首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective was to evaluate supplementation of fetal calf serum (FCS) and phenazine ethosulfate (PES), a metabolic regulator that inhibits fatty acid synthesis, in culture media during in vitro production (IVP) of bovine embryos. Taking oocyte fertilization (n = 4,320) as Day 0, four concentrations of FCS (0, 2.5, 5, and 10%) and three periods of exposure to PES (without addition—Control; after 60 h—PES Day 2.5 of embryo culture; and after 96 h—PES Day 4) were evaluated. Increasing FCS concentration in the culture media enhanced lipid accumulation (P < 0.05), increased apoptosis in fresh (2.5%: 19.1 ± 1.8 vs 10%: 28.4 ± 2.3, P < 0.05; mean ± SEM) and vitrified (2.5%: 42.8 ± 2.7 vs 10%: 69.2 ± 3.4, P < 0.05) blastocysts, and reduced blastocoele re-expansion after vitrification (2.5%: 81.6 ± 2.5 vs 10%: 67.3 ± 3.5, P < 0.05). The addition of PES in culture media, either from Days 2.5 or 4, reduced lipid accumulation (P < 0.05) and increased blastocoele re-expansion after vitrification (Control: 72.0 ± 3.0 vs PES Day 2.5: 79.9 ± 2.8 or PES Day 4: 86.2 ± 2.4, P < 0.05). However, just the use of PES from D4 reduced apoptosis in vitrified blastocysts (Control: 52.0 ± 3.0 vs PES Day 4: 39.2 ± 2.4, P < 0.05). Independent of FCS withdrawal or PES addition to culture media, the in vivo control group had lesser lipid accumulation, a lower apoptosis rate, and greater cryotolerance (P < 0.05). The increased lipid content was moderately correlated with apoptosis in vitrified blastocysts (r = 0.64, P = 0.01). In contrast, the increased apoptosis in fresh blastocysts was strongly correlated with apoptosis in vitrified blastocysts (r = 0.94, P < 0.0001). Therefore, using only 2.5% FCS and the addition of PES from Day 4, increased the survival of IVP embryos after vitrification. Moreover, embryo quality, represented by the fresh apoptosis rate, was better than lipid content for predicting embryo survival after vitrification.  相似文献   

2.
Pig embryos suffer severe sensitivity to hypothermic conditions, which limits their ability to withstand conventional cryopreservation. Research has focused on high lipid content of pig embryos and its role in hypothermic sensitivity, while little research has been conducted on structural damage. Documenting cytoskeletal disruption provides information on embryonic sensitivity and cellular response to cryopreservation. The objectives of this study were to document microfilament (MF) alterations during swine embryo vitrification, to utilize an MF inhibitor during cryopreservation to stabilize MF, and to determine the developmental competence of cytoskeletal-stabilized and vitrified pig embryos. Vitrified morulae/early blastocysts displayed MF disruptions and lacked developmental competence after cryopreservation; hatched blastocysts displayed variable MF disruption and developmental competence. Cytochalasin-b did not improve morula/early blastocyst viability after vitrification; however, it significantly (P < 0.05) improved survival and development of expanded and hatched blastocysts. After embryo transfer, we achieved pregnancy rates of almost 60%, and litter sizes improved from 5 to 7.25 piglets per litter. This study shows that the pig embryo cytoskeleton can be affected by vitrification and that MF depolymerization prior to vitrification improves blastocyst developmental competence after cryopreservation. After transfer, vitrified embryos can produce live, healthy piglets that grow normally and when mature are of excellent fecundity.  相似文献   

3.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure—that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method—that is, embryos were first pretreated in 10%E+10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E+10%D for 0.5 min, exposed to EDFS30 for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

4.
The aim of this study was to design a protocol for vitrification and warming of porcine embryos in a chemically defined medium. A total of 663 morulae and blastocysts were collected from weaned crossbred sows (Large White-Landrace) 5 to 6 d after estrus and vitrified with the Superfine Open Pulled Straw method. In Experiment 1, embryos were vitrified using as a basic medium TCM-199-HEPES supplemented with 20% newborn calf serum (NBCS) or with 0, 0.1%, 0.5%, or 1% polyvinyl alcohol (PVA). Nonvitrified embryos were used as a fresh control group. Survival and hatching rates were evaluated after 72 h of in vitro culture to assess embryo viability. In addition, some hatched blastocysts derived from morulae and blastocysts were processed to determine the total cell number and the cell proliferating index as measures of their quality. Within each stage of embryo development, the different vitrification groups and the fresh control group showed similar high embryo survival (range, 70.5 ± 7.1% to 84.9 ± 8.1% and 85.3 ± 8.1% to 98.4 ± 8.2% for morulae and blastocysts, respectively) and hatching rate (range, 46.3 ± 10.1% to 66.7 ± 11.2% and 73.7 ± 11.3% to 89.4 ± 11.2% for morulae and blastocysts, respectively) and quality after in vitro culture. In Experiment 2, embryos were vitrified using 0.1% PVA and warmed with TCM-199-HEPES-0.13 M sucrose supplemented with 20% NBCS or either 0 or 0.1% PVA. Nonvitrified embryos were used as a fresh control group. As in Experiment 1, no significant differences were detected in embryo survival (range, 67.9 ± 6.6% to 74.5 ± 6.6% and 91.9 ± 7.0% to 99.5 ± 6.3% for morulae and blastocysts, respectively) and hatching rate (range, 47.0 ± 7.2% to 64.8 ± 9.9% and 89.4 ± 7.4% to 98.2 ± 6.9% for morulae and blastocysts, respectively) and quality among the warming groups or among vitrified and fresh control embryos. In both experiments, the developmental embryo stage influenced the survival and hatching rates, as well as the number of cells (P < 0.01), with the blastocyst stage yielding the best results. In conclusion, PVA can be used as a substitute for serum in vitrification and warming solutions without detrimental effects on the in vitro development of in vivo-derived porcine morulae and blastocysts.  相似文献   

5.
The objective was to develop a simple successful porcine cryopreservation protocol that prevented contact between embryos and liquid nitrogen, avoiding potential contamination risks. In vivo-derived blastocysts were collected surgically from donor pigs, and two porcine embryo vitrification protocols (one used centrifugation to polarize intracytoplasmic lipids, whereas the other did not) were compared using the Cryologic Vitrification Method (CVM), which used solid surface vitrification. The CVM allowed embryos to be vitrified, without any contact between embryos and liquid nitrogen. Both protocols resulted in similar in vitro survival rates (90% and 94%) and cell number (89 ± 5 and 99 ± 5) after 48 h in vitro culture of vitrified and warmed blastocysts. The protocol that did not use centrifugation was selected for continued use. To protect vitrified embryos from contact with liquid nitrogen and potential contamination during storage, a sealed outer container was developed. Use of this sealed outer container did not affect in vitro survival of cryopreserved blastocysts. In vivo blastocysts (n = 151) were collected, vitrified, and stored using the selected protocol and sealed container. These embryos were subsequently warmed and transferred to six recipients; five became pregnant and farrowed a total of 26 piglets. This embryo vitrification method allowed porcine embryos to be successfully vitrified and stored without any contact with liquid nitrogen.  相似文献   

6.
CY Yang  CY Pang  BZ Yang  RC Li  YQ Lu  XW Liang 《Theriogenology》2012,78(7):1437-1445
The objective of this study was to optimize cryopreservation conditions for buffalo in vitro produced (IVP) embryos. The in vitro fertilized (IVF) and somatic cell nuclear transferred (SCNT) blastocysts were vitrified with either 40% ethylene glycol (EG), 25% EG + 25% dimethylsulfoxide (DMSO), or 20% EG + 20% DMSO + 0.5 m sucrose, and the IVF blastocysts produced from abattoir-derived ovaries were also slow-frozen with either 10% EG or 0.05 m trehalose dehydrate + 1.8% EG + 0.4% BSA. Cryosurvival rates of blastocysts harvested on various days or at various developmental stages were also examined. In this study: (1) vitrification with 20% EG + 20% DMSO + 0.5 m sucrose had the best cryopreservation efficiency; (2) IVF and SCNT blastocysts had similar cryotolerance (P > 0.05); (3) after thawing, slow-frozen blastocysts reexpanded earlier than the vitrified blastocysts (P < 0.01); (4) cryosurvival rate of expanded blastocysts was higher than that of early blastocysts (P < 0.05); (5) cryosurvival rates of Days 5 to 7 blastocysts (Day 0 = day of IVF or SCNT) were higher than those of Days 8 to 9 blastocysts (P < 0.01); and (6) after embryo transfer, pregnancy rates for fresh and cryopreserved blastocysts were not different (P > 0.05). In conclusion, vitrification of Days 6 to 7 expanded blastocysts with 20% EG + 20% DMSO + 0.5 m sucrose was optimal for cryopreservation of buffalo IVP embryos.  相似文献   

7.
不同品系小鼠胚胎玻璃化冷冻保存的比较研究   总被引:11,自引:1,他引:10  
目的 研究甘油作为冷冻保护剂、不同基因型小鼠对胚胎玻璃化冷冻的影响。方法 采用 6 5mol L的甘油作为冷冻保护剂 ,采用二步法对CBA、NOD、C57BL 6J、ICR及CD1小鼠 3 5d的胚胎进行玻璃化冷冻 ,并比较了不同品系小鼠胚胎的复苏率及移植受孕率。结果和结论 CBA、NOD、C57BL 6J,ICR及CD1的复苏率分别为 5 7 6 %、4 8%、31 3%、86 5 %及 88% ,移植受孕率为 2 1%、2 3 5 %、11%、38%和 35 5 % ,封闭群小鼠的胚胎复苏率、移植受孕率均显著高于近交系小鼠。这提示胚胎的复苏率及移植受孕率可能与小鼠的不同基因型有关。五个品系中 ,桑椹胚及早期囊胚的体外复苏率均显著高于扩张囊胚。这说明不同基因型及胚胎的不同发育阶段对胚胎玻璃化冷冻效果有影响  相似文献   

8.
Effective cryopreservation of expanded equine blastocysts (> 300 μm in diameter) has been difficult, perhaps due to the volume of blastocoele fluid or the presence of the equine embryonic capsule. Recently, we reported normal viability of equine embryos after trophoblast biopsy, which resulted in blastocyst collapse. The present study addressed the effect of biopsy and resultant breach of the capsule and blastocyst collapse on survival of expanded equine blastocysts after vitrification. First, non-biopsied, small embryos (< 300 μm) were vitrified in fine-diameter microloader pipette tips using dimethylsulfoxide-containing medium (DM) or ethylene glycol-containing medium (EG). A third group was vitrified with EG, but was warmed using sucrose (EG/s). Embryos in the DM and EG/s treatments grew in culture after vitrification, and established pregnancies after transfer (3 of 12 and 3 of 6, respectively). Expanded blastocysts 300-730 μm in diameter were then biopsied and vitrified; rates of normal pregnancy (detection of embryonic heartbeat) after warming and transfer were 2 of 16 (13%) and 6 of 13 (46%) for DM and EG/s treatments, respectively (P = 0.05). Within the EG/s treatment, it appeared that greater loss of blastocoele fluid after biopsy was associated with higher survival. Therefore, an altered (“Central”) biopsy technique was used to aspirate blastocoele fluid, followed by vitrification in EG/s. Pregnancy rates were 1 of 8 (13%) for embryos cultured after warming and 4 of 7 (57%) for embryos transferred immediately after warming (P = 0.1). Finally, expanded blastocysts 407 to 565 μm in diameter were biopsied from the periphery, and blastocoele fluid was removed with gentle suction. After vitrification with EG/s, this resulted in a rate of normal pregnancy of 5 of 7 (71%). These findings demonstrated that blastocoele collapse and vitrification in fine-diameter pipettes allowed successful cryopreservation of expanded equine blastocysts.  相似文献   

9.
This study was conducted to evaluate the effects of developmental stage of in vitro produced (IVP) ovine embryos and the type of vitrification procedure used on embryo cryotolerance.The IVP embryos were vitrified at five different developmental stages: 4-, 8- and 16-cell, morula, and blastocyst. For each stage, half of the embryos were vitrified in either 30 μl 3.4 M glycerol + 4.6 M ethylene glycol in straw (method 1) or in <0.1 μl 2.7 M ethylene glycol + 2.1 M Me2SO + 0.5 M sucrose placed on the inner surface of a straw (method 2) of vitrification solution, based on two different procedures. After warming embryo viability was determined by assessing the rates of re-expansion, survival, and blastocyst formation. The quality of surviving embryos was evaluated by their hatching rate and blastocyst cell numbers. In both vitrification methods, embryo survival progressively increased as the developmental stage progressed. In method 1 few of the early cleavage stage embryos (4-, 8- and 16-cell) could reach to the blastocyst stage following warming. There was no significant difference in blastocyst cell numbers (total, ICM, and trophectoderm cells) or hatching rate of blastocysts derived from vitrified embryos at different developmental stages. The number of dead cells in vitrified blastocysts in method 1 was higher than for non-vitrified blastocysts (P < 0.05). The number of apoptotic cells in vitrified blastocysts was higher than for non-vitrified counterparts (P < 0.05). In conclusion, both the developmental stage of IVP ovine embryos and the method of vitrification have a significant effect on the viability and developmental competence of sheep embryos.  相似文献   

10.
Vitrification is a novel cryopreservation method for mammalian blastocysts. This study was designed to compare different vitrification methods and slow freezing for their effects on survival rate and DNA integrity in mouse and human blastocysts. In Experiment 1, embryo survival and DNA integrity were compared between mouse blastocysts with collapsed and non‐collapsed blastoceles. In Experiment 2, embryo survival and DNA integrity were compared between vitrified and slow‐frozen mouse blastocysts. In Experiment 3, embryo survival and DNA integrity were compared between vitrified and slow‐frozen human blastocysts. Fresh blastocysts were used as controls in all experiments. Higher (P < 0.05) blastocyst survival rates were obtained in mouse blastocysts vitrified with collapsed versus intact blastoceles, although DNA‐integrity indices in the surviving blastocysts were the same among vitrified and fresh blastocysts. More mouse blastocysts (P < 0.05) survived after vitrification (100%) as compared to slow freezing (82.5%). DNA‐integrity indices examined in the surviving blastocysts were also higher (P < 0.001) in fresh (93.6%) and vitrified/warmed (93.7%) blastocysts than in slow‐frozen/thawed (75.8%) ones. More human blastocysts survived with a higher DNA‐integrity index after vitrification/warming than after slow freezing/thawing. These results indicate that higher survival rates can be obtained by vitrification of blastocele‐collapsed blastocysts, and that vitrification causes less cell apoptosis in both mouse and human blastocysts compared to slow freezing. Vitrification of blastocysts after blastocele collapse by single laser pulse supports a higher survival rate and less DNA apoptosis, suggesting that laser blastocele collapse is a safe procedure for blastocyst vitrification. Mol. Reprod. Dev. 79: 229–236, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
The aim of this study was to assess the effect of production system and of cryopreservation of ovine embryos on their viability when transferred to recipients. The experimental design was an unbalanced 2 x 2 factorial design of two embryo production systems (in vivo versus in vitro) and two embryo preservation conditions prior to transfer (transferred fresh versus transferred after vitrification/warming). For the production of blastocysts in vivo, crossbred donor ewes (n=30) were synchronised using a 13-day intravaginal progestagen pessary. Ewes received 1500 IU equine chorionic gonadotropin (eCG) 2 days before pessary withdrawal, and were mated 2 days after pessary withdrawal and embryos were recovered surgically (6 days after mating). Blastocysts were produced in vitro (IVP) using standard techniques. Recipients (n=95) were synchronised using a progestagen pessary and received 500 IU eCG at pessary removal and were randomly assigned to receive (two per recipient) in vivo fresh (n=10), in vivo vitrified (n=10), in vitro fresh (n=35) or in vitro vitrified (n=40) blastocysts. Recipients were slaughtered at day 42 of gestation and foetuses recovered. Pregnancy and embryo survival rates were recorded and analysed using CATMOD procedures. Foetal weights and crown-rump lengths were recorded and analysed using generalised linear model (GLM) procedures. There were no statistically significant interactions between the effects of embryo production system and preservation status at transfer on pregnancy rate and embryo survival. The pregnancy rate following transfer of fresh IVP blastocysts was lower (P<0.07) than that of in vivo embryos (54.3% versus 90.0%, respectively). Vitrification resulted in a decrease in pregnancy rate, the effect being more pronounced in the case of IVP embryos (54.3-5.0%, P<0.001) compared with in vivo embryos (90.0-50.0%), although the absolute change was similar (49.3% versus 40.0%). Transfer of fresh IVP blastocysts resulted in a higher proportion of single (78.9% versus 33.3%) and lower proportion of twin (21.1% versus 66.7%) pregnancies than those produced in vivo. This was reflected in a significant difference in embryo survival rate (fresh: 32.8% versus 75.0%, P<0.01; vitrified: 2.5% versus 35.0%, P<0.001, for IVP and in vivo blastocysts, respectively). Similarly, all pregnancies resulting from the transfer of vitrified/warmed IVP blastocysts were single pregnancies, while 40% of those from vitrified/warmed in vivo blastocysts were twin pregnancies; this was reflected in an embryo survival rate of 35.0% versus 75.0%, respectively. There was a significant effect (P=0.0184) of litter size on foetal weight but not on foetal length (P=0.3304). Foetuses derived from the fresh transfer of IVP blastocysts were heavier (6.4+/-0.2g versus 5.8+/-0.2g, respectively, P<0.05) and longer (5.2+/-0.1cm versus 4.8+/-0.1cm, respectively, P<0.01) than those derived from fresh in vivo blastocysts. There was no difference in these parameters as a consequence of vitrification of IVP embryos. However, in vivo blastocysts subjected to vitrification resulted in heavier (6.6+/-0.3g versus 5.8+/-0.2g, respectively, P=0.055) and longer (5.2+/-0.1cm versus 4.8+/-0.1cm, respectively, P<0.05) foetuses than their counterparts transferred fresh.  相似文献   

12.
The purpose of the experiments was to study the effect of high hydrostatic pressure treatment prior to vitrification to the survival of expanded mouse blastocysts. High hydrostatic pressure has been reported to induce the production of "shock proteins" in bacteria, which can provide a possibility of cross-protection to other environmental stresses. The possible beneficial effects of this alleged principle was examined on embryo vitrification. First, the behaviour of blastocysts was studied at altered pressure conditions. In the second part of the study, pressure treatment was combined with a cryopreservation protocol. Our results indicate that the survival of pressurized mouse embryos depends on the magnitude and the duration of pressure applied. We demonstrated that a preceding pressure treatment strikingly increases the survival of the frozen blastocysts as well as the speed of resumption of the development, and hatching rate.  相似文献   

13.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure-that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method-that is, embryos were first pretreated in 10%E + 10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E + 10%D for 0.5 min, exposed to EDFS30for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

14.
The objective of this study was to evaluate the efficiency of the closed pulled straw (CPS) method for cryopreserving in vitro-produced and in vivo-produced bovine (Bos taurus) embryos. Based on the open pulled straw (OPS) protocol, the top end of a CPS was closed by tweezers (heated in a flame) to prevent the cryoprotectant medium containing embryos from contacting the liquid nitrogen. Bovine in vitro or in vivo morulae and early blastocyst embryos were frozen by slow cryopreservation, OPS vitrification, or CPS vitrification. Morphology of postthawed embryos was evaluated, and normal embryos were used for successive culture for 72 h. There were no significant differences between OPS and CPS freezing groups in postthawed in vitro-produced embryos with respect to rates of morphologically normal embryos (mean ± SD, 87.9 ± 5.2% vs. 85.4 ± 4.9%), survival at 24 h (58.0 ± 6.8% vs. 56.3 ± 4.4%), and survival at 72 h (35.2 ± 6.0% vs. 34.9 ± 6.7%). However, both OPS and CPS vitrification resulted in higher postthaw rates of morphologically normal embryo and survival at 24 and 72 h than those of the slow-freezing method (P < 0.05). Similar results were obtained for in vivo-derived embryos. We concluded that CPS vitrification was a feasible method to cryopreserve both in vitro-derived and in vivo-derived bovine embryos. This method not only eliminated the risk of embryo contamination by preventing contact with liquid nitrogen but also retained the advantages of the OPS vitrification method.  相似文献   

15.
The objective was to develop a simpler, more reliable vitrification method for porcine embryos. Prepubertal donor gilts were induced to ovulate with eCG and hCG, and then inseminated artificially. Morulae and expanding blastocysts approximately 200 microm in diameter were collected 6 or 7d after hCG treatment. Embryos collected from donor gilts were maintained, so as to be individually recognizable, and handled in batches of four or five. The embryos together with a minimum volume (<2 microL) of vitrification solution were placed onto stainless steel metal meshes or plastic plates, and then plunged into liquid nitrogen-metal mesh vitrification (MMV) and plastic plate vitrification (PPV), respectively. The meshes or plates were stored in 1.8-mL cryotubes submerged in liquid nitrogen. Stored embryos were subsequently removed, cultured in medium for 24 h, and then assessed for viability. The survival rate (84.4%) of expanding blastocysts cooled by MMV was higher than that (53.1%) of embryos cooled by PPV (P<0.05). There was no significant difference in total cell number between MMV and PPV. The survival rate of morulae cooled by MMV was 55.0%. Transfer of 200 expanding blastocysts cooled by MMV to 10 synchronized recipient gilts resulted in 37 live piglets from 7 recipients. In conclusion, the MMV method was an effective vitrification procedure for cryopreservation of expanding porcine blastocysts. However, there was a batch effect on embryo survival after vitrification.  相似文献   

16.
The objective of this study was to improve the efficiency of cryopreservation of pronuclear-stage (PN) mouse embryos. A novel vitrification technique (solid surface vitrification, SSV) was compared with a convential one in straws both for cryosurvival and obtaining progeny from cryopreserved PN mouse embryos. In the SSV method, 15-20 PN embryos were exposed to vitrification solutions for approximately 20 sec after equilibration, and then they were dropped in 2 microl drops onto a pre-cooled (-150 to -180 degrees C) metal surface. In the straws method, groups of 5-10 PN embryos were loaded in a single straw after equilibration. In experiment I, it was compared the effect of the vitrification solutions alone, without vitrification. No reduction was detected in survival, cleavage and blastocysts rates and the lowest development rate was obtained from hatched blastocyst for 20 min equilibration (24.5%). In experiment II, SSV method resulted in significantly higher survival and cleavage rates than that of in-straw vitrified 15-20 min group (87% vs. 60%, 83% vs. 67%, respectively; P < 0.05). There were no statistical differences among any of the blastocyts groups. However, there was a statistical difference in hatched blastocysts between 15 to 5, 10, and 20 min (P < 0.05). In experiment III, it was found no major effect among equilibration time periods in toxicity groups according to the mean cell number of blastocysts developed from PN embryos. But, there was a significant differences between 15 min SSV and 10 min in straw vitrified according to the mean cell number of blastocysts developed from PN embryos following vitrification (P < 0.05). The good results were obtained from 15 min equilibration group for SSV and 10 min equilibration group for straw vitrification. In the last experiment, embryo transfer after vitrification and toxicity was investigated. There were significant differences between SSV and straw just on the rate of pups born (30% and 20.5% respectively; P < 0.05). In conclusion, vitrification of PN mouse embryos by SSV can result in high rates of in vitro development to expanded and hatched blastocyst stage and in vivo development to live pups.  相似文献   

17.
A. Dhali 《Theriogenology》2009,71(9):1408-1416
The effect of modified droplet vitrification was assessed on cellular actin filament organization, apoptosis related gene expression and development competence in mouse embryos cultured in vitro. Mouse zygotes, 2-cell embryos and morulae were vitrified in ethylene glycol (VS-1) and ethylene glycol plus DMSO (VS-2) and thawed by directly placing the vitrified drop into 0.3 M sucrose solution at 37 °C. High recovery (93-99%) of morphologically normal embryos was evident following vitrification and thawing. No detectable actin filament disruption was observed in the embryos at any development stage following vitrification and thawing and/or in vitro culture. The expression pattern of Bax, Bcl2 and p53 genes was altered (P < 0.05) in vitrified zygotes and 2-cell embryos, but not in morulae. Although a large proportion of the vitrified zygotes (59.5 ± 4.4% in VS-1 and 57.9 ± 4.5% in VS-2; mean ± S.E.M.) and 2-cell embryos (63.1 ± 4.4% in VS-1 and 59.2 ± 4.3% in VS-2) developed into blastocysts, development of control embryos (70.2 ± 5.0% of zygotes and 75.5 ± 4.4% of 2-cell embryos) into blastocysts was higher (P < 0.05). In contrast, development of the control and vitrified morulae into blastocysts (more than 85%) was similar. We concluded that the modified droplet vitrification procedure supported better survival of morula stage compared to zygotes and 2-cell mouse embryos.  相似文献   

18.
We examined possible genotype effects on the survival of 8- to 16-cell mouse embryos isolated from four inbred strains (C57BL/6N, BALB/cAnN, DBA/2N, and C3H/HeN), a outbred stock (ICR), and various crosses after cryopreservation by vitrification or conventional slow freezing using glycerol solutions. The rates of in vitro development of C57BL/6N, BALB/cAnN, C3H/HeN, and ICR embryos to expanded blastocysts ranged from 86% to 94% after slow freezing and 85% to 97% after vitrification. The cryopreservation method did not significantly influence in vitro embryo survival after thawing (P >0.05). Although genotype significantly influenced the in vitro survival of embryos (P = 0.008), this presumably resulted from an increased difficulty in assessing the quality grade of C3H/HeN embryos prior to cryopreservation. The rates in vivo development of C57BL/6N, BALB/cAnN, C3H/HeN, DBA/2N, and ICR embryos to normal day 18–19 fetuses ranged from 19% to 64% after slow freezing and from 18% to 63% after vitrification. The in vivo development of cryopreserved embryos was significantly influenced by cryopreservation method and genotype (P = 0.01 and P = 0.001, respectively). Vitrification yielded significantly higher rates of in vivo development than that after slow freezing (P > 0.05). In vivo development rates of DBA/2N and ICR♀ X B6D2F1 ♂ embryos after cryopreservation were significantly higher than that of embryos from BALB/cAnN and C3H/HeN mice (P < 0.05). These results indicate that parental genotype exerts little or no effect on the ability of embryos to develop in vitro after vitrification or slow freezing. Differences in the ability of cryopreserved embryos to develop normally in vivo may reflect inherent genotype related differences in their post-implantation developmental potential and not their sensitivity to cryoinjury. © 1995 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    19.
    This study investigated effects of hexoses, fetal calf serum (FCS), and phenazine ethosulfate (PES) during the culture of bovine embryos on blastocyst development and survival after cryopreservation by slow freezing or vitrification. The basal, control medium was chemically defined (CDM) plus 0.5% fatty acid-free BSA. In vitro-produced bovine zygotes were cultured in CDM-1 with 0.5 mM glucose; after 60 hr, 8-cell embryos were cultured 4.5 days in CDM-2. The 8-cell embryos were randomly allocated to a 2 x 3 x 2 x 3 factorial experimental design with two energy substrates (2 mM glucose or fructose); three additives (0.3 microM PES, 10% FCS, and control); two cryopreservation methods using no animal products (conventional slow freezing or vitrification); and semen from three bulls with two replicates for each bull. A total of 1,107 blastocysts were produced. Fructose resulted in 13% more blastocysts per oocyte than glucose (37.2% vs. 32.9%), and per 8-cell embryo (51.3% vs. 45.3%; P < 0.01). No differences were found for additives (P > 0.1) control, FCS, or PES for blastocysts per oocyte or per 8-cell embryo. There was a significant interaction (P < 0.05) between additives and hexoses for blastocyst production; although trends were similar, the benefit of fructose compared to glucose was greater for controls than for FCS or PES. Culture of embryos with PES, which reduces cytoplasmic lipid content, improved cryotolerance of bovine embryos; post-cryopreservation survival of blastocysts averaged over vitrification and slow freezing (between which there was no difference) was 91.9%, 84.9%, and 60.2% of unfrozen controls (P < 0.01) for PES, control, and FCS groups, respectively.  相似文献   

    20.
    The objective was to determine whether alterations of histone acetylation status in donor cells affected inter-generic SCNT (igSCNT)-cloned embryo development. Leopard cat cells were treated with trichostatin A (TSA; a histone deacetylase inhibitor) for 48 h, and then donor cells were transferred into enucleated oocytes from domestic cats. Compared to non-treated cells, the acetylated histone 3 at lysine 9 (AcH3K9) and histone 4 at lysine 5 (AcH4K5) in the TSA group increased for up to 48 h (P < 0.05). The AcH3K9 signal ratios of igSCNT group was higher than control group 3 h after activation (P < 0.05). Treatment with TSA significantly increased total cell number of blastocysts (109.1 ± 6.9 vs. 71.8 ± 2.9, mean ± SEM), with no significant effects on rates of cleavage or blastocyst development (71.1 ± 2.8 vs. 67.6 ± 2.9 and 12.2 ± 2.6 vs. 11.0 ± 2.6, respectively). When igSCNT cloned embryos were transferred into a domestic cat oviduct and recovered after 8 d, blastocyst development rates and total cell numbers were greater in the TSA-igSCNT group (20.7 ± 3.0% and 2847.6 ± 37.2) than in the control igSCNT group (5.7 ± 2.2% and 652.1 ± 17.6, P < 0.05). Average total cell numbers of blastocysts were approximately 4.4-fold higher in the TSA-igSCNT group (2847.6 ± 37.2, n = 10) than in the control group (652.1 ± 17.6, n = 8; P < 0.05), but were ∼2.9-fold lower than in vivo cat blastocysts produced by intrauterine insemination (8203.8 ± 29.6, n = 5; P < 0.001). Enhanced histone acetylation levels of donor cells improved in vivo developmental competence and quality of inter-generic cloned embryos; however, fewer cells in blastocysts derived from igSCNT than blastocysts produced by insemination may reduce development potential following intergeneric cloning (none of the cloned embryos were maintained to term).  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号