首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cryobiology》2011,62(3):275-279
The present study is aimed at evaluating the effect of centrifugation for seminal plasma removal and the supplementation of fructose or glucose to the Tris-based extender on the kinematic patterns of the motility parameters of frozen–thawed semen obtained from captive collared peccaries (Tayassu tajacu). Semen samples (n = 14) were collected from 10 sexually mature male collared peccaries by electroejaculation. These samples were further evaluated for parameters such as motility, vigor, sperm viability, membrane integrity, and sperm morphology. The samples were divided into four aliquots, and only two of these aliquots were centrifuged. The semen aliquots (centrifuged and raw semen samples) were diluted in Tris-based extenders supplemented with fructose or glucose. Egg yolk (20%) and glycerol (3%) were added to all the samples which were cryopreserved in liquid nitrogen and thawed at 37 °C/1 min. The frozen–thawed semen was evaluated for the same parameters described for the fresh semen. On the other hand, the kinematic motility patterns were evaluated by a computer-aided system. After thawing, it was observed that the values for the total sperm motility were around 30% for all the samples. A negative effect of centrifugation was verified for parameters such as sperm morphology, linearity, straightness, and beat cross frequency (P < 0.05). However, no differences between fructose and glucose were verified for any semen end point (P > 0.05). In conclusion, it is not recommended to centrifuge the ejaculates from collared peccaries prior to conducting the cryopreservative procedures using a Tris-based extender supplemented with fructose or glucose.  相似文献   

2.
The present study is aimed at evaluating the effect of centrifugation for seminal plasma removal and the supplementation of fructose or glucose to the Tris-based extender on the kinematic patterns of the motility parameters of frozen–thawed semen obtained from captive collared peccaries (Tayassu tajacu). Semen samples (n = 14) were collected from 10 sexually mature male collared peccaries by electroejaculation. These samples were further evaluated for parameters such as motility, vigor, sperm viability, membrane integrity, and sperm morphology. The samples were divided into four aliquots, and only two of these aliquots were centrifuged. The semen aliquots (centrifuged and raw semen samples) were diluted in Tris-based extenders supplemented with fructose or glucose. Egg yolk (20%) and glycerol (3%) were added to all the samples which were cryopreserved in liquid nitrogen and thawed at 37 °C/1 min. The frozen–thawed semen was evaluated for the same parameters described for the fresh semen. On the other hand, the kinematic motility patterns were evaluated by a computer-aided system. After thawing, it was observed that the values for the total sperm motility were around 30% for all the samples. A negative effect of centrifugation was verified for parameters such as sperm morphology, linearity, straightness, and beat cross frequency (P < 0.05). However, no differences between fructose and glucose were verified for any semen end point (P > 0.05). In conclusion, it is not recommended to centrifuge the ejaculates from collared peccaries prior to conducting the cryopreservative procedures using a Tris-based extender supplemented with fructose or glucose.  相似文献   

3.
The present study was conducted to evaluate chilled semen conservation over time in 3 commercial and 4 laboratory prepared extenders, including a new Tris-glucose extender. The beneficial effect of adding egg yolk to these media was also analyzed. The effects of these extenders on motility and acrosome reaction were characterized objectively using a computer-aided semen analyzer and the chlortetracycline staining, respectively. No significant differences were observed when comparing the different commercial extenders without egg yolk, but addition of egg yolk improved all motility parameters significantly (preservation of 50% of motility was observed at 3.2+/-1, 2.9+/-0.5, 2.3+/-0.5, 8.5+/-0.2, 5.4+/-1.1, 5.2+/-0.4 d, for Biladyl, green extender and fresh-phos extenders without and with egg yolk, respectively). Motility parameters were best preserved in egg yolk supplemented Biladyl extender with a mean percentage of 86.3+/-10.5 motile spermatozoa after 7 d at 4 degrees C. Efficacy of egg yolk-supplemented commercial extenders on sperm motility at 4 degrees C was (in decreasing order) as follows: Biladyl > green extender > fresh-phos. However, high quality motility and the percentage of motile spermatozoa were highest with some of the laboratory prepared extenders: a 50% conservation rate of motile spermatozoa was observed following the use of supplemented egg yolk extenders. These are classified in decreasing order as follows: Tris-glucose (13+/-1 d) > Tris-fructose (9.7+/-0.6) > EDTA (4.+/-0.6 d) > Tris-bes (3.6+/-1.1 d). A low concentration of motile spermatozoa was still observed in the Tris-glucose egg yolk extender 16 d after collection, clearly demonstrating the importance of the medium and the beneficial effect of egg yolk on sperm motility of 4 degrees C chilled semen. Similar effects of extender were observed for acrosome reactions. Egg yolk clearly had a protective effect reducing acrosome reactions significantly in all media tested as follows: the highest acrosome losses were observed in the fresh-phos and EDTA extenders without egg yolk; the lowest rate was observed with Tris-glucose supplemented egg yolk extender. In conclusion, at 4 degrees C, egg yolk extender best-protected sperm motility parameters. Differences in osmolarity between the extenders in terms of substrate related to sperm metabolic activity may explain the optimal results obtained using egg yolk-supplemented Tris-glucose extender, which preserved motility and acrosome integrity in chilled dog semen. These results indicated that good quality dog spermatozoa could be preserved for up to 10 d.  相似文献   

4.
The effect of 2 thawing regimens (37 degrees C for 8 sec and 55 degrees C for 5 sec) was followed up on semen parameters related to the viability of canine spermatozoa. The ejaculates were frozen in the form of pellets on dry ice in the following cryoprotective extenders: TRIS-fructose (TF), TRIS-glucose (TG), and sucrose-lactose (SL). For the 3 extenders, significant differences were found in the percentage of motile spermatozoa and their survival rate up to 300 min in favor of the 55 degrees C vs the 37 degrees C thawing regimens. Structural changes such as swelling, breakage and absence of acrosomes were observed in the samples frozen in the 3 cryoprotective extenders. A considerably lower percentage of spermatozoa with damaged acrosomes was recorded at 55 degrees C in comparison with that found at 37 degrees C (P < 0.05 for TG, TF and SL). Enzymocytochemical analysis was made of NADH-tetrazolium reductase activity in thawed spermatozoa. Cells showing moderate and strong intensity of the cytochemical reaction were found after both regimens of thawing. The percentage of spermatozoa manifesting strong intensity of the reaction was comparatively higher after thawing at 55 degrees C (31.8 +/- 2.06) than at 37 degrees C (23.7 +/- 1.41; P < 0.01). The thawing regimens were the factors that exerted influence on the morphofunctional state of frozen canine spermatozoa, irrespective of the cryoprotective extenders used, in the present study. Thus the optimal preservation of sperm viability was achieved by thawing at 55 degrees C for 5 sec.  相似文献   

5.
The objective of this study was to examine the post-thaw effects of three cryoprotective extenders (Tris-fructose-citric acid extender, Tris-glucose-citric acid extender, and lactose extender), three linear freezing rates (-1, -6, and -20 degrees C/min), and three thawing rates (37 degrees C water bath for 120s, 60 degrees C water bath for 30s, and 70 degrees C water bath for 8s) on coyote spermatozoa. After thawing, the findings supported that cryopreservation of coyote (Canis latrans) spermatozoa frozen at a moderate freezing rate (-6 degrees C/min), in either a Tris-fructose or Tris-glucose extender, and thawed at a slow rate (37 degrees C water bath for 120s) or moderate rate (60 degrees C water bath for 30s), resulted in a more vigorous post-thaw motility (range, 57.5-44.0%) and viability (range, 64-49.6%) with the least amount of morphological and acrosomal abnormalities.  相似文献   

6.
The aim of this study was to evaluate the effects of dithioerythritol added to cryopreservation extender on the post-thawed sperm parameters, lipid peroxidation and antioxidant activities of Merino ram sperm. Semen samples from 5 mature Merino rams (1 and 2 years of age) were used in the study. Semen samples, which were diluted with a Tris-based extender containing 0.5, 1, and 2 mM dithiothreitol and no antioxidant (control), were cooled to 5 °C and frozen in 0.25 ml French straws. Frozen straws were then thawed individually at 37 °C for 20 s in a water bath for evaluation.The addition of dithioerythritol at 0.5 and 2 mM doses led to higher percentages of subjective motility (62.9 ± 4.2% and 63.6 ± 1.8%) compared to control (52.0 ± 4.9%, P < 0.05). As regards CASA motility, dithioerythritol 0.25 and 2 mM (60.2 ± 4.5% and 59.6 ± 1.2%) groups were higher from that of control (44.2 ± 8.7%, P < 0.05). For the CASA progressive motility, 0.25, 0.5 and 2 mM doses of dithioerythritol (22.0 ± 2.1%, 21.7 ± 2.5% and 24.0 ± 1.2%) had increasing effect in comparison to control (15.0 ± 2.5%). Dithioerythritol at 1 and 2 mM doses for ALH provided higher values compared to the control (P < 0.001) following the freeze–thawing process. Supplementation with dithiothreitol did not significantly affect the integrities of sperm membrane and acrosome, and mitochondrial activities. No significant differences were observed in biochemical parameters among the groups (P > 0.05). Findings of this study showed that dithioerythritol supplementation in semen extenders, was of greater benefit to sperm motility of frozen–thawed ram sperm.  相似文献   

7.
The objective was to determine the effectiveness of a powdered coconut water-based extender (ACP-116c), plus various concentrations of egg-yolk and glycerol, as an alternative for cryopreservation of collared peccary semen. Twelve ejaculates were obtained from captive adult males by electroejaculation, and evaluated for sperm motility, kinetic rating, viability, morphology, and functional membrane integrity. The ejaculates were apportioned into aliquots that were diluted in Tris plus 10% egg yolk and 3% glycerol, or in ACP-116c plus 10 or 20% egg yolk and 1.5 or 3% glycerol. Samples were frozen in liquid nitrogen and, after 1 mo, thawed at 37 °C for 1 min. After thawing, samples were evaluated as reported for fresh semen, and also for sperm membrane integrity (fluorescent probes) and kinematic parameters (computerized analysis). Results were presented as means ± SEM. Freezing and thawing decreased sperm characteristics relative to fresh semen. Overall, ACP-116c plus 20% egg yolk and 3% glycerol provided better (P < 0.05) sperm motility and kinetic rating (48 ± 6.1% and 2.8 ± 0.2, respectively) after thawing than Tris extender (30.4 ± 5.7% and 2.4 ± 0.2). However, there were no differences (P > 0.05) among treatments with regard to the other sperm characteristics. Based on computerized motion analysis, total (26.5 ± 5.9%) and progressive (8.1 ± 2.2%) motility were best preserved (P < 0.05) with the above-mentioned treatment. In conclusion, a coconut water-based extender, ACP-116c, plus 20% egg yolk and 3% glycerol, was effective for cryopreservation of semen from collared peccaries.  相似文献   

8.
The objective of this study was to verify the effect of different freezing curves, straw sizes, and thawing rates on the cryopreservation of collared peccary semen. Twelve ejaculates were obtained from captive adult males by electroejaculation, and evaluated for sperm motility, kinetic rating, viability, morphology, and functional membrane integrity. The ejaculates were diluted in a coconut water extender (ACP-116c) with egg yolk and glycerol, packaged into 0.25 mL or 0.50 mL plastic straws and cryopreserved in liquid nitrogen following a slow (−10 °C/min) or a fast (−40 °C/min) freezing curve. After one week, samples were thawed at 37 °C/1 min or 70 °C/8 s and evaluated as reported for fresh semen, and also for kinematic parameters (computerized analysis). A significant decrease in sperm motility and kinetic rating was observed after glycerol addition at 5 °C and also after thawing for all the treatments (P < 0.05). Regarding post-thaw semen variables, no differences were verified between freezing curves when the same straw size and thawing rate were taken as reference (P > 0.05). In general, values for sperm characteristics found after thawing at 37 °C were better preserved than at 70 °C (P < 0.05), both in the use of 0.25 mL or 0.50 mL straws, which were similar for semen packaging (P > 0.05). The evaluation of the kinematic parameters of sperm motility confirmed these results at values varying from 20% to 30% motile sperm for the samples thawed at 37 °C, and values fewer than 12% motile sperm for samples thawed at 70 °C (P < 0.05). In conclusion, we recommend the use of a fast freezing curve that reduces the time spent on the cryopreservation of collared peccary semen, which could be packaged both in 0.25 mL or 0.50 mL straws, but the thawing should be conducted at 37 °C/1 min.  相似文献   

9.
The purpose of this study was to evaluate seminal liquefaction and quality of ejaculated camel semen during storage in different extenders at room (23 degrees C) and refrigeration (4 degrees C) temperature. Semen was collected using an artificial vagina and diluted immediately (1:1), using a split-sample technique, in five extenders [(1) Tris-tes egg yolk, (2) Tris-lactose egg yolk, (3) citrate egg yolk, (4) sucrose egg yolk and (5) Tris-fructose egg yolk], while one fraction was kept without an extender to act as control. The semen was transported to the lab at 37 degrees C, in a portable incubator within half an hour, and thereafter liquefaction of semen was monitored every 15 min. After complete liquefaction of the semen it was evaluated for sperm concentration and morphology and then was extended to a final ratio of 1:3. Aliquots of each semen sample were then stored at refrigeration and room temperature. The average volume of an ejaculate was 4.3+/-0.4 mL and it had a very viscous consistency. The average concentration of spermatozoa was 230.4+/-10.7 x 10(6)mL(-1) and the proportion of spermatozoa with protoplasmic droplets averaged 1.02+/-0.2, while 2.7+/-0.6 and 9.7+/-2.9% had mid-piece and tail abnormalities, respectively. All extended semen samples liquefied within 1.5h at 37 degrees C, however, there was slow liquefaction in the sample without an added extender (control). Best liquefaction was observed in Tris-lactose extender followed by Tris-fructose and citrate egg yolk diluents whereas in the other two extenders there was head-to-head agglutination of the spermatozoa. There was no difference in the initial motility of the spermatozoa in extenders 1-5 after its liquefaction, however, after 24 and 48 h of storage a higher proportion of spermatozoa were motile in extenders 1, 2 and 4 (P<0.05) at both the temperatures. There was a gradual decline in viability of the spermatozoa in all extenders at both the temperatures, although, a high portion of the spermatozoa had intact acrosomes throughout the storage period. It may be concluded that dromedary semen, when added to an extender (1:1) immediately after collection, liquefies within 60-90 min at 37 degrees C. It maintains a high proportion of motile and viable spermatozoa that can survive storage up to 48 h in Tris-lactose egg yolk, Tris-tes egg yolk and sucrose egg yolk diluents. However, best liquefaction and progressive sperm motility is achieved in Tris-lactose egg yolk extender.  相似文献   

10.
This study aimed to investigate the effects of different concentrations of soybean lecithin (SL; 0.5%, 1%, and 1.5%) and egg yolk (EY) in Tris-based extenders on the semen quality parameters of post-thawed goat semen. Sixteen ejaculates were collected from eight healthy, mature Chongming White goats (3–5 years of age). Each ejaculate was divided into five equal aliquots, and then each pellet was diluted with one of the five Tris-based extenders containing 20% EY, 0.5% SL, 1% SL, 2% SL, or 3% SL. The cooled diluted semen was loaded into 0.5 mL polyvinyl French straws and cryopreserved in liquid nitrogen. Frozen semen samples were thawed at 37 °C and assessed for sperm motility, viability, plasma acrosome integrity, membrane integrity, and mitochondria integrity, and the spermatozoa were assessed for reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA). The semen extended in the 2.0% SL extract tended to have a higher sperm viability (57.44%), motility (52.14%), membrane integrity (45.31%), acrosome integrity (52.96%), and mitochondrial activity (50.21%) than the other SL-based extender concentrations (P < 0.05). The 2.0% SL treatment group was equivalent to the semen extended in 20% EY (P > 0.05). The extenders supplemented 20% EY or 2.0% SL significantly increased the SOD activity and decreased the ROS and MDA activities compared to the other groups (P < 0.05). In conclusion, the extenders supplemented with 20% EY and 2.0% SL had similar effects on spermatozoa preservation. These results indicate that a soybean lecithin-based diluent may be used as an alternative extender to egg yolk for the cryopreservation of goat semen.  相似文献   

11.
Optimal freeze-thaw processes for dog semen will yield a maximal number of insemination doses from an ejaculate. The objectives of this study were to compare the effects of two straw sizes (0.25- and 0.5-mL French), two freezing rates (straws suspended 3.5 and 8 cm above liquid nitrogen) and two thawing rates (in water at 37 and 70 degrees C) upon post-thaw quality of dog semen, and to determine the best treatment combination. Quality was expressed in terms of the percentage progressively motile sperm 5 and 60 min after thawing and the percentage of abnormal acrosomes 5 min after thawing. One ejaculate from each of eight dogs was frozen. Two straws from each ejaculate were exposed to each of the eight treatment combinations. Data were analyzed by means of a repeated measures factorial analysis of variance and means compared using Bonferroni's test. Dog affected each response variable (P < 0.01). Neither straw size, nor freezing rate, nor thawing rate affected motility 5 min after thawing (P > 0.05). Half-milliliter straws resulted in 5.7% more progressively motile sperm 60 min after thawing and 6.5% fewer abnormal acrosomes than 0.25-mL straws (P < 0.05, n = 64). The percentage progressively motile sperm 60 min after thawing tended to be higher for semen thawed at 70 degrees C compared to 37 degrees C (P < 0.06, n = 64). Semen thawed in water at 70 degrees C had 6.6% fewer abnormal acrosomes than semen thawed in water at 37 degrees C (P < 0.05, n = 64). Freezing rate interacted with thawing rate (P < 0.05) in their effects upon acrosomal morphology and freezing 8 cm above liquid nitrogen and thawing in water at 70 degrees C was best. Dog semen should be frozen in 0.5-mL straws, 8 cm above liquid nitrogen and thawed in water at 70 degrees C.  相似文献   

12.
The objective was to compare the use of powdered coconut water (ACP-109c; ACP Biotecnologia, Fortaleza, CE, Brazil) and Tris extenders for recovery and cryopreservation of epididymal sperm from agouti. The caudae epididymus and proximal ductus deferens from 10 sexually mature agoutis were subjected to retrograde washing using ACP-109c (ACP Biotecnologia) or Tris. Epididymal sperm were evaluated for motility, vigor, sperm viability, membrane integrity, and morphology. Samples were centrifuged, and extended in the same diluents plus egg yolk (20%) and glycerol (6%), frozen in liquid nitrogen, and subsequently thawed at 37°C for 1 min, followed by re-evaluation of sperm characteristics. The two extenders were similarly efficient for epididymal recovery, with regard to the number and quality of sperm recovered. However, for both extenders, sperm quality decreased (P < 0.05) after centrifugation and dilution. After sperm cryopreservation and thawing, there were (mean ± SEM) 26.5 ± 2.6% motile sperm with 2.6 ± 0.2 vigor in the ACP-109c (ACP Biotecnologia) group, which was significantly better than 9.7 ± 2.6% motile sperm with 1.2 ± 0.3 vigor in Tris. In conclusion, agouti epididymal sperm were successfully recovered using either ACP-109c (ACP Biotecnologia) or Tris extenders; however, ACP-109c (ACP Biotecnologia) was a significantly better extender for processing and cryopreserving these sperm.  相似文献   

13.
The cryopreservation of fish sperm provides a tool by which reproduction is optimized and thereby larval production is increased. The aims of this study were to evaluate the effects of cryosolutions, motility-activation media, straw volumes and thawing temperatures on the post-thaw motility of curimba semen. Furthermore, semen cryopreserved in a simple and inexpensive cryosolution and that yielded excellent post-thaw motility was tested for fertility. Semen was diluted in each of the eight cryosolutions in a factorial of two cryoprotectants (DMSO and methylglycol) x four extenders (0.9% NaCl, 5% glucose, BTS and M III). Diluted semen was frozen in 0.5-mL straws in a nitrogen vapor vessel. Sperm motility was evaluated after thawing (60 degrees C water bath for 8s) and activation with a total of four different activation media (distilled water, 0.15% NaCl, 0.29% NaCl or 1% NaHCO(3)). To evaluate straw volume and thawing temperature, semen was diluted in 5% glucose and methylglycol and frozen in 0.5- and 4.0-mL straws. Half of the 0.5-mL straws were thawed in a water bath at 60 degrees C for 8s and the other half at 30 degrees C for 16s. The 4.0-mL straws were thawed at 60 degrees C for 24s only. In the last experiment, semen cryopreserved in 5% glucose and methylglycol, 0.5-mL straws, and thawed at 60 degrees C for 8s was tested for fertility. The results of these comparisons are presented and show that curimba semen can be successfully cryopreserved in a simple glucose solution combined with methylglycol as cryoprotectant, in 0.5-mL straws, yielding motility rates between 86% and 95% and fertilization rates between 47% and 83%.  相似文献   

14.
The Sperm Class Analyzer was used to investigate the effect of freeze-thawing procedure on Florida buck sperm head morphometry, and to relate possible changes in sperm head dimensions to cryopreservation success. Semen samples (n=76) were frozen with tris and milk-based extenders and thawed. Sperm quality samples (motility, morphology, acrosome), and sperm head morphometric values (length, width, area, perimeter, ellipticity) were compared between fresh and frozen-thawed samples. Sperm freezability was judged according to the sperm quality parameters assessed. Fertility data was obtained after artificial insemination with cryopreserved semen. Cryopreservation success was different between freezing methods. Sperm head dimensions were significantly (p<0.05) smaller in cryopreserved tris and milk spermatozoa respectively than in those of the fresh samples. The sperm head morphometric parameters that had changed after cryopreservation were lower in suitable semen samples after thawing and with successful pregnancies after artificial insemination. These data suggest that changes in sperm head morphometry might reflect spermatozoa injury occurred during cryopreservation.  相似文献   

15.
The aim of the present study was to evaluate the effects of supplementation of semen extender with various non-enzymatic antioxidants on the quality of cooled or cryopreserved Arabian stallion spermatozoa. Semen collected from four pure Arabian stallions was centrifuged at 600g for 15 min. Spermatozoa were then diluted in INRA-82 extender supplemented with bovine serum albumin (BSA; 0, 10, 15 and 20 mg/mL) or trehalose (0, 75, 100 and 150 mM) or zinc sulphate (0, 100, 150 and 200 μM). The diluted semen was then either cooled at 5 °C or cryopreserved in 0.5–ml plastic straws. After cooling or thawing, sperm motility, viability, sperm abnormalities, viability index, and plasma membrane integrity were evaluated. The results showed that supplementation of semen extender with 150 mM trehalose or with 200 μM zinc sulphate significantly (P < 0.05) improved motility, viability, sperm membrane integrity and acrosome status in Arabian stallion spermatozoa after cooling or after freezing and thawing compared with controls (non-supplemented media) or with those supplemented with other concentrations of trehalose or zinc sulphate. Supplementation of semen extender with BSA did not improve sperm motility or cryosurvival of Arabian stallion spermatozoa after cooling or after freezing and thawing. In conclusion, supplementation of semen extender with non-enzymatic antioxidants (trehalose or zinc sulphate) improved the quality of chilled and frozen/thawed Arabian stallion spermatozoa. The most beneficial effects occur when semen diluent was supplemented with 150 mM trehalose or 200 μM zinc sulphate.  相似文献   

16.
The objective was to evaluate the suitability of an animal protein-free semen extender for cryopreservation of epididymal sperm from the two subspecies of North American bison: plains (Bison bison bison) and wood (Bison bison athabascae) bison. Both cauda epididymides (from six plains and five wood bison) were minced and incubated in Sp-TALPH buffer for approximately 2 h at 37 °C to release actively motile sperm. Sperm suspensions were filtered, centrifuged and the sperm pellet from each bull was divided into two fractions and diluted either in egg yolk containing extender, Triladyl, or in an animal protein-free extender, Andromed, and equilibrated for 20 min at 37 °C. Thereafter, samples were chilled and cryopreserved. Frozen-thawed sperm were evaluated for motility (computer assisted sperm analysis), viability (SYBR 14 and propidium iodide), acrosome integrity (FITC conjugated PSA), cryocapacitation (tyrosine phosphorylation of sperm proteins as a biomarker), and fertilizing ability (in a heterologous IVF system). There was no significant difference for progressive motility, viability, and acrosome integrity between the two extenders for plains bison (36.8 ± 9.0, 60.5 ± 17.4, and 77.3 ± 4.6%; overall mean ± SD) as well as for wood bison (11.7 ± 8.1, 13.7 ± 5.6, and 73.4 ± 4.2%). Levels of tyrosine phosphorylation did not differ for sperm preserved in the two extenders for both subspecies, although an inter-bull variability in the response to tyrosine phosphorylation between extenders was suggested for plains bison. Fertilization percent did not differ significantly between extenders for plains bison (84.16 ± 9.92%, overall mean ± SD) and for wood bison (59.53 ± 19.99%). In conclusion, in the absence of significant difference between extenders in post-thaw sperm characteristics, we inferred that Andromed (animal protein-free) was suitable for cryopreservation of epididymal sperm from North American bison.  相似文献   

17.
18.
This study was designed to compare commercially available extender Bioxcell® with tris-citric egg yolk extender for post thaw quality and in vivo fertility of buffalo semen. For comparison of post thaw semen quality: semen was collected from five adult Nili-Ravi buffalo (Bubalus bubalis) bulls of similar age group with artificial vagina (at 42 °C) for three weeks (replicates). Qualifying ejaculates having motility >60% from each buffalo bull were divided in two aliquots and diluted (at 37 °C having 50 × 106 spermatozoa/ml) in tris-citric egg yolk or Bioxcell® extender. Diluted semen was cooled to 4 °C in 2 hours, equilibrated for 4 hours and filled in 0.5 ml straws. Semen straws were kept over liquid nitrogen vapors (5 cm) for 10 minutes. Straws were then plunged and stored in liquid nitrogen (−196 °C). After 24 hours of storage, semen straws were thawed at 37 °C for 30 seconds to assess sperm motility, viability, plasma membrane integrity, normal apical ridge, and abnormalities (head, mid piece, and tail). For comparison of in vivo fertility: semen from two buffalo bulls of known fertility was cryopreserved in tris-citric egg yolk and Bioxcell® as described earlier, and used for inseminations under field conditions. Post-thaw percentage of sperm motility (45.3 ± 1.1, 45.0 ± 1.4), viability (66.2 ± 1.1, 64.4 ± 1.3) plasma membrane integrity (60.4 ± 1.2, 59.2 ± 1.4) and normal apical ridge (82.9 ± 0.5, 80.7 ± 0.5) did not differ (P > 0.05) in tris-citric egg yolk and Bioxcell® extender, respectively. Similarly, sperm abnormalities of head (1.20 ± 0.1, 1.20 ± 0.1), mid piece (0.67 ± 0.1, 0.87 ± 0.1) and tail (11.7 ± 0.2, 11.6 ± 0.3) remained similar (P > 0.05) in tris-citric egg yolk and Bioxcell® extender, respectively. In vivo fertility rates of buffalo semen cryopreserved in tris-citric egg yolk and Bioxcell® also remained similar (44% vs. 47%). It is concluded that commercially available Bioxcell® may be used for the cryopreservation of buffalo semen with an equal efficiency to tris-citric egg yolk extender.  相似文献   

19.
The present study was undertaken in the Blue rock pigeon (Columba livia) to evaluate the annual semen characteristics, to identify a suitable extender for semen short-term storage, to determine a protocol for cryopreservation of semen and finally to check whether intracloacal insemination would lead to the birth of a chick. Semen characteristics such as semen volume, sperm concentration, sperm motility, and percentage of normal spermatozoa were maximum during the monsoon season. TALP was observed to be the most suitable semen extender and the sperm survived best at 37 degrees C at a dilution of 1:100 in TALP. Further, cryopreservation studies on pigeon semen indicated that 8% DMSO with or without egg yolk (20%) proved to be a better cryoprotectant compared to glycerol and polyethylene glycol. In addition, the slow freezing protocol was better than the fast-freezing protocol and about 40% of the cryopreserved spermatozoa were motile following thawing. Computer-aided semen analysis indicated that pigeon spermatozoa were extremely active immediately after dilution in TALP and exhibited linear trajectories persisting up to 9h. But, with time there was a time-dependent decrease in the velocity parameters (VAP, VSL, and VCL). Cryopreserved spermatozoa following thawing also exhibited linear trajectories but had reduced velocity as evident from the significant decrease in VAP, VSL, and VCL. Further, artificial inseminations using fresh semen resulted in 45% fertilization and birth of a live chick.  相似文献   

20.
Semen extender has a vital role in preservation of sperm cells properties in terms of sperm viability, motility, acrosome integrity, and mitochondrial membrane potential. The objective of the present study was to evaluate a new extender, known as Thai native chicken (TNC) extender compared to BHSV-based and modified Sasaki extenders for freezing chicken semen. Semen from Thai native roosters was collected, pooled, and randomly divided into three groups. Semen was frozen with a simple freezing method using nitrogen vapor and dimethylformamide. In the first experiment, post-thaw motion parameters, viability, acrosome integrity, mitochondrial function, and lipid peroxidation levels were analyzed using computer-assisted sperm analysis, propidium iodide, fluorescein isothiocyanate-conjugate peanut agglutinin, JC-1, and the thiobarbituric acid reaction. Results showed that the type of extender had no effect on the percentage of total motile and curvilinear velocity. The percentage of progressive motile, straight-line velocity, and average path velocity of post-thawed semen were significantly lower in TNC compared to the modified Sasaki extender. However, the percentages of post-thawed acrosome integrity and active mitochondria were significantly higher in TNC extender (P < 0.05). For the second experiment, semen was thawed by using each of extenders thereafter, was inseminated to 48-layer breeder hens to determine the fertility rate. Among the three extenders used, the highest fertility rate was found in TNC extender. In conclusion, TNC extender can be recommended as an appropriate and useful cryopreservation media for native chicken semen since it maintains the quality of rooster semen and fertility after freezing and thawing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号