymal storage did not affect sperm protein tyrosine phosphorylation patterns; although the pattern of phosphorylation changed to strong staining of the equatorial segment when the sperm where capacitated in sperm–TALP. Finally, successful and similar pronuclear formation (analyzed by ICSI) and in vitro penetration (evaluated with bovine zone free oocyte) was observed using cryopreserved sperm obtained from prolong epididymal storage at 4 °C. In conclusion, cryopreservation of epididymal stallion sperm stored for up to 72 h in the epididymis at 4 °C, maintain both viability and ability to fertilize in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号