首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective was to evaluate the effects of growth hormone (GH) on the survival, growth, maturation, and fertilization of oocytes derived from caprine preantral ovarian follicles cultured in vitro. Preantral follicles were isolated from the cortex of caprine ovaries and individually cultured for 18 d in the absence (control) or presence of bovine GH at concentrations of 10 or 50 ng/mL (GH10 and GH50, respectively). Follicle development was evaluated on the basis of survival, antral cavity formation, diameter increase, and the presence of healthy cumulus-oocyte complexes and mature oocytes. After culture, oocytes were subjected to in vitro maturation (IVM) and in vitro fertilization (IVF). The rate of antrum formation after Day 6 of culture was higher in both GH10 and GH50 than in the control (81.0, 92.7, and 47.6%, respectively, P < 0.05). Percentages of grown oocytes that were acceptable for IVM were also higher (P < 0.05) in GH-treated groups than in the control (54.8, 48.8, and 11.9% for GH10, GH50, and Control). A higher percentage of oocytes in the GH50 treatment underwent meiotic resumption (50.0%), produced mature oocytes, and enabled production of an embryo after IVF than in the control group (0.0%; P < 0.05). In conclusion, GH promoted in vitro growth and maturation of goat preantral follicle oocytes and enabled production of an embryo. Furthermore, this study was apparently the first to produce a caprine embryo by in vitro fertilization of oocytes derived from preantral follicles grown in vitro.  相似文献   

2.
In horses, successful in vitro fertilization procedures are limited by our inability to consistently mature equine oocytes by in vitro methods. Growth hormone (GH) is an important regulator of female reproduction in mammals, playing an important role in ovarian function, follicular growth and steroidogenesis. The objectives of this research were to investigate: the effects of equine growth hormone (eGH) and insulin-like growth factor-I (IGF-I) on the in vitro maturation (IVM) of equine oocytes, and the effects of eGH in addition to estradiol (E2), gonadotropins (FSH and LH) and fetal calf serum (FCS) on IVM. We also evaluated the cytoskeleton organization of equine oocytes after IVM with eGH. Equine oocytes were aspirated from follicles <30 mm in diameter and matured for 30 h at 38.5°C in air with 5% CO2. In experiment 1, selected cumulus–oocyte complexes (COCs) were randomly allocated as follows: (a) control (no additives); (b) 400 ng/ml eGH; (c) 200 ng/ml IGF-I; (d) eGH + IGF-I; and (e) eGH + IGF-I + 200 ng/ml anti-IGF-I. In addition to these treatment groups, we also added 1 μg/ml E2, 5 IU/ml FSH, 10 IU/ml LH and 10% FCS in vitro (experiment 2). Oocytes were stained with markers for microtubules (anti-α-tubulin antibody), microfilaments (AlexaFluor 488 Phalloidin) and chromatin (TO-PRO3-iodide) and assessed via confocal microscopy. No difference was observed when eGH and IGF-I was added into our IVM system. However, following incubation with eGH alone (40%) and eGH, E2, gonadotropins and FCS (36.6%) oocytes were classified as mature v. 17.6% of oocytes in the control group (P < 0.05). Matured equine oocytes showed that a thin network of filaments concentrated within the oocyte cortex and microtubules at the metaphase spindle showed a symmetrical barrel-shaped structure, with chromosomes aligned along its midline. We conclude that the use of E2, gonadotropins and FCS in the presence of eGH increases the number of oocytes reaching oocyte competence.  相似文献   

3.
The objectives were to quantify insulin-like growth factor receptor-1 (IGFR-1) mRNA in preantral follicles on Days 0 and 18 of in vitro culture in the presence or absence of FSH, and to evaluate the effects of IGF-I on the rate of normal follicles, antral cavity formation, and in vitro growth and maturation of caprine oocytes on Days 0, 6, 12, and 18 of culture. The expression of IGFR-1 was analyzed using real-time RT-PCR before and after follicle culture. Preantral follicles were isolated from the cortex of caprine ovaries and individually cultured for 18 d in the presence or absence of bovine IGF-I (50 or 100 ng/mL). At the end of the culture period, the oocytes were submitted to IVM. The expression of IGFR-1 mRNA in preantral follicles cultured in vitro only approached being significantly higher in follicles supplemented with FSH when compared to follicles immediately after recovery (P < 0.06) and cultured without FSH (P < 0.1). There was a higher (P < 0.05) percentage of normal follicles on Days 6, 12, and 18 of culture in IGF-I 50 (97, 92, 67%, respectively) and IGF-I 100 (100, 90, 80%) groups versus the control (90, 64, 36%). In addition, the rate of antrum formation at 6 and 12 d of culture was higher (P < 0.05) in IGF-I groups (IGF-I 50: 72 and 90% and IGF-I 100: 69 and 85%) than the control group (41 and 59%). After 18 d of culture, the percentages of grown oocytes acceptable for IVM were higher (P < 0.05) in follicles cultured in the presence of IGF-I (82 vs 49%). Furthermore, follicles cultured in the presence of IGF-I 50 and IGF-I 100 had higher (P < 0.05) meiotic resumption rates (63 and 66%, respectively) than the control group (11%). In conclusion, treatment with FSH tended to increase IGFR-1 mRNA expression during the in vitro culture of preantral follicles and the addition of IGF-I to the culture medium clearly improved the in vitro development of caprine preantral follicles.  相似文献   

4.
The present investigation attempts to improve the frequency of in vitro maturation of oocytes by culturing small (150–250 μm) and large (>250–400 μm) preantral follicles (PFs) of sheep for 6 days in various combinations/sequences of thyroxin (T4), FSH, LH, transforming growth factor alpha (TGF-), epidermal growth factor (EGF) and heat-treated foetal calf serum (FCS). Bicarbonate-buffered tissue culture medium 199, supplemented with 50 μg ml−1 gentamicin sulphate, served as the control medium. In vitro development was initially assessed by the proportion of PFs exhibiting an increase in size, mean increase in diameter and antrum formation. Nuclear maturation to the metaphase II stage of the oocytes isolated from cultured PFs, after an additional 24-h in vitro maturation, indicated success. A total of 15% of oocytes from small PFs and 55% from large PFs, cultured in T4 + FSH, matured to metaphase II. Culture of PFs in other combinations/sequences of hormones and growth factors, including the control medium, supported a significantly lower proportion of oocytes maturing to metaphase II stage. It is concluded that 6-day in vitro culture of sheep PFs in thyroxin and FSH greatly improves the frequency of oocyte maturation to metaphase II stage.  相似文献   

5.
Freezing unfertilized oocytes is an option for females without a partner, either to preserve their fertility prior to sterilizing cancer treatment or for social reasons. Our study considered whether it is best to freeze immature human oocytes at the germinal vesicle (GV) stage, prior to in vitro maturation (IVM) or at metaphase-II (M-II), after IVM. Sibling GV-stage oocytes from stimulated ICSI cycles were allocated to freezing either prior to (n = 109) or after (n = 107) IVM. Cumulus-free oocytes were cryopreserved using a choline-substituted slow-freezing protocol and matured in a defined medium, with analysis of chromatin, microtubules, and microfilaments by three-dimensional imaging. Cryopreserved oocytes were compared with oocytes matured in vitro but never frozen (n = 114). Survival was similar between oocytes frozen before or after IVM (69.7% vs. 70.5%). Polar body extrusion after IVM was lower in oocytes frozen at the GV stage versus those matured and then frozen (51.3% vs. 75.7%) or not frozen (75.4%). Stratification by patient age (<36 and ?36 year) showed no difference in oocyte survival or maturation. Oocytes frozen as GVs showed elevated proportions of spontaneous activation (with or without polar body), an effect augmented by patient age. Spindle and chromosome configurations were disrupted to similar extents in both groups of frozen oocytes, with no further detrimental effect of patient age. The length, width, and volume of bipolar M-II spindles were comparable in all three groups. When frozen as GVs, oocytes exhibited decreased maturation and increased spontaneous activation, suggesting that it is best to freeze oocytes at M-II.  相似文献   

6.
7.
Cui MS  Wang XL  Tang DW  Zhang J  Liu Y  Zeng SM 《Theriogenology》2011,75(4):638-646
Deterioration in the quality of mammalian mature oocytes during metaphase-II (M-II) arrest is called “oocyte aging”. Although histone acetylation may affect the progression of aging in murine oocytes, the mechanism is unknown. The objective was to determine the role of ooplasmic reactive oxygen species (ROS) in acetylation of histone H4 at lysine 12 (acH4K12) in porcine aged oocytes in vitro. Based on immunostaining with a specific antibody, acetylation of H4K12 in porcine oocytes increased during in vitro aging, which coincided with changing patterns of ooplasmic ROS content. Furthermore, both hydrogen peroxide (H2O2), and the mitochondrial membrane potential disrupter, carbonyl cyanide 3-chlorophenylhydrazone (CCCP), which can moderately elevate oocyte ROS content, significantly increased acetylation levels of H4K12 in porcine oocytes. It was noteworthy that acetylation in the CCCP group was decreased when ROS was counteracted by cysteine, a common antioxidant. In addition, the intracellular mRNA abundance of acetyltransferase gene HAT1 in aged and H2O2 treated oocytes was higher than in M-II phase oocytes, suggesting that HAT1 was involved in this reaction. After parthenogenetic activation, a lower proportion of oocytes developed to the blastocyst stage after CCCP or H2O2 treatment when compared with M-II phase oocytes (20 and 0% for CCCP and H2O2 groups, respectively, versus 42% for the M-II group, P < 0.05). In conclusion, elevated levels of H4K12 acetylation were attributed to increased ooplasmic ROS content during porcine oocyte aging in vitro.  相似文献   

8.
The present study aims to investigate potential regulatory effect of different growth-related hormones including growth hormone (GH), human insulin-like growth factor-I (hIGF-I), thyroxine (T4), triiodothyronine (T3) and cortisol, on insulin-like growth factor-I (IGF-I) mRNA expression of hepatocytes isolated from silver sea bream. By using real-time PCR, IGF-I mRNA expression profiles of hepatocytes in response to individual hormones were determined in vitro. Hepatocytes incubated with GH at concentrations of 10–1000 ng/mL showed significantly higher IGF-I expression, but the elevation was attenuated at high concentration of GH (1000 ng/mL). IGF-I expression remained unchanged in hepatocytes after incubation with hIGF-I. Hepatocytes incubated with T4 at concentration of 1000 ng/mL exhibited a significant elevation in IGF-I expression, whereas no difference in IGF-I expression was demonstrated in hepatocytes after incubation with T3. Upon incubation with cortisol (1–1000 ng/mL), IGF-I expression was significantly decreased in hepatocytes in a dose-dependent manner. Our study demonstrated that GH, T4, and cortisol had direct modulatory effects on IGF-I expression in fish hepatocytes in vitro.  相似文献   

9.
The effects of insulin-like growth factor-I (IGF-I) and its interaction with gonadotropins, estradiol, and fetal calf serum (FCS) on in vitro maturation (IVM) of equine oocytes were investigated in this study. We also examined the role of IGF-I in the presence or absence of gonadotropins, estradiol, and FCS in parthenogenic cleavage after oocyte activation with calcium ionophore combined with 6-dimethylaminopurine (6-DMAP), using cleavage rate as a measure of cytoplasmic maturation. Only equine cumulus-oocyte complexes with compact cumulus and homogenous ooplasm (n = 817) were used. In experiment 1, oocytes were cultured in TCM-199 supplemented with BSA, antibiotics, and IGF-I at 0 (control), 50, 100, 200 ng/ml, at 39 degrees C in air with 5% CO(2), 95% humidity for 36 or 48 h. In experiment 2, oocytes were cultured with FSH, LH, estradiol, and FCS with IGF-I at the concentration that promoted the highest nuclear maturation rate in experiment 1. In experiment 3, oocytes from the three experimental groups (IGF-I; hormones; and IGF-I + hormones) were chemically activated by exposure to calcium ionophore followed by culture in 6-DMAP. In experiment 1, IGF-I stimulated equine oocyte maturation in a dose-dependent manner with the highest nuclear maturation rate at a concentration of 200 ng/ml. No significant effect of IGF-I on nuclear maturation was observed in experiment 2. In experiment 3, a significant difference in cleavage rate was observed between the hormone + IGF-I group (15 of 33; 45.4%) compared with IGF-I (10 of 36; 27.8%) and hormone (4 of 31; 12.9%) alone (P < 0.05). These results demonstrated that IGF-I has a positive effect on nuclear maturation rate of equine oocytes in vitro. The addition of IGF-I to an IVM medium containing hormones and FCS did not increase nuclear maturation, but resulted in a positive effect on cytoplasmic maturation of equine oocytes measured by parthenogenic cleavage.  相似文献   

10.
Small (150–250 μm in diameter) and large (251–400 μm in diameter) preantral follicles (PFs) in sheep were cultured for 6 days in four different concentrations of transforming growth factor-alpha (TGF-), epidermal growth factor (EGF), FSH and LH. Proportions of follicles exhibiting growth, antrum formation and increase in follicular and oocyte diameter were the initial indicators of development. The ability of the oocytes isolated from these cultured follicles to mature to metaphase II (MII), after 24 h culture in a known in vitro maturation medium was the final criterion of success. TGF- 2.5 ng ml−1, EGF 50 ng ml−1 and FSH 1 and 2 μg ml−1 supported good initial growth of the PFs. Thirty and seventeen percent of the oocytes from the large PFs cultured in TGF- 2.5 ng ml−1 and FSH 2 μg ml−1 respectively, matured to the MII stage. These proportions for oocytes from small PFs were 11 and 6%, respectively. Oocytes from follicles cultured in EGF did not mature to the MII stage. LH at all concentrations tested and TGF-, EGF and FSH above 5, 50 ng ml−1 and 2 μg ml−1, respectively, induced degeneration of the PFs. It was concluded that (i) TGF- 2.5 ng ml−1 supports development of large PFs in sheep to obtain meiotically competent oocytes, (ii) PFs > 250 μm in initial diameter develop better in vitro, and (iii) in vitro development of sheep PFs could be obtained independent of gonadotropin stimulation.  相似文献   

11.
The aim of the work was to study the influence of insulin-like growth factor I (IGF-I) on GnRH-induced GH release by cultured pituitary cells of normally growing rainbow trout (Oncorhynchus mykiss), collected at different stages of gametogenesis. When pituitary cells were pre-incubated with human IGF-I (10−8 M) for 48 hours they became responsive to sGnRH (10−8 to 10−6 M) in the subsequent 24-hour incubation period, depending on the sexual stage, while not IGF-I pre-incubated cells were always non-responsive to GnRH. The permissive effect of IGF-I was detected in immature fish or those at the beginning of the gametogenesis, but not in mature fish. IGF-I inhibition of GH release during the preincubation period varies also with the sexual stage and is greater in immature than in mature fish. The permissive effect of IGF-I seems specific to somatotropes since IGF-I does not modify GnRH action on GtH2 release. This work suggests that GnRH action on GH release can vary for a particular fish species depending on the physiological status.  相似文献   

12.
Growing porcine oocytes from early antral follicles (1.2-1.5 mm in diameter) do not mature to metaphase II (MII, 4%) under culture conditions which supported maturation (MII, 95%) of fully grown oocytes from large (4-6 mm) antral follicles. We hypothesized that FSH and dbcAMP supported growth and acquisition of meiotic competence. Growing oocytes (113.0 ± 0.4 μm, mean ± SEM) were cultured for 5 d in medium supplemented with 1 mM dbcAMP, 0.01 IU/mL FSH or both; in these media, oocytes reached, 120.5 ± 0.4, 123.5 ± 0.4 and 125.7 ± 0.2 μm, respectively, after 5 d, and then were matured in vitro for 48 h. Oocytes remained enclosed by cumulus cells when cultured with FSH (82%) or both FSH and dbcAMP (80%), but not with dbcAMP alone (0%). Furthermore, oocytes cultured with FSH maintained trans-zonal projections of cumulus cells. Oocytes remained at the GV stage at higher rates when cultured with dbcAMP and FSH (99%), or dbcAMP (97%), than with FSH (64%), or without either (75%). Following in vitro maturation, oocytes reached MII after in vitro growth with dbcAMP (19%), FSH (11%), or both (68%). When oocytes were cultured with both FSH and dbcAMP, activation of Cdc2 and MAP kinases in growing oocytes was similar to fully grown oocytes. In conclusion, growing porcine oocytes grew and acquired meiotic competence in medium supplemented with dbcAMP and FSH; the former maintained oocytes in meiotic arrest, whereas the latter maintained trans-zonal projections of cumulus cells to oocytes during in vitro growth culture.  相似文献   

13.
14.
Many approaches have been investigated for growing oocytes in vitro in mammals. To support oocyte growth in vitro, the culture systems must meet certain conditions for maintaining connections between oocytes and surrounding granulosa cells. The aims of this study were to determine the effects of combinations of 17β-estradiol (E2) and androstenedione (A4) on in vitro growth of bovine oocytes and to determine the number of connections between the oocyte and granulosa cells. Oocyte–granulosa cell complexes (OGCs) collected from early antral follicles (0.4−0.7 mm in diameter) were cultured for 14 days in a medium with different concentrations of E2 and A4, either alone or in combinations. We then assessed the number of transzonal projections (TZPs), which extend from granulosa cells through the zona pellucida to the oolemma. During in vitro growth culture, OGC structures were maintained in the medium with steroid hormones. The mean diameter of oocytes grown in the medium with both E2 and A4 was increased from 95.8 μm to around 120 μm, larger than oocytes grown without steroid hormones (109.9 μm) and similar in size to in vivo fully grown oocytes (119.4 μm) from 4- to 6-mm antral follicles. In subsequent in vitro maturation culture (22 hours), 30% (12 of 40) and 34% (14 of 41) of oocytes grown with E2 or A4 alone, respectively, matured to metaphase II; meanwhile, oocytes grown with a combination of E2 and A4 matured to metaphase II at a high rate (58%, 23 of 40). Growing oocytes isolated from early antral follicles had many uniformly distributed TZPs throughout the zona pellucida. After 14 days of culture, there was a significant decrease in the number of TZPs in oocytes grown without steroid hormones, whereas the number of TZPs was maintained in oocytes grown with steroid hormones. In particular, oocytes grown with E2 alone or with a combination of E2 and A4 had numbers of TZPs similar to oocytes before growth culture. In conclusion, a combination of E2 and A4 maintained the connections between oocytes and granulosa cells during in vitro growth culture of bovine oocytes for 14 days, resulting in the complete oocyte growth and the acquisition of meiotic competence in more than half the oocytes.  相似文献   

15.
The present study was designed to investigate the expression of nitric oxide synthase (NOS) isoforms in buffalo ovarian preantral (PFs), antral (AFs) and ovulatory (OFs) follicles (Experiment 1); effect of NO on in vitro survival and growth of PFs (Experiment 2) and NOS activity in immature oocytes by NADPH-diaphorase test (Experiment 3). In Experiment 1, NOS isoforms (neuronal, inducible and endothelial) were localized immunohistochemically; mRNA and protein expression was analyzed by semi-quantitative RT-PCR and western blot, respectively. In Experiment 2, PFs were isolated by micro-dissection method from buffalo ovaries and cultured in 0 (control), 10−3, 10−5, 10−7 and 10−9 M sodium nitroprusside (SNP). PFs were further cultured with 10−5 M SNP + 1.0 mM Nω-nitro-L-arginine methyl ester (L-NAME) or 1.0 μg/ml hemoglobin (Hb) to examine the reversible effect of SNP. Immunohistochemical studies demonstrated that inducible nitric oxide synthase (iNOS) immunoreactivity was predominantly localized in granulosa and theca cells whereas, neuronal (nNOS) and endothelial (eNOS) nitric oxide synthase in the theca, granulosa and cumulus cells of PFs, AFs and OFs. The amount of mRNA as well as protein of nNOS and eNOS was found similar between different stages of follicles. In contrast, higher level of iNOS mRNA was observed in OFs and protein in the AFs. Higher doses of SNP (10−3, 10−5, 10−7 M) inhibited (P < 0.05) while, lower dose of SNP (10−9 M) stimulated (P < 0.05) the survival, growth, and antrum formation of PFs. The inhibitory effects of SNP were reversed by Hb, while L-NAME was not found effective. In conclusion, expression of NOS isoforms mRNA and protein in PFs, AFs, and OFs and NOS enzyme activity in immature follicular oocytes suggest a role for NO during ovarian folliculogenesis in buffalo. NO plays a dual role on growth and survival of PFs depending on its concentration in the culture medium.  相似文献   

16.
The objective of this study was to investigate the potential of swamp buffalo oocytes vitrified-warmed at the metaphase of the second meiotic cell division (M-II) stage to develop to the blastocyst stage after parthenogenetic activation (PA) or intracytoplasmic sperm injection (ICSI). In Experiment 1, we examined the effects of exposure time of oocytes to cryoprotectants (CPA) on their in vitro development after PA. In vitro matured (IVM) oocytes were placed in 10% dimethylsulfoxide (DMSO) + 10% ethylene glycol (EG) for 1 min and then exposed to 20% DMSO + 20% EG + 0.5 M sucrose for 30 s, 45 s or 60 s (1 min + 30 s, 1 min + 45 s and 1 min + 60 s groups, respectively). The oocytes were then exposed to warming solution (TCM199 HEPES + 20% FBS and 0.5M sucrose) for 5 min and then washed in TCM199 HEPES + 20% FBS for 5 min. IVM oocytes without CPA treatments served as a control group. The viability assessed by fluorescein diacetate (FDA) staining was 100% in all groups. The developmental rates after PA to the blastocyst stage between 1min+30s (16%) and control (26%) groups did not differ significantly, but they were significantly higher than those in 1 min + 45 s (10%) and 1 min + 60 s (2%) groups. In Experiment 2, we examined the effect of two CPA exposure times, 1 min + 30 s and 1 min + 45 s on the in vitro development after PA of oocytes vitrified by the microdrop method. The viabilities in vitrified 1 min + 30 s, 1 min + 45 s and the control (without CPA treatments) groups were not different (97%, 95% and 100%, respectively). The development of surviving oocytes to the blastocyst stage in the vitrified 1 min + 30 s group (8%) was significantly higher than that in the vitrified 1 min + 45 s group (4%) and significantly lower than those in control group (26%). In Experiment 3, we examined the effect of two CPA exposure times, 1 min + 30 s and 1 min + 45 s on in vitro development after ICSI of vitrified oocytes. Viabilities in vitrified oocytes among 1 min + 30 s, 1 min + 45 s and control groups were not different (96%, 91% and 100%, respectively). After ICSI, vitrified-warmed oocytes were activated and oocytes with the second polar body were cultured for 7 days. The development of ICSI oocytes to the blastocyst stage in the vitrified 1 min + 30 s group (11%) was significantly higher than that in the vitrified 1 min + 45 s (7%) group and significantly lower than those in control group (23%). In conclusion, our study demonstrated that the 1 min + 30 s CPA treatment regimen could yield the highest blastocyst formation rates after PA and ICSI for oocytes vitrified by the microdrop method.  相似文献   

17.
《Reproductive biology》2014,14(2):122-127
The objective of this study was to evaluate the influence of epidermal growth factor (EGF) and insulin like growth factor-I (IGF-1) on the in vitro maturation of cat oocytes recovered from follicular and luteal stage ovaries. Oocytes from follicular (n = 580) and luteal (n = 209) stages were harvested and divided into four groups, which were cultured in FSH-mediated maturation medium supplemented with: (1) EGF alone (25 ng/mL); (2) IGF-1 alone (100 ng/mL); (3) EGF + IGF-1 (25 ng/mL EGF + 100 ng/mL IGF-I); or (4) no growth factor (control). The proportion of follicular stage oocytes reaching the metaphase II stage was significantly higher than that of oocytes obtained at the luteal stage in both control and study groups (p < 0.001). The percentages of oocytes reaching the metaphase II stage during the follicular period were 62.6% in control; 70.9% in EGF; 72.8% in IGF-1, and 78.1% in EGF + IGF-1 groups, whereas the respective values for gametes collected from luteal stage ovaries were 12.5%, 17.5%, 12.5%, and 16.9%. Additionally, the differences between the study and control groups were significant in the case of follicular stage oocytes. Finally, supplementing the maturation medium with EGF and/or IGF-1 significantly enhanced the meiotic maturation of oocytes recovered from follicular stage ovaries. The present study also demonstrated that the combination of EGF and IGF-I provides an additional or synergic effect on meiotic maturation of oocytes recovered from the follicular stage.  相似文献   

18.
19.
The objective was to develop a culture system that produced blastocyst stage embryos from rabbit oocytes grown in vitro. Two experiments were performed. First, various concentrations of fetal bovine serum (FBS, 0, 0.05, 0.5 and 5%) were used in the culture medium for in vitro growth (IVG) of oocytes recovered from follicles 200 to 299 μm in diameter. Intracytoplasmic sperm injection (ICSI) was performed on mature oocytes obtained after IVG for 8 days and in vitro maturation for 14 to 16 h. Rates of survival and pronuclear formation after ICSI were higher for oocytes grown in a medium with 0.05% FBS compared to oocytes grown in a medium lacking FBS (97.6 vs. 76.9%, 97.5 vs. 70%, P < 0.1). The rate of development to the blastocyst stage was also higher in the medium containing 0.05% FBS than in the medium lacking FBS (9.5 vs. 17.9%, P < 0.05). Next, using oocytes recovered from follicles 200 to 399 μm in diameter which were cultured in 0.05% FBS, oxygen consumption and the number of cells were analyzed. Blastocysts from oocytes grown in vitro with 0.05% FBS had reduced oxygen consumption and number of cells compared with those from ovulated oocytes (21.66 ± 4.54 × 1014 vs. 50.19 ± 4.61 × 1014 mol/sec, 244 ± 25 vs. 398 ± 24, P < 0.05). Rabbit oocytes grown in vitro with 0.05% FBS achieved pregnancy, but pregnancies were not maintained to term. In conclusion, the addition of 0.05% FBS to the culture medium for IVG improved developmental competence of rabbit oocytes grown in vitro.  相似文献   

20.
When embryos are cultured individually or in small groups, blastocyst yield efficiency and quality are usually reduced. The aim of this work was to investigate the effect of supplementation of the embryo culture medium (CM) with several growth factors (GFs) on embryo development and apoptosis rate when a reduced number of embryos were in vitro cultured. Two experimental studies (ES) were carried out. In ES 1, five treatments were tested to study the effect of GF on embryo development: Control (∼30 to 50 embryos cultured in 500 μl of CM); Control 5 (Five embryos cultured in 50 μl microdrops of CM), without addition of GF in either of the two control groups; epidermal GF (EGF); IGF-I; and transforming GF-α (TGF-α) (Five embryos were cultured in 50 μl microdrops of CM with 10 ng/ml EGF, 10 ng/ml IGF-I or 10 ng/ml TGF-α, respectively). In ES 2, following the results obtained in ES 1, four different treatments were tested to study their effect on embryo development and quality (number of cells per blastocyst and apoptotic rate): Control; Control 5; EGF, all three similar to ES 1; EGF + IGF-I group (five embryos cultured in 50 μl microdrops of CM with 10 ng/ml EGF and 10 ng/ml IGF-I). In both ESs, it was observed that a higher proportion of embryos cultured in larger groups achieved blastocyst stage than embryos cultured in reduced groups (22.6% v. 14.0%, 12.6% and 5.3% for Control v. Control 5, IGF-I, TGF-α groups in ES 1, and 24.9% v. 17.1% and 19.0% for Control v. Control 5 and EGF in ES 2, respectively; P < 0.05), with the exception of embryos cultured in medium supplemented with EGF (18.5%) or with EGF + IGF-I (23.5%), in ES 1 and ES 2, respectively. With regard to blastocyst quality, embryos cultured in reduced groups and supplemented with EGF, alone or combined with IGF-I, presented lower apoptosis rates than embryos cultured in reduced groups without GF supplementation (11.6% and 10.5% v. 21.9% for EGF, EGF + IGF-I and Control 5 groups, respectively; P < 0.05). The experimental group did not affect the total number of cells per blastocyst. In conclusion, this study showed that supplementation of the CM with EGF and IGF could partially avoid the deleterious effect of in vitro culture of small groups of bovine embryos, increasing blastocyst rates and decreasing apoptosis rates of these blastocysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号