首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evaluation of 130 accessions of rapeseed‐mustard germplasm grown at the National Bureau of Plant Genetic Resources, New Delhi, India during the winter season (2011–2012) revealed the occurrence of a leaf curl disease in seven accessions. The occurrence of the disease was observed in another 62 of 525 accessions evaluated during 2012–2013. The association of a monopartite begomovirus and betasatellite was established with the symptomatic plants by whitefly transmission and PCR amplification. The complete nucleotide sequences of the begomovirus (JX270684, 2745 nucleotides), obtained by rolling circle amplification, showed the highest sequence identity (98.1%) with the weed‐infecting begomovirus, Croton yellow vein mosaic virus. Analysis of recombination indicated the probable occurrence of many overlapping inter‐ and intraspecific recombination events. The sequence of betasatellite (JX270685, 1355 nucleotides) showed the highest sequence identity (95.7%) with Croton yellow vein mosaic betasatellite. Begomoviruses were not previously known to naturally infect rapeseed‐mustard. This is the first report of the emergence of a weed‐infecting begomovirus–betasatellite complex in rapeseed‐mustard germplasm in India and raises the concern on utilization of such susceptible germplasm in crop improvement programmes.  相似文献   

2.
Leaf curl disease symptoms were observed in tomato crop grown in a tomato field at Matera district of Bahraich, India, in March 2013 with an 85% disease incidence. The infected plants exhibited leaf curl symptoms accompanied with puckering, vein swelling and stunting of the whole plant. PCR carried out with begomovirus coat protein gene and DNA beta‐specific primer sets resulted in positive amplification of ~775 bp and 1.35 kbp, respectively, with all symptom‐bearing plant samples. BLASTn and phylogenetic analyses of CP gene sequences showed highest and close relationship with Croton yellow vein mosaic virus (CYVMV) isolates, while the phylogenetic study of betasatellite sequence showed distinct relationships with other begomovirus associated betasatellites reported from India and abroad. This is a first report of a CYVMV associated with tomato leaf curl disease in India.  相似文献   

3.
The Indian cassava mosaic virus (ICMV) was transmitted by the whitefly Bemisia tabaci and sap inoculation. ICMV was purified from cassava and from systemically infected Nicotiana benthamiana leaves. Geminate particles of 16–18 × 30 nm in size were observed by electron microscopy. The particles contained a single major protein of an estimated molecular weight of 34,000. Specific antiserum trapped geminate particles from the extracts of infected cassava and N. benthamiana plants in ISEM test. The virus was detected in crude extracts of infected cassava, ceara rubber, TV. benthamiana and N. tabacum cv. Jayasri plants by ELISA. ICMV appeared serologically related to the gemini viruses of Acalypha yellow mosaic, bhendi yellow vein mosaic, Croton yellow vein mosaic, Dolichos yellow mosaic, horsegram yellow mosaic, Malvastrum yellow vein mosaic and tobacco leaf curl.  相似文献   

4.
Horsegram yellow mosaic disease was shown to be caused by a geminivirus; horsegram yellow mosaic virus (HYMV). The virus could not be transmitted by mechanical sap inoculation. Leaf dip and purified virus preparations showed geminate virus particles, measuring 15-18 * 30 nm. An antiserum for HYMV was produced and in enzyme-linked immunosorbent assay (ELISA) and immunosorbent electron microscopy (ISEM) tests HYMV was detected in leaf extracts of fieldinfected bambara groundnut, french bean, groundnut, limabean, mungbean, pigeonpea and soybean showing yellow mosaic symptoms. Bemisia tabaci fed on purified HYMV through a parafilm membrane transmitted the virus to all the hosts listed above but not to Ageratum conyzoides, okra, cassava, cowpea, Croton bonplandianus, Lab-lab purpureus, Malvastrum coromandalianum and tomato. No reaction was obtained in ELISA and ISEM tests between HYMV antibodies and extracts of plants diseased by whitefly-transmitted agents in India such as A. conyzoides yellow mosaic, okra yellow vein mosaic, C. bonplandianus, yellow vein mosaic, M. coromandalianum yellow vein mosaic, tomato leaf curl and cassava mosaic. HYMV was also not found to be related serologically to bean golden mosaic, virus.  相似文献   

5.
Kidney bean (Phaseolus vulgaris) plants exhibiting foliar yellow mosaic symptoms and some leaf crumpling were identified in the Al Batinah region of Oman. Rolling circle amplification and polymerase chain reaction identified a bipartite begomovirus (family Geminiviridae) and a betasatellite in association with the symptomatic plants. Analysis of full‐length sequences showed the virus to be Mungbean yellow mosaic Indian virus (MYMIV) and the betasatellite Tomato leaf curl betasatellite (ToLCB). This is the first identification of a legume‐adapted begomovirus in Oman and the first identification of MYMIV in association with the betasatellite ToLCB. The isolate of MYMIV from Oman shows the greatest levels of sequence identity to isolates occurring in South Asia and South‐East Asia, suggesting that the virus has only recently been introduced. The significance of these findings is discussed.  相似文献   

6.
Two samples (YC7, YC27) of Nicotiana tabacum showing leaf curling, vein swelling and enations on undersides of leaves were collected in the Fujian Province of China in 2007. Virus isolates YC7‐1 and YC7‐2 (associated with betasatellite, YC7‐2β) were detected in both samples. The complete DNA‐A sequence of YC7‐1 (FJ869907) comprised 2741 nucleotides (nt). The complete DNA‐A (FJ869908) and betasatellite (FJ869909) sequence of YC7‐2 consisted of 2754 and 1344 nt, respectively. YC7‐1 had the highest nucleotide sequence identity (97.3%) with Papaya leaf curl Guangdong virus (PaLCuGuV‐[CN:Gd2:02], AJ558122). YC7‐2 had the highest sequence identity (90.1%) with Ageratum yellow vein virus (AYVV‐TW[TW:Tai:99], AF307861) and its betasatellite (96.5%) with Ageratum yellow vein betasatellite (AYVB‐[TW:CHu:02], AJ542495). These indicate that YC7‐1 and YC7‐2 are isolates of PaLCuGuV and AYVV, respectively. Symptoms including leaf curling, vein swelling and enations on undersides of leaves were observed in N. tabacum and N. glutinosa when infected by whiteflies with sample YC7 as the viral source under greenhouse conditions. PCR results showed that these infected plants contained both YC7‐1 and YC7‐2/YC7‐2β. To our knowledge, this is the first report of PaLCuGuV and AYVV/AYVB co‐infecting N. tabacum in China.  相似文献   

7.
Yellow mosaic disease is the major limitation in the production of grain legumes in India. This disease is caused by bipartite begomovirus, Mungbean yellow mosaic virus. In addition to the bipartite genomic components, the yellow mosaic disease affected urdbean plants which contain satellite like DNA-1 component called as alphasatellites. The present study has been attempted to characterise the alphasatellites associated with Mungbean yellow mosaic virus. Nucleotide sequence analysis of alphasatellites showed 98% identity with Vernonia yellow vein Fijian alphasatellite, VYVFA (JF733780). Since the sequence identity is more than 98%, the threshold value for demarcation of alphasatellites species, the alphasatellites of the present study are named as Vernonia yellow vein Fijian alphasatellite. Comparison with other, alphasatellites shared 51–55% identity with alphasatellites associated with monopartite begomovirus and it shared only 41–42% identity with an unusual alphasatellites, DNA-2. This is the first report on characterisation of alphasatellites associated with Mungbean yellow mosaic virus.  相似文献   

8.
Whitefly transmitted begomoviruses (family Geminiviridae) are the major reason for significant yield losses of dicotyledonous crops in tropics and subtropics. Okra (Abelmoschus esculentus) is one of the important vegetable crops, and leaf curl disease caused by geminiviruses is the most important limiting factor for its production in Pakistan. Here, we report a new species of okra‐infecting begomovirus in south‐eastern region of Pakistan and the name Okra enation leaf curl virus (OELCuV) complex is proposed. This okra enation leaf curl disease complex (OELCuD) in Pakistan is found to be associated with Ageratum conyzoides symptomless alphasatellite (AConSLA). All efforts to clone the betasatellite were unsuccessful. Comprehensive sequence analyses suggest that intermalvaceous recombination between okra and cotton‐infecting begomoviruses resulted in the evolution of the new species. Surprisingly, Bhendi yellow vein mosaic virus (BYVMV) which has not been reported previously from Pakistan is the major parent while Cotton leaf curl Multan virus (CLCuMV) acts as a distant parent of the virus. Comparative recombination analysis also reveals that okra‐infecting begomoviruses from south and north‐western India is causing OELCuD in the Pakistan by recombining with CLCuMV at the Rep (1964–1513 nts). Recombination is common among geminiviruses and recombining of BYVMV and CLCuMV resulted in a new species: OELCuV. To the best of our knowledge, this evolution of a new species of okra‐infecting begomovirus is the first report of intermalvaceous recombination where Rep acts as the target region.  相似文献   

9.
Variable mosaic and yellow symptoms were often encountered in weeds growing during the summer of 1987 and 1988 in the Jordan Valley. Cucumber mosaic virus was recovered in the summer only from Dolicus lablab or from Solatium nigrum. In addition to the cucurbit weeds watermelon mosaic virus-2 occurred in Malva parviflora. Zucchini yellow mosaic virus was found in all tested cucurbit weeds except for Ecballium elaterium. Moreover this virus was isolated from Sysimbirium irio and Crepis aspera. Cucumber vein yellowing virus was recovered from some cucurbits with vein yellowing.  相似文献   

10.
Leaf curl and yellow vein mosaic viral disease is the major constraint on okra (Abelmoschus esculentus L.) production in India. Amplified fragment sequence of DNA-β showed highest similarity of 91.7% with Bhendi yellow vein mosaic virus-Tamil Nadu (AJ308425, NC_003405) and lowest similarity of 48.5% with OKLCV (NC_004093), whereas coat protein specific amplified sequence showed highest homology with isolate of Madurai, Haryana, Ludhiana and lowest homology of 92% with Mesta yellow vein mosaic Bahraich virus (MYVMBV) (EU360303). The results obtained in the present study confirm that both the viral diseases of okra reported in southern India are caused by a begomovirus associated with DNA-β in which the plants show leaf curl symptoms and never develops yellow vein mosaic and those plants which show yellow vein mosaic, never develops leaf curl symptoms even in the same rows and field. The okra leaf curl is an emerging virus disease in India.  相似文献   

11.
Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cubense race 4 (FOC4) results in vascular tissue damage and ultimately death of banana (Musa spp.) plants. Somaclonal variants of in vitro micropropagated banana can hamper success in propagation of genotypes resistant to FOC4. Early identification of FOC4 resistance in micropropagated banana plantlets is difficult, however. In this study, we identified sequence-characterized amplified region (SCAR) markers of banana associated with resistance to FOC4. Using pooled DNA from resistant or susceptible genotypes and 500 arbitrary 10-mer oligonucleotide primers, 24 random amplified polymorphic DNA (RAPD) products were identified. Two of these RAPD markers were successfully converted to SCAR markers, called ScaU1001 (GenBank accession number HQ613949) and ScaS0901 (GenBank accession number HQ613950). ScaS0901 and ScaU1001 could be amplified in FOC4-resistant banana genotypes (“Williams 8818-1” and Goldfinger), but not in five tested banana cultivars susceptible to FOC4. The two SCAR markers were then used to identify a somaclonal variant of the genotype “Williams 8818-1”, which lost resistance to FOC4. Hence, the identified SCAR markers can be applied for a rapid quality control of FOC4-resistant banana plantlets immediately after the in vitro micropropagation stage. Furthermore, ScaU1001 and ScaS0901 will facilitate marker-assisted selection of new banana cultivars resistant to FOC4.  相似文献   

12.
Particles resembling those of geminiviruses were found by immunosorbent electron microscopy in extracts of plants infected in India with bhendi yellow vein mosaic, croton yellow vein mosaic, dolichos yellow mosaic, horsegram yellow mosaic, Indian cassava mosaic and tomato leaf curl viruses. All these viruses were transmitted by Bemisia tabaci whiteflies, all reacted with at least one out of ten monoclonal antibodies to African cassava mosaic virus (ACMV), and all reacted with a probe for ACMV DNA-1, but scarcely or not at all with a full-length probe for ACMV DNA-2. Most of the viruses were distinguished by their host ranges when transmitted by whiteflies, and the rest could be distinguished by their pattern of reactions with the panel of monoclonal antibodies. Horsegram yellow mosaic virus was distinguished from Thailand mung bean yellow mosaic virus by its lack of sap transmissibility, ability to infect Arachis hypogaea, failure to react strongly with the probe for ACMV DNA-2 and its pattern of reactions with the monoclonal antibodies. Structures resembling a ‘string of pearls’, but not geminate particles, were found in leaf extracts containing malvastrum yellow vein mosaic virus. Such extracts reacted with two of the monoclonal antibodies, suggesting that this whitefly-transmitted virus too is a geminivirus. All seven viruses from India can therefore be considered whitefly-transmitted geminiviruses.  相似文献   

13.
Tomato (Solanum lycopersicum) plants exhibiting yellowing, curling and stunting symptoms were identified in fields of the Tawoos Agricultural Systems, in Al‐Batinah in Oman. Cloning and sequencing of restriction endonuclease digested rolling circle amplified viral DNA identified a cotton begomovirus (family Geminiviridae) associated with the symptomatic tomato plants. Detailed analysis of complete sequences showed the virus to be a previously unknown strain of Cotton leaf curl Gezira virus (CLCuGeV) in association with the betasatellite Tomato leaf curl betasatellite (ToLCB). The new CLCuGeV strain, for which the name “Al Batinah” strain is suggested, has the greatest levels of sequence identity (91.9%) to an isolate of CLCuGeV recently reported from the neighbouring United Arab Emirates. Additionally, CLCuGeV‐Al Batinah was shown to have a recombinant origin with sequences donated by an African cassava mosaic virus‐like parent. This is the first identification of this Malvaceae‐adapted begomovirus in tomato. Although ToLCB is common in Oman, being one of only two betasatellites identified there so far, this is the first identification of this betasatellite with CLCuGeV. The significance of these findings is discussed.  相似文献   

14.
Eggplant (Solanum melongena L.) plants with severe leaf mosaic and mottling were found in a kitchen garden near cotton fields in Pakistan. Rolling Circle Amplification products from six of the naturally infected eggplant plants, subjected to PCR, successfully amplified expected products of 2.8 and 1.4 kb using begomovirus and betasatellite‐specific primers, respectively. Based on 99% nucleotide sequence identity, the virus was identified as a variant of Cotton leaf curl Burewala virus (CLCuBuV) (GenBank Accession No. HG428709). Likewise, the sequenced betasatellite with a maximum of 97% nucleotide sequence identity was recognized as a new variant of Cotton leaf curl Multan betasatellite (CLCuMuBMul) (GenBank Accession No. HG428708). The symptomatic induction of Cotton leaf curl disease in CLCuBuV susceptible cotton genotype CIM‐496 by back‐indexing further confirmed the presence of CLCuBuV in eggplant. This is the first report of CLCuBuV and its associate betasatellite in naturally infected plants of eggplant.  相似文献   

15.
Weeds and ornamental plants serve as a reservoir for geminiviruses and contribute to their dissemination, genome recombination and/or satellite capture. Ornamental sunflower (Helianthus spp.) plants exhibiting mild leaf curl symptoms were subjected to begomovirus and DNA-satellites isolation. The full-length genome of the isolated begomovirus clone (Od1-A) showed 96.8% nucleotide (nt) sequence identity with mesta yellow vein mosaic virus (MeYVMV; accession no. FR772081) whereas, alphasatellite (Od1-a) and betasatellite (Od1-b) clones showed their highest nt sequence identities at 97.4% and 98.2% with ageratum enation alphasatellite (AEA; accession no. FR772085) and papaya leaf curl betasatellite (PaLCuB; accession. no. LN878112), respectively. The evolutionary relationships, average evolutionary divergence and the recombination events were also inferred. The MeYVMV exhibited 9.5% average evolutionary divergence and its CP and Rep had 9.3% and 12.2%, concomitantly; the alphasatellite and the betasatellite had 8.3% and 5.2%, respectively. The nt substitution rates (site-1 year−1) were found to be 6.983 × 10-04 and 5.702 × 10-05 in the CP and Rep of MeYVMV, respectively. The dN/dS ratio and the Tajima D value of MeYVMV CP demonstrated its possible role in host switching. The absolute quantification of the begomovirus demonstrated that mild symptoms might have a correlation with low virus titer. This is the first identification of MeYVMV and associated DNA-satellites from ornamental sunflower in Pakistan. The role of sequence divergence, recombination and importance of MeYVMV along with DNA-satellites in extending its host range is discussed.  相似文献   

16.
Potyviruses are a common threat for snap bean production in Bulgaria. During virus surveys of bean plots in the south central region, we identified an isolate of Clover yellow vein virus (ClYVV), designated ClYVV 11B, by indirect ELISA and RT‐PCR causing severe mosaic symptoms and systemic necrosis. Indirect and direct ELISA using ClYVV antisera differentiated the ClYVV isolate from Bean yellow mosaic virus (BYMV), but serological analysis could not distinguish the Bulgarian isolate ClYVV 11B from an Italian ClYVV isolate used as a reference (ClYVV 505/7). RT‐PCR analyses with specific primers revealed that both isolates were ClYVV. Sequence analysis of an 800 bp fragment corresponding to the coat protein coding region showed 94% identity at the nucleotide level between the two isolates. Phylogenetic analyses of aligned nucleotide sequences available in the database confirmed the existence of two groups of isolates, but ClYVV 11B and ClYVV505/7 belonged to the same group. We compared the virulence of both isolates on a set of differential cultivars and 19 bean breeding lines resistant to Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus (BCMNV): Bulgarian isolate ClYVV 11B was able to infect systemically all tested bean differential cultivars and breeding lines including those with genotypes Ibc3 and Ibc22; Italian isolate ClYVV 505/7 was not able to infect systemically some differentials with genotypes bc‐ubc1, bc‐ubc22, bc‐ubc2bc3, Ibc12, Ibc22, Ibc3. The role of bc3 gene as a source of resistance to potyviruses is discussed.  相似文献   

17.
Clitoria yellow vein virus (CYW) was found in Clitoria ternatea and Abrus precatorius in coastal districts of Kenya, but was not detected in food legume crops. When transmitted by inoculation of sap, CYW infected many species in the Papilionaceae, commonly causing yellowing of secondary and smaller leaf veins. All the economically important food legumes grown in the area of occurrence were very susceptible, so that CYW is potentially very important. The virus also infected okra (Hibiscus esculentus) and species in the Solanaceae, but none of many species of Cucurbitaceae. CYW is serologically closely related to cocoa yellow mosaic and kennedya yellow mottle viruses, and more distantly to okra mosaic and desmodium yellow mottle viruses. Other properties of CYW^ typical of the tymoviruses include particle morphology (particle diameter c. 28 nm; two components) with sedimentation coefficients of 50S (top) and 109S (bottom); molecular weight of protein sub-units c. 20000; thermal inactivation point c. 72 oC; and longevity in vitro c. 3 wk.  相似文献   

18.
19.
A stock culture of cotton leaf curl virus from Pakistan (CLCuV-PK), was transmitted by whiteflies (Bemisia tabaci) to seven plant species, including French bean, okra, tobacco and tomato, and caused vein thickening and leaf curl symptoms. It was readily detected in triple antibody sandwich ELISA (TAS-ELIS A) by 11 out of 31 monoclonal antibodies raised against the particles of three other geminiviruses: African cassava mosaic, Indian cassava mosaic and okra leaf curl viruses. Reaction strength was enhanced when the tissue extraction fluid contained sodium sulphite. Minor variations in epitope profile were found among virus isolates from cotton (Gossypium hirsutum) collected from different districts in Pakistan over a 5-year period. These epitope profiles were distinguishable from that of cotton leaf curl virus from G. barbadense in southern India but indistinguishable from the profiles of viruses causing yellow vein disease of okra in India or Pakistan, or leaf curl of okra {Abelmoschus esculentus), Hibiscus tiliaceus, radish or sunflower in Pakistan, suggesting that these plants are putative natural hosts of CLCuV-PK. The viruses in cotton, and in okra with leaf curl or yellow vein symptoms, were also detected by PCR with three pairs of CLCuV-PK-specific primers. Five additional whitefly-transmitted geminiviruses were found among isolates from 11 other naturally-infected species in Pakistan, and were distinguished by their epitope profiles. These viruses were associated, respectively, with tobacco leaf curl, squash yellow blotch, tomato yellow leaf curl, watermelon leaf crinkle and soybean yellow mosaic diseases. The first four of these viruses were detected readily by PCR with geminivirus general primers but only weakly, if at all, with two pairs of CLCuV-PK-specific primers. Pakistani crops are infected with a range of distinguishable but relatively closely related whitefly-transmitted geminiviruses, some of which resemble those found in India.  相似文献   

20.

Background

Emerging whitefly transmitted begomoviruses are major pathogens of vegetable and fibre crops throughout the world, particularly in tropical and sub-tropical regions. Mutation, pseudorecombination and recombination are driving forces for the emergence and evolution of new crop-infecting begomoviruses. Leaf curl disease of field grown radish plants was noticed in Varanasi and Pataudi region of northern India. We have identified and characterized two distinct monopartite begomoviruses and associated beta satellite DNA causing leaf curl disease of radish (Raphanus sativus) in India.

Results

We demonstrate that RaLCD is caused by a complex of two Old World begomoviruses and their associated betasatellites. Radish leaf curl virus-Varanasi is identified as a new recombinant species, Radish leaf curl virus (RaLCV) sharing maximum nucleotide identity of 87.7% with Tomato leaf curl Bangladesh virus-[Bangladesh:2] (Accession number AF188481) while the virus causing radish leaf curl disease-Pataudi is an isolate of Croton yellow vein mosaic virus-[India] (CYVMV-IN) (Accession number AJ507777) sharing 95.8% nucleotide identity. Further, RDP analysis revealed that the RaLCV has a hybrid genome, a putative recombinant between Euphorbia leaf curl virus and Papaya leaf curl virus. Cloned DNA of either RaLCV or CYVMV induced mild leaf curl symptoms in radish plants. However, when these clones (RaLCV or CYVMV) were individually co-inoculated with their associated cloned DNA betasatellite, symptom severity and viral DNA levels were increased in radish plants and induced typical RaLCD symptoms. To further extend these studies, we carried out an investigation of the interaction of these radish-infecting begomoviruses and their associated satellite, with two tomato infecting begomoviruses (Tomato leaf curl Gujarat virus and Tomato leaf curl New Delhi virus). Both of the tomato-infecting begomoviruses showed a contrasting and differential interaction with DNA satellites, not only in the capacity to interact with these molecules but also in the modulation of symptom phenotypes by the satellites.

Conclusion

This is the first report and experimental demonstration of Koch's postulate for begomoviruses associated with radish leaf curl disease. Further observations also provide direct evidence of lateral movement of weed infecting begomovirus in the cultivated crops and the present study also suggests that the exchange of betasatellites with other begomoviruses would create a new disease complex posing a serious threat to crop production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号