首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of human urokinase-type plasminogen activator (u-PA) to the surface of the human monocytic cell line U937 was studied by immunological detection of bound u-PA or binding of biotinylated diisopropyl fluorophosphate-inactivated human u-PA visualized by light or electron microscopy. Untreated U937 cells showed a characteristic binding pattern, with the majority of the u-PA bound to the microvillar-containing protruding pole of the cells. After treatment with the phorbol ester PMA, the resulting adherent cell population was very heterogeneous with respect to both cellular morphology and u-PA binding. The bound u-PA was distributed on both the dorsal and the substrate side of the cells, and the patches of bound u-PA could not be correlated to any typical membrane conformations or cell-cell or cell-substratum contacts. When a monoclonal antibody directed against the amino-terminal fragment (ATF) of u-PA was used, the results were identical regardless of whether intact u-PA or ATF was used for binding to the cells. In contrast, when a monoclonal antibody recognizing the non-receptor-binding protease domain of u-PA was used, bound ATF showed no staining, while bound intact u-PA was stained as efficiently as above. The alteration of u-PA receptor distribution following treatment with PMA could be related to the changes in glycosylation and ligand affinity of the purified u-PA receptor previously described following PMA treatment of U937 cells.  相似文献   

2.
The secretion of plasminogen activators has been implicated in the controlled extracellular proteolysis that accompanies cell migration and tissue remodeling. We found that the human plasminogen activator urokinase (Uk) (Mr 55,000 form) binds rapidly, specifically, and with high affinity to fresh human blood monocytes and to cells of the monocyte line U937. Upon binding Mr 55,000 Uk was observed to confer high plasminogen activator activity to the cells. Binding of the enzyme did not require a functional catalytic site (located on the B chain of the protein) but did require the noncatalytic A chain of Mr 55,000 Uk, since Mr 33,000 Uk did not bind. These results demonstrate the presence of a membrane receptor for Uk on monocytes and show a hitherto unknown function for the A chain of Uk: binding of secreted enzyme to its receptor results in Uk acting as a membrane protease. This localizes plasminogen activation near the cell surface, an optimal site to facilitate cell migration.  相似文献   

3.
Invasion of tissue by monocytes in the course of cellular immune reactions is a multistep process that is thought to be based on the action of urokinase type plasminogen activator (u-PA), an ubiquitous serine protease able to convert the zymogen plasminogen into the active protease plasmin. Expression and occupation of urokinase-type plasminogen activator receptors (u-PA-R) are known to be up-regulated by IFN-gamma and TNF-alpha, and endogenously occupied u-PA-R were found to be instrumental in monocyte invasiveness. We used the amnion invasion assay to investigate whether monocyte invasiveness is affected by matrix-bound plasminogen activator inhibitors (PAI) and by fluid phase u-PA. We show in this study that preincubation of amnion membranes with 1.5 U/cm2 PAI-1 decreases invasion of IFN-gamma activated monocytes by 70% compared with controls. Anti-vitronectin antibodies, which block PAI-1 binding to the matrix, abrogate the inhibitory effect of PAI-1 on monocyte invasiveness, indicating that active PAI-1 is bound via matrix-associated vitronectin. In contrast, preincubation of the amnion membrane with PAI-2 which does not bind to the extracellular matrix has no effect on monocyte invasiveness. Finally, the inhibitory action of matrix-bound PAI-1 can be abrogated by addition of 5 IU/ml u-PA to the monocytes in the invasion chamber. These findings indicate that monocyte invasiveness might be regulated not only by expression and occupation of u-PA-R but also by matrix-bound PAI-1.  相似文献   

4.
Cell-binding experiments have indicated that murine cells on their surface have specific binding sites for mouse urokinase-type plasminogen activator (u-PA). In contrast to the human system, chemical cross-linking studies with an iodinated ligand did not yield any covalent adducts in the murine system, but in ligand-blotting analysis, two mouse u-PA-binding proteins could be visualized. To confirm that these proteins are the murine counterpart of the human u-PA receptor (u-PAR), a peptide was derived from the murine cDNA clone assigned to represent the murine u-PAR due to cross-hybridization and pronounced sequence similarity with human u-PAR cDNA [Kristensen, P., Eriksen, J., Blasi, F. & Dan?, K. (1991) J. Cell Biol. 115, 1763-1771]. A rabbit antiserum raised against this peptide specifically recognized two polypeptide bands with electrophoretic mobilities identical to those identified by ligand-blotting analysis. Binding of mouse u-PA to its receptor showed species specificity in ligand-blotting analysis, since mouse u-PA did not bind to human u-PAR and human u-PA did not bind to mouse u-PAR. The apparent M(r) of mouse u-PAR varied between different mouse cell lines and ranged over M(r) 45,000-60,000. In four of the cell lines, mouse u-PA bound to two mouse u-PAR variant proteins, whereas in the other two cell lines studied, there was only one mouse u-PA-binding protein. In the monocyte macrophage cell line P388D.1, trypsin-treatment of intact cells could remove only the large mouse u-PAR variant (M(r) 60,000) indicating that only this type was a cell-surface-exposed molecule. The smaller mouse u-PAR variant (M(r) 45,000), was deglycosylated by the enzyme endo-beta-N-acetylglucosaminidase H and is probably an intracellular precursor form carrying only high-mannose carbohydrate. Deglycosylation of this variant yielded a polypeptide with an apparent M(r) of about 30,000, which corresponds to the Mr calculated from the cDNA derived protein sequence of mouse u-PAR. Receptor-bound mouse u-PA could be released by phosphatidylinositol-specific phospholipase C treatment, indicating that mouse u-PAR is attached to the cell surface by glycosylphosphatidylinositol. Purification of the two mouse u-PAR variant proteins by diisopropylfluorophosphate-inactivated mouse u-PA-Sepharose affinity chromatography yielded two silver-stained bands when analysed by SDS/PAGE, corresponding in electrophoretic mobility to those seen by ligand-blotting analysis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The receptor for human urokinase-type plasminogen activator (u-PA) was purified from phorbol 12-myristate 13-acetate-stimulated U937 cells by temperature-induced phase separation of detergent extracts, followed by affinity chromatography with immobilized diisopropyl fluorophosphate-treated u-PA. The purified protein shows a single 55-60 kDa band after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining. It is a heavily glycosylated protein, the deglycosylated polypeptide chain comprising only 35 kDa. The glycosylated protein contains N-acetyl-D-glucosamine and sialic acid, but no N-acetyl-D-galactosamine. Glycosylation is responsible for substantial heterogeneity in the receptor on phorbol ester-stimulated U937 cells, and also for molecular weight variations among various cell lines. The amino acid composition and the NH2-terminal amino acid sequence are reported. The protein has a high content of cysteine residues. The NH2-terminal sequence is not closely related to any known sequence. The identification of the purified and sequenced protein with the human u-PA receptor is based on the following findings: 1) the ability of the purified protein to bind u-PA and its amino-terminal fragment; 2) the identical electrophoretic mobilities observed for cross-linked conjugates, formed between either the purified protein or the u-PA receptor on intact U937 cells and the above ligands; 3) the identity of the apparent molecular weight of the purified protein to that predicted for the u-PA receptor in the same cross-linking studies; 4) the identical extent of glycosylation of the purified protein and of the u-PA receptor in crude membrane fractions, as detected after cross-linking; 5) the ability of antibodies raised against the purified protein to inhibit cellular binding of the amino-terminal fragment of u-PA.  相似文献   

6.
A truncated version of the human urokinase plasminogen activator receptor has been obtained by in vitro mutagenesis by insertion of a premature nonsense codon in the urokinase plasminogen activator receptor cDNA. This results in a protein truncated immediately upstream of the region which appears to be required for membrane attachment of the receptor via a glycolipid anchor. The modified receptor cDNA inserted into an expression vector has been transfected into mouse LB6 cells. Transfectants produce a urokinase plasminogen activator (u-PA)-binding protein that is secreted into the medium. It can be cross-linked to iodinated ATF (amino-terminal fragment of u-PA) and can also inhibit binding of iodinated ATF to mouse LB6 cells that express the wild type human receptor. The soluble u-PA receptor will be used in a variety of experiments aimed at identifying the role and mechanism of u-PA in physiological and pathological invasive processes, as well as in therapeutical attempts to block or decrease cancer cell invasion and in general u-PA-mediated tissue destruction.  相似文献   

7.
Five out of six human melanoma cell lines tested were able to degrade in vitro a smooth muscle cell extracellular matrix in a plasmin-dependent way. In three of these five cell lines, this process was mediated by tissue-type plasminogen activator (t-PA) and in the other two cell lines by urokinase-type plasminogen activator (u-PA). All melanoma cell lines produced t-PA mRNA and protein, whereas only the two cell lines showing u-PA-mediated matrix degradation produced u-PA mRNA and protein. These latter cell lines also produced plasminogen activator inhibitor type-1 (PAI-1) and type-2 (PAI-2) mRNA and protein. u-PA receptor (u-PA-R) mRNA and binding of radiolabeled u-PA was found in all melanoma cell lines. The metastatic capacity of these cell lines was studied in nude mice. All cell lines were able to develop primary tumors at the subcutaneous inoculation site. The production of plasminogen activators, their inhibitors and urokinase receptor by subcutaneous tumors corresponded with the production by the parental cell lines in vitro. The two u-PA and PAI-1 producing cell lines showed the highest frequency to form spontaneous lung metastases after subcutaneous inoculation, whereas five of the six cell lines formed lung colonies after intravenous inoculation. In conclusion, u-PA mediated matrix degradation in vitro and production of u-PA and PAI-1 by human melanoma cell lines correlated with their ability to form spontaneous lung metastasis in nude mice. No correlation was found with the ability to form lung colonies after intravenous injection. These findings suggest a role for u-PA and PAI-1 in a relatively early stage of melanoma metastasis.  相似文献   

8.
Human HT-1080 fibrosarcoma cells produce urokinase-type plasminogen activator (u-PA) and type 1 plasminogen activator inhibitor (PAI-1). We found that after incubation of monolayer cultures with purified native human plasminogen in serum-containing medium, bound plasmin activity could be eluted from the cells with tranexamic acid, an analogue of lysine. The bound plasmin was the result of plasminogen activation on the cell surface; plasmin activity was not taken up onto cells after deliberate addition of plasmin to the serum-containing medium. The cell surface plasmin formation was inhibited by an anticatalytic monoclonal antibody to u-PA, indicating that this enzyme was responsible for the activation. Preincubation of the cells with diisopropyl fluorophosphate-inhibited u-PA led to a decrease in surface-bound plasmin, indicating that a large part, if not all, of the cell surface plasminogen activation was catalyzed by surface-bound u-PA. In the absence of plasminogen, most of the cell surface u-PA was present in its single-chain proenzyme form, while addition of plasminogen led to formation of cell-bound two-chain u-PA. The latter reaction was catalyzed by cell-bound plasmin. Cell-bound u-PA was accessible to inhibition by endogenous PAI-1 and by added PAI-2, while the cell-bound plasmin was inaccessible to serum inhibitors, but accessible to added aprotinin and an anticatalytic monoclonal antibody. A model for cell surface plasminogen activation is proposed in which plasminogen binding to cells from serum medium is followed by plasminogen activation by trace amounts of bound active u-PA, to form bound plasmin, which in turn serves to produce more active u-PA from bound pro-u-PA. This exponential process is subject to regulation by endogenous PAI-1 and limited to the pericellular space.  相似文献   

9.
U Zacharias  H Will 《FEBS letters》1991,289(2):155-158
Porcine urine, unlike human urine, does not contain detectable amounts of urokinase-type plasminogen activator (u-PA). The plasminogen activator present in porcine urine is of tissue-type (t-PA) as identified by the following criteria. (1) Porcine urine PA exhibits an Mr of 65,000 similar to the Mr of human t-PA (64-70,000) but distinct from the Mr of human u-PA (55,000). (2) Antibodies against human t-PA bind and inhibit crude and purified porcine urine PA, while human u-PA-specific antibodies do not react with porcine urine PA. (3) Plasminogen activation by porcine urine PA is markedly stimulated in the presence of fibrinogen fragments. (4) Porcine urine PA activity is not affected by concentration of amiloride substantially suppressing human u-PA activity.  相似文献   

10.
Human urokinase-type plasminogen activator (uPA) binds rapidly and with high affinity to a number of human cell types; this localizes plasmin generation to the close environment of the cell surface. uPA binding to HeLa and U937 cells is mediated by a single class of sites with an affinity of 3.4 +/- 1.3 x 10(-10) M. Binding is abolished by treatment of the cells with trypsin. Chemical cross-linking of Mr 55,000 125I-uPA to the surface of HeLa and U937 cells with disuccinimidyl suberate or with formaldehyde results in the formation of a labeled complex of Mr 100,000, suggesting a Mr of 45,000 +/- 5,000 for the receptor or a subunit thereof. When cells solubilized in Triton X-114 are subjected to heat-induced phase separation, unoccupied receptor, receptor-bound 125I-uPA, and cross-linked 125I-uPA-receptor complex all partition in the detergent phase, whereas the unbound ligand remains in the aqueous phase; similar phase partitioning is observed with endogenous uPA-receptor complexes from cultured human and murine cells. Thus, uPA bound at the cell surface is tightly associated with an amphiphilic membrane protein. Interaction of uPA with this plasma membrane receptor is species-specific, since human uPA fails to bind to murine cells, and murine uPA does not bind to human cells. Finally, incubation of HeLa cells in the presence of epidermal growth factor or phorbol 12-myristate 13-acetate results, over a period of 24 h, in a progressive change in uPA binding: an approximately 10-fold increase in the number of sites is accompanied by a 10-fold decrease in their affinity. Cross-linking and phase partitioning of 125I-uPA bound to epidermal growth factor- or phorbol 12-myristate 13-acetate-treated cells indicate that, as in control conditions, it is associated with a Mr 45,000 cell surface amphiphilic polypeptide.  相似文献   

11.
Cultured human endothelial cells synthesize and secrete two types of plasminogen activator, tissue plasminogen activator (t-PA) and urokinase (u-PA). Previous work from this laboratory (Hajjar, K.A., Hamel, N. M., Harpel, P. C., and Nachman, R. L. (1987) J. Clin. Invest. 80, 1712-1719) has demonstrated dose-dependent, saturable, and high affinity binding of t-PA to two sites associated with cultural endothelial cell monolayers. We now report that an isolated plasma membrane-enriched endothelial cell fraction specifically binds 125I-t-PA at a single saturable site (Kd 9.1 nM; Bmax 3.1 pmol/mg membrane protein). Ligand blotting experiments demonstrated that both single and double-chain t-PA specifically bound to a Mr 40,000 membrane protein present in detergent extracts of isolated membranes, while high molecular weight, low molecular weight, and single-chain u-PA associated with a Mr 48,000 protein. Both binding interactions were reversible and cell-specific and were inhibitable by pretreatment of intact cells with nanomolar concentrations of trypsin. The relevant binding proteins were not found in subendothelial cell matrix, failed to react with antibodies to plasminogen activator inhibitor type 1 and interacted with their respective ligands in an active site-independent manner. The isolated t-PA binding site was resistant to reduction and preserved the capacity for plasmin generation. In contrast, the isolated u-PA binding protein was sensitive to reduction, and did not maintain the catalytic activity of the ligand on the blot. The results suggest that in addition to sharing a matrix-associated binding site (plasminogen activator inhibitor type 1), both t-PA and u-PA have unique membrane binding sites which may regulate their function. The results also provide further support for the hypothesis that plasminogen and t-PA can assemble on the endothelial cell surface in a manner which enhances cell surface generation of plasmin.  相似文献   

12.
《The Journal of cell biology》1986,103(6):2411-2420
The capacity of cells to interact with the plasminogen activator, urokinase, and the zymogen, plasminogen, was assessed using the promyeloid leukemic U937 cell line and the diploid fetal lung GM1380 fibroblast cell line. Urokinase bound to both cell lines in a time- dependent, specific, and saturable manner (Kd = 0.8-2.0 nM). An active catalytic site was not required for urokinase binding to the cells, and 55,000-mol-wt urokinase was selectively recognized. Plasminogen also bound to the two cell lines in a specific and saturable manner. This interaction occurred with a Kd of 0.8-0.9 microM and was of very high capacity (1.6-3.1 X 10(7) molecules bound/cell). The interaction of plasminogen with both cell types was partially sensitive to trypsinization of the cells and required an unoccupied high affinity lysine-binding site in the ligand. When plasminogen was added to the GM1380 cells, a line with high intrinsic plasminogen activator activity, the bound ligand was comprised of both plasminogen and plasmin. Urokinase, in catalytically active or inactive form, enhanced plasminogen binding to the two cell lines by 1.4-3.3-fold. Plasmin was the predominant form of the bound ligand when active urokinase was added, and preformed plasmin can also bind directly to the cells. Plasmin on the cell surface was also protected from its primary inhibitor, alpha 2-antiplasmin. These results indicate that the two cell lines possess specific binding sites for plasminogen and urokinase, and a family of widely distributed cellular receptors for these components may be considered. Endogenous or exogenous plasminogen activators can generate plasmin on cell surfaces, and such activation may provide a mechanism for arming cell surfaces with the broad proteolytic activity of this enzyme.  相似文献   

13.
A plasminogen activator secreted from human kidney cells was highly purified by affinity chromatography on an anti-urokinase IgG-Sepharose column. The purified plasminogen activator was inactive and had a single-chain structure and a Mr of 50,000. It not only did not incorporate diisopropyl fluorophosphate, which reacts with active site serine residue in urokinase, but also did not bind to p-aminobenzamidine-immobilized CH-Sepharose, to which urokinase bind via its side-chain binding pocket present in active center. The plasminogen activator was converted to the active two-chain form with the same Mr by catalytic amounts of plasmin. Its potential enzymatic activity was quenched completely by anti-urokinase IgG, but not by anti-tissue plasminogen activator Ig. These results indicate that the plasminogen activator is an inactive proenzyme form of human urokinase. Therefore, the plasminogen activator was termed single-chain pro-urokinase. The cleavage of single-chain pro-urokinase by plasmin induced conformational change which followed the generation of reactive serine residue at active site, the increase enzyme activity and the reduction of its high affinity for fibrin. These findings suggest that conformational change occurs in both regions responsible for enzyme activity and affinity for fibrin upon activation of single-chain pro-urokinase.  相似文献   

14.
Interleukin 1, derived from human placenta, stimulates plasminogen activator activity in human articular chondrocytes. The stimulation of plasminogen activator activity can be abolished by preincubation of placental interleukin 1 with an antiserum to homogeneous 22K factor, a species of interleukin 1 beta, indicating that the stimulation of plasminogen activator activity is due to interleukin 1 and not contaminating factors. Chondrocytes produce three species of plasminogen activator, with apparent Mr approximately 50,000, 65,000 and 100,000 as determined after sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis with gels containing casein and plasminogen. Both placental interleukin 1 and 22K factor enhance the production of the species of Mr approximately 65,000 and 100,000. Comparison of the mobility of the plasminogen activator species on SDS-polyacrylamide gel electrophoresis with human urokinase (u-PA) and human melanoma tissue-type plasminogen activator (t-PA) and studies with antibodies to these enzymes indicate that the Mr approximately 50,000 species is a u-PA and the Mr approximately 65,000 a t-PA. The Mr approximately 100,000 species is possibly an enzyme-inhibitor complex. Interleukin 1 therefore appears to enhance the production of t-PA and a putative enzyme-inhibitor complex. Abolition of plasminogen activator activity in the fibrin plate assay with antibodies to t-PA and u-PA also confirms enhanced t-PA production on interleukin 1 stimulation, though there is also evidence for increased cell-associated production of u-PA.  相似文献   

15.
Single-chain Mr 54,000 u-PA (scu-PA) was isolated, in the presence of aprotinin, from 3-liter batches of 60-h serum-free conditioned media obtained from subcultured (4-6th passage) human umbilical vein endothelial cells (HUVECs, approximately 1.8 x 10(9) cells). In the presence of heparin and endothelial cell growth factor, subcultured human umbilical vein endothelial cells produced u-PA proteins consisting of about 85-90% Mr 54,000 scu-PA and 10-15% two-chain Mr 54,000. The major scu-PA form was purified to homogeneity by ion-exchange chromatography on CM-Sephadex C-50, immunoadsorption on purified anti-u-PA IgG-Sepharose and affinity chromatography on p-amino-benzamidine-Agarose. Typically, about 8-10 micrograms of purified scu-PA protein (antigen/protein ratio = 1) was isolated from 3-liter batches of heparin-containing serum-free conditioned media with a yield of about 41% of the total starting u-PA antigen. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of this purified u-PA protein showed a single Ag-stained band (nonreduced and reduced), with an estimated molecular weight of about 54,000, which exhibited very low fibrinolytic activity. Purified HUVEC-derived scu-PA did not incorporate 3H-labeled diisopropyl fluorophosphate. This protein did, however, exhibit very low amidolytic activity (approximately 5,000 IU/mg) on the u-PA-specific synthetic substrate pyroglu-Gly-Arg-p-nitroanilide, very low plasminogen-dependent fibrinolytic activity on 125I-labeled fibrin coated plates, and directly activated 125I-labeled plasminogen following Michaelis-Menten kinetics with high affinity, Km = 0.72 microM and low turnover number, kcat = 0.0005 s-1. Treatment with plasmin rapidly converted the HUVEC-derived scu-PA to the active two-chain Mr 54,000 u-PA form (approximately 90,000 IU/mg). Binding to fibrin clots, using antigen quantitation, indicated about 20, 10, and 90% binding for equimolar amounts of HUVEC-derived scu-PA, two-chain u-PA, and tissue plasminogen activator standards, respectively. These results indicate that subcultured HUVECs synthesize and secrete their u-PA protein as a single-chain molecule with low intrinsic amidolytic and fibrinolytic activity, high affinity for plasminogen and no specific affinity for fibrin. The role of scu-PA in endothelial cell-mediated vascular function has yet to be clearly defined.  相似文献   

16.
Interaction of plasminogen activator inhibitor (PAI-1) with vitronectin   总被引:14,自引:0,他引:14  
Immobilized vitronectin was found to bind both purified plasminogen activator inhibitor type 1 (PAI-1) and the PAI-1 in conditioned culture medium of human sarcoma cells. Similarly, immobilized PAI-1 bound both purified vitronectin and vitronectin from normal human serum. These interactions were demonstrated using both enzyme immunoassay and radioiodinated proteins. Solid-phase vitronectin bound PAI-1 with Kd 1.9 x 10(-7) M, and the reverse interaction gave a Kd 5.5 x 10(-8) M. Evidence was also found for a second type of binding with a Kd below 10(-10) M. The molar ratios of the two proteins in the complex at the saturation levels were approximately one molecule of soluble PAI-1 bound per three molecules of immobilized vitronectin and approximately one molecule of soluble vitronectin being bound per one molecule of immobilized PAI-1. Binding of PAI-1 to vitronectin did not lead to an irreversible loss of the ability of PAI-1 to inhibit urokinase (u-PA) and tissue-type plasminogen activator (t-PA). Active u-PA released vitronectin-bound 125I-labeled PAI-1 radioactivity, suggesting that u-PA interacts with the complex. The Mr 50,000 urokinase cleavage product of PAI-1 also bound to vitronectin, but this bound fragment did not inhibit u-PA. Binding of PAI-1 to vitronectin did not interfere with the ability of vitronectin to promote the adhesion and spreading of cells. These results suggest that the interaction between vitronectin and PAI-1 may serve to confine pericellular u-PA activity to focal contact sites where cells use proteolysis in regional detachment.  相似文献   

17.
18.
Primary and early subcultures (1st- to 3rd passage) of human umbilical vein endothelial cells produce tissue-type plasminogen activator (t-PA) antigen, consisting only of a major Mr 110,000 t-PA form. Later subcultures (greater than 4th passage) produce increasing amounts of t-PA antigen, consisting of a major Mr 110,000 and a minor Mr 68,000 form as well as increasing amounts of urokinase-type plasminogen activator (u-PA) antigen, consisting of a minor Mr 95,000 and major Mr 54,000 form. All of the major plasminogen activator forms were purified to homogeneity from 72 h serum-free conditioned media (3 liters, 1-1.8 x 10(9) cells) by a combination of immunoaffinity and gel filtration chromatography. Typically, 4th to 6th passage cultures produced/secreted t-PA-type proteins consisting of an inactive Mr 110,000 (220 IU/mg) and active Mr 68,000 (76,500 IU/mg) form representing about 39 and 8%, respectively, of the total starting sodium dodecyl sulfate stable t-PA activity, and u-PA-type proteins consisting of an inactive Mr 95,000 (700 IU/mg) and active Mr 54,000 (81,000 IU/mg) form representing about 9 and 38%, respectively, of the total starting sodium dodecyl sulfate stable u-PA activity. The isolated Mr 68,000 t-PA and Mr 54,000 u-PA proteins, exist only as two-chain forms in the absence of aprotinin and as mixtures of single- and two-chain proteins in the presence of aprotinin. Treatment with nucleophilic agents completely dissociated the Mr 110,000 t-PA and Mr 95,000 u-PA proteins into their respective Mr 68,000 t-PA and Mr 54,000 u-PA activity forms and a common Mr 46,000 protein, confirming the enzyme-inhibitor complex nature of these inactive plasminogen activator forms.  相似文献   

19.
Proenzyme to urokinase-type plasminogen activator in the mouse in vivo   总被引:7,自引:0,他引:7  
We have investigated whether urokinase-type plasminogen activator (u-PA) is present in the mouse in vivo as the proenzyme or as the active enzyme. u-PA in extracts of various murine tissues was of a one-polypeptide chain form with an electrophoretic mobility indistinguishable from purified proenzyme (pro-u-PA), as demonstrated by SDS-polyacrylamide gel electrophoresis under reducing conditions followed by immunoblotting. No 2-chain u-PA was detected in any of the extracts (detection limit 10% of that of one-chain u-PA). In bladder urine more than half of the u-PA was of the one-chain form. Together with previous immunocytochemical studies of the normal murine tissues and studies of the Lewis lung carcinoma, the present results indicate that in these tissues the one-chain proenzyme is the predominant form of u-PA in intracellular stores and for the first time demonstrates that at least in some cases the one-chain form constitutes a sizeable fraction of the u-AP in extracellular fluids in the intact organism.  相似文献   

20.
The binding of urokinase-type plasminogen activators (u-PA) to receptors on various cell types has been proposed to be an important feature of many cellular processes requiring extracellular proteolysis. We have investigated the effect of single-chain u-PA binding to the monocyte-like cell line U937 on plasminogen activation. A 16-fold acceleration of the activation of plasminogen was observed at optimal concentrations of single-chain u-PA. This potentiation was abolished by the addition of either 6-aminohexanoic acid or the amino-terminal fragment of u-PA, thus demonstrating the requirement for specific binding of both single-chain u-PA and plasminogen to the cells. The mechanism of the enhancement of plasmin generation appears to be due primarily to an increase in the rate of feedback activation of single-chain u-PA to the more active two-chain u-PA by cell-bound plasmin, initially generated by single-chain u-PA. This increased activity of the plasminogen activation system in the presence of U937 cells provides a mechanism whereby u-PAs may exert their influence in a variety of cell-associated proteolytic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号