首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of amyloid plaques is the hallmark of Alzheimer’s disease. Our early studies show that lead (Pb) exposure in PDAPP transgenic mice increases β-amyloid (Aβ) levels in the cerebrospinal fluid (CSF) and hippocampus, leading to the formation of amyloid plaques in mouse brain. Aβ in the CSF is regulated by the blood-CSF barrier (BCB) in the choroid plexus. However, the questions as to whether and how Pb exposure affected the influx and efflux of Aβ in BCB remained unknown. This study was conducted to investigate whether Pb exposure altered the Aβ efflux in the choroid plexus from the CSF to blood, and how Pb may affect the expression and subcellular translocation of two major Aβ transporters, i.e., the receptor for advanced glycation end-products (RAGE) and the low density lipoprotein receptor protein-1 (LRP1) in the choroid plexus. Sprague-Dawley rats received daily oral gavage at doses of 0, 14 (low-dose), and 27 (high-dose) mg Pb/kg as Pb acetate, 5 d/wk, for 4 or 8 wks. At the end of Pb exposure, a solution containing Aβ40 (2.5 μg/mL) was infused to rat brain via a cannulated internal carotid artery. Subchronic Pb exposure at both dose levels significantly increased Aβ levels in the CSF and choroid plexus (p < 0.05) by ELISA. Confocal data showed that 4-wk Pb exposures prompted subcellular translocation of RAGE from the choroidal cytoplasm toward apical microvilli. Furthermore, it increased the RAGE expression in the choroid plexus by 34.1 % and 25.1 % over the controls (p < 0.05) in the low- and high- dose groups, respectfully. Subchronic Pb exposure did not significantly affect the expression of LRP1; yet the high-dose group showed LRP1 concentrated along the basal lamina. The data from the ventriculo-cisternal perfusion revealed a significantly decreased efflux of Aβ40 from the CSF to blood via the blood-CSF barrier. Incubation of freshly dissected plexus tissues with Pb in artificial CSF supported a Pb effect on increased RAGE expression. Taken together, these data suggest that Pb accumulation in the choroid plexus after subchronic exposure reduces the clearance of Aβ from the CSF to blood by the choroid plexus, which, in turn, leads to an increase of Aβ in the CSF. Interaction of Pb with RAGE and LRP1 in choroidal epithelial cells may contribute to the altered Aβ transport by the blood-CSF barrier in brain ventricles.  相似文献   

2.
Melatonin content of the cerebrospinal fluid (CSF), serum and choroid plexus was measured in untreated and melatonin-injected cats using the Xenopus laevis melanophore-contracting bioassay. CSF and choroid plexus had a considerable melanophore contracting activity in the untreated animals. Intravenously injected melatonin considerably enhanced the melanophore-contracting activity of the CSF and choroid plexus. Two hours later, melatonin was still present at high concentrations in these tissues, whereas it had considerably diminished in the blood. It is concluded that the choroid plexus concentrates and secretes melatonin into the CSF in a bioactive form.  相似文献   

3.
Parkinson’s disease (PD) without (non-demented, PDND) and with dementia (PDD), and dementia with Lewy bodies (DLB) are subsumed under the umbrella term Lewy body disorders (LBD). The main component of the underlying pathologic substrate, i.e. Lewy bodies and Lewy neurites, is misfolded alpha-synuclein (Asyn), and - in particular in demented LBD patients - co-occurring misfolded amyloid-beta (Abeta). Lowered blood and cerebrospinal fluid (CSF) levels of transthyretin (TTR) - a clearance protein mainly produced in the liver and, autonomously, in the choroid plexus - are associated with Abeta accumulation in Alzheimer’s disease. In addition, a recent study suggests that TTR is involved in Asyn clearance. We measured TTR protein levels in serum and cerebrospinal fluid of 131 LBD patients (77 PDND, 26 PDD, and 28 DLB) and 72 controls, and compared TTR levels with demographic and clinical data as well as neurodegenerative markers in the CSF. Five single nucleotide polymorphisms of the TTR gene which are considered to influence the ability of the protein to carry its ligands were also analyzed. CSF TTR levels were significantly higher in LBD patients compared to controls. Post-hoc analysis demonstrated that this effect was driven by PDND patients. In addition, CSF TTR levels correlated negatively with CSF Abeta1–42, total tau and phospho-tau levels. Serum TTR levels did not significantly differ among the studied groups. There were no relevant associations between TTR levels and genetic, demographic and clinical data, respectively. These results suggest an involvement of the clearance protein TTR in LBD pathophysiology, and should motivate to elucidate TTR-related mechanisms in LBD in more detail.  相似文献   

4.
Two single nucleotide polymorphisms rs12979860C/T and rs8099917T/G around interleukin-28B (IL28B) locus have been extensively investigated in their association with hepatitis C virus (HCV) spontaneous clearance. However, with the variable and even inconsistent results, it is necessary to conduct a meta-analysis. A literature search was conducted to seek articles about genetic variation of IL28B and spontaneous clearance of HCV. Odds ratio with 95% confidential interval were calculated to estimate their relationship. Furthermore, meta-regression analysis was performed to search for potential affective factors. A total of 8 studies including 2460 patients with chronic HCV infection and 1052 individuals with spontaneous HCV clearance met inclusion criteria, in which seven studies describing rs12979860 and three studies describing rs8099917. Analysis performed in Caucasian populations indicated that rs12979860CC and rs8099917TT contributed to HCV spontaneous clearance in both dominant model (CC vs. CT + TT, P < 1 × 10− 4; TT vs. TG + GG, P < 10− 4, respectively) and co-dominant model (CC vs. CT, P < 1 × 10− 4, CC vs. TT, P < 1 × 10− 4; TT vs. TG, P < 10− 4, TT vs. GG, P = 0.012, respectively). Meta-regression analysis suggested that male proportion (P = 1 × 10− 5) and mean age (P = 1 × 10− 3) might weaken the effect of rs12979860CC, but HCV genotype 1/4 (P = 4 × 10− 4) might contribute to it. IL28B rs12979860CC and rs8099917TT genotypes contribute to spontaneous HCV clearance in Caucasians.  相似文献   

5.
Transthyretin (TTR) is a plasma and cerebrospinal fluid (CSF)-circulating homotetrameric protein. More than 100 point mutations have been identified in the TTR gene and several are related with amyloid diseases. Here we focused our attention in the TTR L12P variant associated with severe peripheral neuropathy and leptomeningeal amyloidosis. By using different cell lines derived from tissues specialized on TTR synthesis, such as the hepatocyte and the choroid plexus expressing WT, V30M, or L12P TTR variants we analyzed secretion, intracellular aggregation and degradation patterns. Also, we used liver-specific AAV gene transfer to assess expression of the L12P variant in vivo. We found the following: (i) decreased secretion with intracellular aggregation of TTR L12P in hepatoma cells relative to WT and V30M variant; this differential property of TTR L12P variant was also observed in mice injected with L12P AAV vector; (ii) differential N-glycosylation pattern of L12P variant in hepatoma cell lysates, conditioned media and mouse sera, which might represent an escape mechanism from ERAD degradation; (iii) intracellular L12P TTR aggregates mainly localized to lysosomes in cultured cells and liver; and (iv) none of the above findings were present in choroid plexus derived cells, suggesting particular secretion/quality control mechanisms that might contribute to leptomeningeal amyloidosis associated with the L12P variant. These observations open new avenues for the treatment of TTR associated leptomeningeal amyloidosis.  相似文献   

6.
Riboflavin Homeostasis in the Central Nervous System   总被引:4,自引:2,他引:2  
Abstract: The mechanisms by which riboflavin, which is not synthesized in mammals, enters and leaves brain, CSF, and choroid plexus were investigated by injecting [14C]riboflavin intravenously or intraventricularly. Tracer amounts of [14C]riboflavin with or without FMN were infused intravenously at a constant rate into normal, starved, or probenecid-pretreated rabbits. At 3 h, [14C]riboflavin readily entered choroid plexus and brain, and, to a much lesser extent, CSF. Over 85% of the [14C]riboflavin in brain and choroid plexus was present as [14C]FMN and [14C]FAD. The addition of 0.2 mmol/kg FMN to the infusate markedly depressed the relative entry of [14C]riboflavin into brain, choroid plexus, and, less so, CSF, whereas starvation increased the relative entry of [14C]riboflavin into brain and choroid plexus. After intraventricular injection (2 h), most of the [14C]riboflavin was extremely rapidly cleared from CSF into blood. Some of the [14C]riboflavin entered brain, where over 85% of the 14C was present as [14C]FMN plus [14C]FAD. The addition of 1.23μmol FAD (which was rapidly hydrolyzed to riboflavin) to the injectate decreased the clearance of [14C]riboflavin from CSF and the phosphorylation of [14C]riboflavin in brain. Probenecid in the injectate also decreased the clearance of [14C]riboflavin from CSF. These results show that the control of entry and exit of riboflavin is the mechanism, at least in part, by which total riboflavin levels in brain cells and CSF are regulated. Penetration of riboflavin through the blood-brain barrier, saturable efflux of riboflavin from CSF, and saturable entry of riboflavin into brain cells are three distinct parts of the homeostatic system for total riboflavin in the central nervous system.  相似文献   

7.
In vitro the transport into and release of [3H]thymidine, [3H]deoxyuridine, and [3H]nitrobenzylthioinosine (NBTI) from the isolated choroid plexus, the anatomical locus of the blood-cerebrospinal fluid barrier, were studied separately. Using the ability of NBTI to inhibit nucleoside efflux from the choroid plexus, the transport of [3H]thymidine and [3H]deoxyuridine into the choroid plexus at 37 °C was measured. Like thymidine, deoxyuridine was transported into the choroid plexus against a concentration gradient by a saturable process that depended on intracellular energy production but not intracellular binding or metabolism. The Michaelis-Menten constants (KT) for the active transport of thymidine and deoxyuridine into the choroid plexus were 13.6 and 7.2 μM, respectively. Deoxyuridine and adenosine were competitive inhibitors of thymidine transport into the choroid plexus with inhibitor constants (KI) of 6.8 and 14.5 μM, respectively. [3H]NBTI was also transported into the choroid plexus at 37 °C; unlike [3H]thymidine and [3H]deoxyuridine, the release of [3H]NBTI was not inhibited by NBTI itself. These studies provide evidence that the choroid plexus contains an active nucleoside transport system of low specificity for nucleosides, and a separate, saturable efflux system for nucleosides that is very sensitive to inhibition by NBTI. In vivo these systems transport nucleosides from blood into cerebrospinal fluid.  相似文献   

8.
Senile systemic amyloidosis and familial amyloid polyneuropathy are caused by oxidative deposition of conformationally altered transthyretin (TTR). We identified oxidative modification of the 10th cysteine of TTR through S-sulfonation in vitro. Based on mass spectrometric analysis, we determined the spectrophotometric, western blotting, and fluororescent microscopic properties of TTR incubated with and without cysteine-S-sulfonate in acidic (pH 4) and alkaline (pH 8) conditions at 37°. The absorption of the aggregated TTR molecules increased more with incubation time and the concentration of cysteine-S-sulfonate at pH 4 than at pH 8. The Congo red binding to the S-sulfonated TTR at pH 4 was saturated with an apparent Bmax of 2.01 mol per mole of the S-sulfonated TTR and apparent KD of 7.75 × 106 M. On the other hand, the Bmax of cysteinyl TTR was 1.38, and its KD was 3.52 × 106 M while the Bmax of reduced TTR was 0.86, and its KD was 2.86 × 106 M. Moreover, we detected positive amyloid fibril staining using Thioflavin T and Congo red with the S-sulfonated TTR but not with untreated or reduced TTR by microscopic fluororescent analysis. After modification of TTR in vitro, oligomers resisted reduction and denaturation was irreversibly induced, and which contributed differences in the Western blotting patterns obtained with four anti-TTR antibodies. In conclusion, this study showed that the formation of S-sulfonation of TTR through oxidative modifications of the thiol residue on the 10th cysteine of TTR is an important trigger step in the formation of transthyretin-related amyloid fibril.  相似文献   

9.
VITAMIN B6 TRANSPORT IN THE CENTRAL NERVOUS SYSTEM: IN VITRO STUDIES   总被引:10,自引:10,他引:0  
Abstract— The transport into and release of tritium labeled vitamin B6 ([3H]B6) from rabbit brain slices and isolated choroid plexuses were studied. In vitro, both brain slices and choroid plexus concentrated [3H]B6 by an energy dependent uptake system when [3H]pyridoxine (PIN) was added to the incubation medium. Most of the [3H] within the tissues was phosphorylated [3H]B6. In each tissue, the nonphosphorylated vitamers inhibited the uptake of [3H]PIN from the medium significantly more than the phosphorylated vitamers. The concentrations of the nonphosphorylated B6 vitamers necessary to inhibit brain and choroid plexus uptake of [3H]PIN from the medium by 50% were approx 0.4 μm and 5–10μm respectively after a 30 min incubation. Both brain slices and choroid plexus readily released (46 and 56% respectively in 30 min) previously accumulated [3H]B6 into artificial CSF. However, brain slices released only nonphosphorylated [3H]B6, whereas the choroid plexus released predominantly phosphorylated [3H]B6. Addition of unlabeled PIN to the release media significantly increased the percentage of [3H]B6 released by both brain slices and choroid plexus. The results of these in vitro studies provide evidence that: (1) both brain slices and chloroid plexus possess specific uptake and release mechanisms for B6, and (2) these mechanisms tend to regulate intracellular B6 levels. These studies also suggest that the choroid plexus serves as a locus for the transfer of B6 from blood to CSF and is the source of most of the phosphorylated B6 in CSF.  相似文献   

10.
After cryopreservation, embryos become sensitive to the oxidative stress, resulting in lipid peroxidation, membrane injury, and structural destruction. The present study aimed to assess the effect of increasing concentration of melatonin during postwarming culture on embryo's ability to restore its functions after cryopreservation. In vitro–produced blastocysts were vitrified, warmed, and cultured in vitro in TCM 199 with 5 different supplementations: control (CTR): 10% fetal calf serum; bovine serum albumin (BSA): 0.04% (wt/vol) BSA; and MEL−3, MEL−6, MEL−9: BSA plus melatonin 10−3, 10−6, and 10−9 M. The medium with the highest melatonin concentration had the highest trolox equivalent antioxidant capacity, whose values were comparable with those determined in plasma sampled from adult ewes (8.7 ± 2.4 mM). The other media had lower trolox equivalent antioxidant capacity values (P < 0.01), below the range of the plasma. At the same time, embryos cultured with the highest melatonin concentration reported a lower in vitro viability, as evaluated by lower re-expansion and hatching rates, and lower total cell number compared with the other groups (P < 0.05). Their metabolic status was also affected, as evidenced by higher oxidative and apoptotic index and lower ATP concentration. The beneficial effects of melatonin on embryo development during postwarming culture were observed only at low concentration (10−9 M). These results suggest that melatonin at high concentration may exert some degree of toxic activity on pre-implantation embryos. Thus, the dose at which the embryos are exposed is pivotal to obtain the desiderate effect.  相似文献   

11.
12.
Epithelial V-like antigen (EVA), a CD3-binding immunoglobulin-like protein, regulates embryonic thymic development. Here we demonstrate that EVA is expressed in choroid plexus from mature immune competent and lymphocyte-deficient (RAG−/−) mice. Choroid plexus epithelial cells from RAG−/− mice demonstrated reduced junctional integrity and enhanced permeability that was associated with decreased expression of E-cadherin and EVA mRNA as compared to wild-type mice. Following iv infusion of an anti-CD3 antibody (145-2C11) that also binds EVA, expression of E-cadherin and EVA mRNA approached levels seen in wild-type mice. Immuno-fluorescent staining for cadherin also revealed decreased expression in untreated RAG−/− mice that could be increased by 145-2C11 treatment. Expression of mouse EVA in HEK-293 cells followed by challenge with 145-2C11 resulted in increased cytosolic calcium that was not seen in control cells. These results suggest that EVA expressed in choroid plexus cells may regulate the permeability of the blood-CSF barrier.  相似文献   

13.
Deoxycytidine Transport and Metabolism in the Central Nervous System   总被引:4,自引:2,他引:2  
Abstract: The mechanisms by which deoxycytidine enters and leaves brain, choroid plexus, and CSF were investigated by injecting [3H]deoxycytidine intraarterially, intravenously, and intraventricularly. After intracarotid injection of deoxycytidine (1.0 μM) into rats, deoxycytidine did not pass through the blood-brain barrier at a faster rate than sucrose. [3H]Deoxycytidine, either alone or together with unlabeled deoxycytidine, was infused at a constant rate into conscious adult rabbits. At 130 min, [3H]deoxycytidine readily entered CSF, choroid plexus, and brain. In brain, approx. 60% of the nonvolatile radioactivity was attributable to [3H]deoxycytidine phosphates. The addition of 0.22 mmol/kg unlabeled deoxycytidine to the infusion syringe decreased the phosphorylation of [3H]deoxycytidine in brain by approx. 50%; the addition of 2.2 mmol/kg of unlabeled deoxycytidine to the infusion syringe decreased the relative entry of [3H]deoxycytidine into CSF and brain by approx. 50 and 75%, respectively. Two hours after the intraventricular injection of [3H]deoxycytidine, [3H]deoxycytidine was rapidly cleared from CSF, in part, to brain, where approx. 65% of the [3H]deoxycytidine was converted to [3H]deoxycytidine phosphates. The intraventricular injection of unlabeled deoxycytidine with the [3H]deoxycytidine decreased the phosphorylation of [3H]deoxycytidine in the brain significantly and also decreased the clearance of [3H]deoxycytidine from the CSF. These results were interpreted as showing that the entry of deoxycytidine from blood into CSF occurs by a saturable transport system within the choroid plexus. Once within the CSF, the deoxycytidine can enter brain, undergo phosphorylation to deoxycytidine phosphates, and subsequently be incorporated into DNA.  相似文献   

14.
The accumulation of sulfate (SO4?) and thiosulfate (S2O3?) in the choroid plexus, brain, and cerebrospinal fluid (CSF) of the rat was measured at various plasma levels of these anions. Increasing the plasma SO4 ? or S2O3 ? concentration levels 40- and 580-fold, respectively, resulted in a linear increase in CSF, brain and choroid plexus concentration of these ions. The relationship between the concentration of these ions in CSF and choroid plexus was also approximately linear over a wide CSF concentration range. In addition, S2O3? did not appear to influence the relation between the concentration of SO4? in choroid plexus and CSF. The results seem to indicate that there is no saturation of the mechanism responsible for maintaining the low SO4? or S2O3? concentration in CSF nor does there appear to be competition between these anions for clearance from the CSF. These findings are in conflict with data supporting the active transport of SO4? and S2O3? from the CSF across the CSF-blood barrier (choroid plexus).  相似文献   

15.
To maintain the precise internal milieu of the mammalian central nervous system, well-controlled transfer of molecules from periphery into brain is required. Recently the soluble and cell-surface albumin-binding glycoprotein SPARC (secreted protein acidic and rich in cysteine) has been implicated in albumin transport into developing brain, however the exact mechanism remains unknown. We postulate that SPARC is a docking site for albumin, mediating its uptake and transfer by choroid plexus epithelial cells from blood into cerebrospinal fluid (CSF). We used in vivo physiological measurements of transfer of endogenous (mouse) and exogenous (human) albumins, in situ Proximity Ligation Assay (in situ PLA), and qRT-PCR experiments to examine the cellular mechanism mediating protein transfer across the blood–CSF interface. We report that at all developmental stages mouse albumin and SPARC gave positive signals with in situ PLAs in plasma, CSF and within individual plexus cells suggesting a possible molecular interaction. In contrast, in situ PLA experiments in brain sections from mice injected with human albumin showed positive signals for human albumin in the vascular compartment that were only rarely identifiable within choroid plexus cells and only at older ages. Concentrations of both endogenous mouse albumin and exogenous (intraperitoneally injected) human albumin were estimated in plasma and CSF and expressed as CSF/plasma concentration ratios. Human albumin was not transferred through the mouse blood–CSF barrier to the same extent as endogenous mouse albumin, confirming results from in situ PLA. During postnatal development Sparc gene expression was higher in early postnatal ages than in the adult and changed in response to altered levels of albumin in blood plasma in a differential and developmentally regulated manner. Here we propose a possible cellular route and mechanism by which albumin is transferred from blood into CSF across a sub-population of specialised choroid plexus epithelial cells.  相似文献   

16.
Summary The experiments described herein use an in vitro preparation of choroid plexus to demonstrate that it is a vasopressin-responsive organ by morphologic criteria. Choroid plexus from rats was incubated for one hour in graded concentrations of arginine vasopressin (AVP). Within physiologic range of molar concentration, incubation in vasopressin induced a decrease in basal and lateral spaces in choroid plexus epithelial cells as well as an increase in number of dark cells. The number of cells with basal spaces decreased significantly from 82.7±9.2 in control tissue to 19±18 in tissue incubated in 10-12 M AVP; similarly, the number with lateral cellular spaces decreased from 20±8.8 to 7.6±2.2 cells in 10-10 M AVP. Dark cells increased in number from 3.8±2.6 in control conditions to 49±4 with 10-9 M vasopressin. These data suggest important effects of arginine vasopressin in cerebrospinal fluid (CSF) on choroid plexus, compatible with enhanced fluid transport across choroid epithelial cells.  相似文献   

17.
《Regulatory peptides》1988,20(1):33-44
The cellular uptake at the blood-tissue interface of the blood-cerebrospinal fluid (CSF) barrier to tyrosyl-3,5-[3H]enkephalin-[5-l-leucine] (abbreviated to Leu-enkephalin) and of its synthetic analogue d-alanine2-tyrosyl-3,5-[3H]enkephalin-[5-d-leucine] (abbreviated to d-Ala2-d-Leu5-enkephalin) was studied in the isolated perfused choroid plexuses from the lateral ventricles of the sheep, using the rapid (<30 s), single circulation, paired-tracer dilution technique, in which d-[14C]-mannitol serves as an extracellular marker. Cellular uptake of peptides was estimated by directly comparing venous dilution profiles of [3H] and [14C] radioactivities in the absence and presence of unlabelled peptide, the N-terminal amino acid (l-tyrosine), the typical l-transport system substrate, 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH) and the inhibitor of aminopeptidase activity, bacitracin. The cellular uptake of both enkephalins was strongly (65–76%) but not completely inhibited by the addition of 5 mM unlabelled peptide to the bolus; the self-inhibition was significantly higher for d-Ala2-d-Leu5-enkephalin than for Leu-enkephalin. The addition to the bolus of l-tyrosine (5 mM), BCH (10 mM) or bacitracin (2 mM) reduced the 3H-radioactivity uptake by the choroid plexus of both enkephalins by 20–40%, the degree of inhibition being greater for [3H]-Leu-enkephalin than for its analogue.It is concluded that during single passage of enkephalins through the choroid plexus circulation, unidirectional uptake at the blood-tissue interface of the blood-CSF barrier consists of two components; a saturable component, which represents uptake of the intact peptide by the choroid epithelium, and a non-saturable component, which reflects enzymatic degradation of peptide in the blood and/or at the barrier, with a liberation of the N-terminal tyrosyl residue. Higher penetration of the blood-CSF barrier by d-Ala2-d-Leu5-enkephalin can be attributed to its greater resistance to hydrolysis.  相似文献   

18.
Summary In situ hybridization with 35S-labeled single stranded RNA probes was used on sections from formaldehyde-fixed and paraffin-embedded tissue specimens to provide semiquantitative data on the occurrence of transthyretin(TTR)-mRNA in human liver, choroid plexus and pancreatic islets as well as in 15 endocrine tumours of the pancreas and gut. A monoclonal antibody to TTR was used for immunocytochemical identification of the protein in consecutive sections.The amount of TTR-mRNA in hepatocytes was found to be much less than that in epithelial cells of the choroid plexus. Glucagon cells of the pancreatic islets were also specifically labeled and the level of TTR-mRNA in these cells was intermediate between that of hepatocytes and choroid plexus epithelial cells. Four glucagonomas, one malignant insulinoma and two midgut carcinoids were shown to contain TTR-mRNA. The in situ labeled cells were also found to be TTR immunoreactive. These findings present the first conclusive evidence for TTR synthesis in pancreatic islets and in endocrine tumours. They also establish that the high serum concentration of TTR found in some patients with endocrine tumours (notably glucagonomas) is most likely due to tumour production of TTR.  相似文献   

19.
We used a combination of immunohistochemical and molecular-biological techniques to investigate the localization of transthyretin (TTR) in the brains of adult and fetal rats. The immunohistochemical studies employed antibodies purified by immunosorbent affinity chromatography, permitting the specific staining and localization of TTR using the unlabeled peroxidase-antiperoxidase method. TTR mRNA levels were measured by Northern-blot analysis of poly (A+) RNA, followed by hybridization to 32P-labeled TTR cDNA; TTR mRNA was localized in brain tissue sections by in situ hybridization. Immunoreactive TTR was found to be specifically localized in the choroid plexus epithelial cells of adult rat brain. High levels of TTR mRNA were found in poly (A+) RNA samples obtained from the choroid plexus. In addition, the specific localization of TTR mRNA in the epithelial cells of the choroid plexus was demonstrated by in situ hybridization. Neither immunoreactive TTR nor TTR mRNA were found in other regions of adult rat brains. The levels of TTR mRNA in the choroid plexus were at least 30 times higher than those observed in the adult liver. Immunoreactive TTR was observed in the brains of fetal rats on as early as the 11th day of gestation. This immunoreactive TTR was localized in the tela choroidea, the developmental forerunner of the choroid plexus. Immunoreactive TTR was also observed in the fetal choroid plexus as it began to form (14th day of gestation) as well as in the more completely developed choroid plexus (18th day of gestation).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Abstract– The concentration ol niacinamide in plasma and CSF was 0.5 and 0.7 μm respectively. The, mechanisms by which niacin and niacinamide, which are not synthesized in brain, enter brain, CSF and choroid plexus were investigated by injecting [14C]niacin or [14C]niacinamide intravenously and intraventricularly. [14C]Niacin or [14C]niacinamide, with or without unlabeled niacin or niacinamide, were infused intravenously at a constant rate into conscious rabbits. At 3 h, [14C]niacinamide, but not [14C]niacin, readily entered CSF, choroid plexus and brain. The addition of 4.1 mmol/kg niacinamide to the infusate markedly depressed the relative entry of [14C]niacinamide into choroid plexus and brain but not into CSF. After intraventricular injection, [14C]niacin was rapidly cleared from CSF and readily entered brain and choroid plexus. The addition of unlabeled niacin to the intraventricular injectate decreased the clearance of [14C]niacin from CSF and the entry of [14C]niacin into choroid plexus and brain. Unlike niacin, carrier niacinamide (82 μmol) in the injectate did not depress the extremely rapid clearance of intraventricularly injected [14C]niacinamide from CSF but did decrease the entry of [14C]niacinamide into brain. These results show that the control of entry and exit of niacinamide and niacin is the mechanism, at least in part, by which total niacin and NAD levels in brain cells are regulated. In the case of niacinamide which readily passes between CSF and plasma, the regulation of entry of niacinamide into brain cells by a high affinity accumulation system is an integral part of the homeostatic system. In the case of niacin, penetration into CSF and the extracellular space of brain from plasma as well as regulation of entry into brain cells by a saturable accumulation system are two distinct parts of the homeostatic system. In vivo, niacin that enters the central nervous system is converted to the principal plasma vitamer, niacinamide, in its free or bound forms such as NAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号