首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) is a widely used approach to study DNA methylation genome-wide. Here, we developed a MeDIP-Seq protocol compatible with the Ion Torrent semiconductor-based sequencing platform that is low cost, rapid, and scalable. We applied this protocol to demonstrate MeDIP-Seq on the Ion Torrent platform provides adequate coverage of CpG cytosines, the methylation states of which we validated at single-base resolution on the Infinium HumanMethylation450 BeadChip array, and accurately identifies sites of differential DNA methylation. Furthermore, we applied an integrative approach to further investigate and confirm the role of DNA methylation in alternative splicing and to profile 5mC and 5hmC variants of DNA methylation in normal human brain tissue that is localized over distinct genomic regions. These applications of MeDIP-Seq on the Ion Torrent platform have broad utility and add to the current methodologies for profiling genome-wide DNA methylation states in normal and disease conditions.  相似文献   

5.
6.
7.

Background  

MHC Class I molecules present antigenic peptides to cytotoxic T cells, which forms an integral part of the adaptive immune response. Peptides are bound within a groove formed by the MHC heavy chain. Previous approaches to MHC Class I-peptide binding prediction have largely concentrated on the peptide anchor residues located at the P2 and C-terminus positions.  相似文献   

8.
During the last decades, site-specific DNA endonucleases have served as a key instrument to study primary structure of DNA and genetic engineering. Here, we describe examples of these enzyme uses in genome-wide analysis of human DNA including restriction endonucleases involvement during sample preparation for sequencing using NGS devices, as well as visualization of cleavage of DNA repeats by endonucleases. The first studies on application of DNA endonucleases in the rapidly developing area of epigenetic analysis of genomes, which is facilitated by the recent discovery of a new class of enzymes, 5-methylcytosinedependent site-specific DNA endonucleases, are of special interest.  相似文献   

9.
Predicting complex human phenotypes from genotypes is the central concept of widely advocated personalized medicine, but so far has rarely led to high accuracies limiting practical applications. One notable exception, although less relevant for medical but important for forensic purposes, is human eye color, for which it has been recently demonstrated that highly accurate prediction is feasible from a small number of DNA variants. Here, we demonstrate that human hair color is predictable from DNA variants with similarly high accuracies. We analyzed in Polish Europeans with single-observer hair color grading 45 single nucleotide polymorphisms (SNPs) from 12 genes previously associated with human hair color variation. We found that a model based on a subset of 13 single or compound genetic markers from 11 genes predicted red hair color with over 0.9, black hair color with almost 0.9, as well as blond, and brown hair color with over 0.8 prevalence-adjusted accuracy expressed by the area under the receiver characteristic operating curves (AUC). The identified genetic predictors also differentiate reasonably well between similar hair colors, such as between red and blond-red, as well as between blond and dark-blond, highlighting the value of the identified DNA variants for accurate hair color prediction.  相似文献   

10.
11.
Interindividual variability in DNA damage response (DDR) dynamics may evoke differences in susceptibility to cancer. However, pathway dynamics are often studied in cell lines as alternative to primary cells, disregarding variability. To compare DDR dynamics in the cell line HepG2 with primary human hepatocytes (PHHs), we developed a HepG2-based computational model that describes the dynamics of DDR regulator p53 and targets MDM2, p21 and BTG2. We used this model to generate simulations of virtual PHHs and compared the results to those for PHH donor samples. Correlations between baseline p53 and p21 or BTG2 mRNA expression in the absence and presence of DNA damage for HepG2-derived virtual samples matched the moderately positive correlations observed for 50 PHH donor samples, but not the negative correlations between p53 and its inhibitor MDM2. Model parameter manipulation that affected p53 or MDM2 dynamics was not sufficient to accurately explain the negative correlation between these genes. Thus, extrapolation from HepG2 to PHH can be done for some DDR elements, yet our analysis also reveals a knowledge gap within p53 pathway regulation, which makes such extrapolation inaccurate for the regulator MDM2. This illustrates the relevance of studying pathway dynamics in addition to gene expression comparisons to allow reliable translation of cellular responses from cell lines to primary cells. Overall, with our approach we show that dynamical modeling can be used to improve our understanding of the sources of interindividual variability of pathway dynamics.  相似文献   

12.

Background

A commonplace analysis in high-throughput DNA methylation studies is the comparison of methylation extent between different functional regions, computed by averaging methylation states within region types and then comparing averages between regions. For example, it has been reported that methylation is more prevalent in coding regions as compared to their neighboring introns or UTRs, leading to hypotheses about novel forms of epigenetic regulation.

Results

We have identified and characterized a bias present in these seemingly straightforward comparisons that results in the false detection of differences in methylation intensities across region types. This bias arises due to differences in conservation rates, rather than methylation rates, and is broadly present in the published literature. When controlling for conservation at coding start sites the differences in DNA methylation rates disappear. Moreover, a re-evaluation of methylation rates at intronexon junctions reveals that the magnitude of previously reported differences is greatly exaggerated. We introduce two correction methods to address this bias, an inferencebased matrix completion algorithm and an averaging approach, tailored to address different underlying biological questions. We evaluate how analysis using these corrections affects the detection of differences in DNA methylation across functional boundaries.

Conclusions

We report here on a bias in DNA methylation comparative studies that originates in conservation rate differences and manifests itself in the false discovery of differences in DNA methylation intensities and their extents. We have characterized this bias and its broad implications, and show how to control for it so as to enable the study of a variety of biological questions.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1604-3) contains supplementary material, which is available to authorized users.  相似文献   

13.
DNA methylation is an indispensible epigenetic modification required for regulating the expression of mammalian genomes. Immunoprecipitation-based methods for DNA methylome analysis are rapidly shifting the bottleneck in this field from data generation to data analysis, necessitating the development of better analytical tools. In particular, an inability to estimate absolute methylation levels remains a major analytical difficulty associated with immunoprecipitation-based DNA methylation profiling. To address this issue, we developed a cross-platform algorithm-Bayesian tool for methylation analysis (Batman)-for analyzing methylated DNA immunoprecipitation (MeDIP) profiles generated using oligonucleotide arrays (MeDIP-chip) or next-generation sequencing (MeDIP-seq). We developed the latter approach to provide a high-resolution whole-genome DNA methylation profile (DNA methylome) of a mammalian genome. Strong correlation of our data, obtained using mature human spermatozoa, with those obtained using bisulfite sequencing suggest that combining MeDIP-seq or MeDIP-chip with Batman provides a robust, quantitative and cost-effective functional genomic strategy for elucidating the function of DNA methylation.  相似文献   

14.
Motivation: High-density DNA microarrays provide us with usefultools for analyzing DNA and RNA comprehensively. However, thebackground signal caused by the non-specific binding (NSB) betweenprobe and target makes it difficult to obtain accurate measurements.To remove the background signal, there is a set of backgroundprobes on Affymetrix Exon arrays to represent the amount ofnon-specific signals, and an accurate estimation of non-specificsignals using these background probes is desirable for improvementof microarray analyses. Results: We developed a thermodynamic model of NSB on shortnucleotide microarrays in which the NSBs are modeled by duplexformation of probes and multiple hypothetical targets. We fittedthe observed signal intensities of the background probes withthose expected by the model to obtain the model parameters.As a result, we found that the presented model can improve theaccuracy of prediction of non-specific signals in comparisonwith previously proposed methods. This result will provide auseful method to correct for the background signal in oligonucleotidemicroarray analysis. Availability: The software is implemented in the R languageand can be downloaded from our website (http://www-shimizu.ist.osaka-u.ac.jp/shimizu_lab/MSNS/). Contact: furusawa{at}ist.osaka-u.ac.jp Supplementary information: Supplementary data are availableat Bioinformatics online. The authors wish it to be known that, in their opinion, thefirst two authors should be regarded as joint First Authors. Associate Editor: Trey Ideker  相似文献   

15.
16.
Alternative splicing is regulated by splicing factors that serve as positive or negative effectors, interacting with regulatory elements along exons and introns. Here we present a novel computational method for genome-wide mapping of splicing factor binding sites that considers both the genomic environment and the evolutionary conservation of the regulatory elements. The method was applied to study the regulation of different alternative splicing events, uncovering an interesting network of interactions among splicing factors.  相似文献   

17.
The majority of congenital heart defects (CHDs) are thought to result from the interaction between multiple genetic, epigenetic, environmental, and lifestyle factors. Epigenetic mechanisms are attractive targets in the study of complex diseases because they may be altered by environmental factors and dietary interventions. We conducted a population based, case-control study of genome-wide maternal DNA methylation to determine if alterations in gene-specific methylation were associated with CHDs. Using the Illumina Infinium Human Methylation27 BeadChip, we assessed maternal gene-specific methylation in over 27,000 CpG sites from DNA isolated from peripheral blood lymphocytes. Our study sample included 180 mothers with non-syndromic CHD-affected pregnancies (cases) and 187 mothers with unaffected pregnancies (controls). Using a multi-factorial statistical model, we observed differential methylation between cases and controls at multiple CpG sites, although no CpG site reached the most stringent level of genome-wide statistical significance. The majority of differentially methylated CpG sites were hypermethylated in cases and located within CpG islands. Gene Set Enrichment Analysis (GSEA) revealed that the genes of interest were enriched in multiple biological processes involved in fetal development. Associations with canonical pathways previously shown to be involved in fetal organogenesis were also observed. We present preliminary evidence that alterations in maternal DNA methylation may be associated with CHDs. Our results suggest that further studies involving maternal epigenetic patterns and CHDs are warranted. Multiple candidate processes and pathways for future study have been identified.  相似文献   

18.
The morphological and biological characteristics of ectothermic vertebrates are known to be strongly influenced by environmental conditions, particularly temperature. Epigenetic mechanisms such as DNA methylation have been reported to contribute to the phenotypic plasticity observed in vertebrates in response to environmental changes. Additionally, DNA methylation is a dynamic process that occurs throughout vertebrate ontogeny and it has been associated with the activation and silencing of gene expression during post-embryonic development and metamorphosis. In this study, we investigated genome-wide DNA methylation profiles during turbot metamorphosis, as well as the epigenetic effects of temperature on turbot post-embryonic development. Fish growth and rates of development were greatly affected by rearing temperature. Thus, turbot raised at ambient temperature (18 °C) achieved greater body weights and progressed through development more quickly than those reared at a colder temperature (14 °C). Genome-wide DNA methylation dynamics analyzed via a methylation-sensitive amplified polymorphism (MSAP) technique were not significantly different between animals reared within the two different thermal environments. Furthermore, comparisons between phenotypically similar fish revealed that genome-wide DNA methylation profiles do not necessarily correlate with specific developmental stages in turbot.  相似文献   

19.
DNA mutations are the inevitable consequences of errors that arise during replication and repair of DNA damage. Because of their random and infrequent occurrence, quantification and characterization of DNA mutations in the genome of somatic cells has been difficult. Random, low-abundance mutations are currently inaccessible by standard high-throughput sequencing approaches because they cannot be distinguished from sequencing errors. One way to circumvent this problem and simultaneously account for the mutational heterogeneity within tissues is whole genome sequencing of a representative number of single cells. Here, we show elevated mutation levels in single cells from Drosophila melanogaster S2 and mouse embryonic fibroblast populations after treatment with the powerful mutagen N-ethyl-N-nitrosourea. This method can be applied as a direct measure of exposure to mutagenic agents and for assessing genotypic heterogeneity within tissues or cell populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号