首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Callus cultures derived from isogenic lines of the tomato cultivars Moneymaker and Craigella, resistant or susceptible to F. oxysporum f. sp. lycopersici, were inoculated with Fusarium oxysporum f. sp. lycopersici race 1. Fungal growth was restricted on callus derived from resistant plants, after inoculation with a conidial suspension, whereas callus derived from susceptible plants was totally overgrown by the fungus within 7 days. The concentration of the phytoalexin rishitin was significantly higher in the callus culture derived from a resistant tomato line compared with the callus culture from a susceptible line, 2 and 3 days after inoculation with mycelium. The results of the experiments were compared with experiments with whole plants. Rishitin production as well as growth of the fungus was comparable with responses in plant-fungus interaction. Therefore callus culture may be useful in studying the interaction between tomato plants and race 1 of F. oxysporum f. sp. lycopersici.  相似文献   

2.
Tomato seeds were inoculated with the plant growth–promoting rhizobacteria Azospirillum brasilense FT326, and changes in parameters associated with plant growth were evaluated 15 days after inoculation. Azospirilla were localized on roots and within xylematic tissue. An increase in shoot and root fresh weight, main root hair length, and root surface indicated that inoculation with A. brasilense FT 326 resulted in plant growth improvement. The levels of indole-3-acetic acid (IAA) and ethylene, two of the phytohormones related to plant growth, were higher in inoculated plants. Exogenously supplied ethylene mimicked the effect of inoculation, and the addition of an inhibitor of its synthesis or of its physiological activity completely blocked A. brasilense growth promotion. Based on our results, we propose that the process of growth promotion triggered by A. brasilense inoculation involves a signaling pathway that has ethylene as a central, positive regulator.  相似文献   

3.
Root colonization with arbuscular mycorrhizal fungi (AMF) enhances plant resistance particularly against soil‐borne pathogenic fungi. In this study, mycorrhizal inoculation with Glomus mosseae (Gm) significantly alleviated tomato mould disease caused by the air‐borne fungal pathogen, Cladosporium fulvum (Cf). The disease index (DI) in local leaves (receiving pathogen inoculation) and systemic leaves (just above the local leaf without pathogen inoculation) was 36.4% and 11.7% in mycorrhizal plants, respectively, whereas DI was 59.6% and 36.4% in the corresponding leaves of AMF non‐inoculated plants, after 50 days of Gm inoculation, corresponding to 15 days after Cf inoculation by leaf infiltration. Foliar spray inoculation with Cf also revealed that AMF pre‐inoculated plants had a higher resistance against subsequent pathogen infection, where the DI was 41.3% in mycorrhizal plants vs. 64.4% in AMF non‐inoculated plants. AMF‐inoculated plants showed significantly higher fresh and dry weight than non‐inoculated plants under both control (without pathogen) and pathogen treatments. AMF‐inoculated plants exhibited significant increases in activities of superoxide dismutase and peroxidase, along with decreases in levels of H2O2 and malondialdehyde, compared with non‐inoculated plants after pathogen inoculation. AMF inoculation led to increases in total chlorophyll contents and net photosynthesis rate as compared with non‐inoculated plants under control and pathogen infection. Pathogen infection on AMF non‐inoculated plants led to decreases in chlorophyll fluorescence parameters. However, pathogen infection did not affect these parameters in mycorrhizal plants. Taken together, these results indicate that AMF colonization may play an important role in plant resistance against air‐borne pathogen infection by maintaining redox poise and photosynthetic activity.  相似文献   

4.
Root inoculation of tomato (Solanum lycopersicum) plants with a Bacillus subtilis strain BEB-DN (BsDN) isolated from the rhizosphere of cultivated potato plants was able to promote growth and to generate an induced systemic resistance (ISR) response against virus-free Bemisia tabaci. Growth promotion was evident 3 weeks after inoculation. No changes in oviposition density, preference and nymphal number in the early stages of B. tabaci development were observed between BsDN-treated plants and control plants inoculated with a non-growth promoting Bs strain (PY-79), growth medium or water. However, a long-term ISR response was manifested by a significantly reduced number of B. tabaci  pupae developing into adults in BsDN-treated plants. The observed resistance response appeared to be a combination of jasmonic acid (JA) dependent and JA-independent responses, since the BsDN-related retardation effect on B. tabaci development was still effective in the highly susceptible spr2 tomato mutants with an impaired capacity for JA biosynthesis. A screening of 244 genes, 169 of which were previously obtained from subtractive-suppressive-hybridization libraries generated from B. tabaci-infested plants suggested that the BsDN JA-dependent ISR depended on an anti-nutritive effect produced by the simultaneous expression of genes coding principally for proteases and proteinase inhibitors, whereas the JA-independent ISR observed in the spr2 background curiously involved the up-regulation of several photosynthetic genes, key components of the phenyl-propanoid and terpenoid biosynthetic pathways and of the Hsp90 chaperonin, which probably mediated pest resistance response(s), in addition to the down-regulation of pathogenesis and hypersensitive response genes.  相似文献   

5.
The effects of five plant growth promoting rhizobacteria on the biological nitrogen fixation (BNF), nodulation, and growth promotion of plants of Lupinus albus cv. Multolupa were investigated. The plants were selected for their capacity to use 1‐aminocyclopropane‐1‐carboxylic acid (ACC) as the sole source of nitrogen. Four strains belonged to the genus Pseudomonas (Luc 1, Luc 2, Luc 3, and Luc 4) and one (Luc 5) belonged to the genus Bacillus. Three patterns of inoculation were examined. In the first pattern, PGPRs were inoculated seven days before being inoculated with B. japonicum. In the second pattern, PGPRs and B. japonicum were co‐inoculated, and in the last pattern, PGPRs were inoculated seven days after being inoculated with B. japonicum. The plants were sampled 30 and 45 days after being inoculated with B. japonicum (T1 and T2). In the first pattern of inoculation, Luc 5 significantly increased the biological nitrogen fixation compared to the control at the first sampling time, as did Luc 1 and Luc 4 at the second sampling time. In the second pattern of inoculation, Luc 5 negatively effected the biological nitrogen fixation at both sampling times. In the third pattern of inoculation, all PGPRs caused a decrease in the nitrogen content of the plants compared to the control. The results obtained according to the patterns of inoculation showed that the mechanisms of action of the effects and routes used by Gram‐negative and Gram‐positive strains were clearly different. Competition between PGPRs and B. japonicum, competition for the niches in the rhizoplane, production of auxins, and induction of systemic resistance (ISR) by the production of siderophores or by lipopolysaccharides present in the outer membrane (LPS) are discussed as probable reasons for the effects observed.  相似文献   

6.
The effects of Glomus mosseae and Paecilomyces lilacinus on Meloidogyne javanica of tomato were tested in a greenhouse experiment. Chicken layer manure was used as a carrier substrate for the inoculum of P. lilacinus. The following parameters were used: gall index, average number of galls per root system, plant height, shoot and root weights. Inoculation of tomato plants with G. mosseae did not markedly increase the growth of infected plants with M. javanica. Inoculation of plants with G. mosseae and P. lilacinus together or separately resulted in similar shoots and plant heights. The highest root development was achieved when mycorrhizal plants were inoculated with P. lilacinus to control root-knot nematode. Inoculation of tomato plants with G. mosseae suppressed gall index and the average number of galls per root system by 52% and 66%, respectively, compared with seedlings inoculated with M. javanica alone. Biological control with both G. mosseae and P. lilacinus together or separately in the presence of layer manure completely inhibited root infection with M. javanica. Mycorrhizal colonization was not affected by the layer manure treatment or by root inoculation with P. lilacinus. Addition of layer manure had a beneficial effect on plant growth and reduced M. javanica infection.  相似文献   

7.
A greenhouse test was carried out to examine the effects on tomato growth of application of purple non-sulfur bacterium Rhodopseudomonas sp. which had enhanced germination and growth of tomato seed under axenic conditions. The shoot length of tomato plant inoculated by Rhodopseudomonas sp. KL9 increased by 34.6% compared to that of control in 8 weeks of cultivation. During the same period, this strain increased 120.6 and 78.6% of dry weight of shoot and root of tomato plants, respectively. The formation ratio of tomato fruit from flower was also raised by inoculation of KL9. In addition, Rhodopseudomonas sp. KL9 treatment enhanced the fresh weight and lycopene content in the harvested tomato fruits by 98.3 and 48.3%, respectively compared to those of the uninoculated control. When the effect on the indigenous bacterial community and fate of the inoculated Rhodopseudomonas sp. KL9 were monitored by denaturing gradient gel electrophoresis analysis, its application did not affect the native bacterial community in tomato rhizosphere soil, but should be repeated to maintain its population size. This bacterial capability may be applied as an environment-friendly biofertilizer to cultivation of high quality tomato and other crops including lycopene-containing vegetables and fruits.  相似文献   

8.
Rhizobia have the ability to increase growth of non-legume plants due to the production of phytohormones and protection of plant from diseases and pathogens. However, the practical use of these beneficial bacteria sometimes fails because of their inability to effectively colonize rhizoplane and rhizosphere of inoculated plants. We chose the legume lectins as a factor that allows plants to form associative symbiosis with rhizobia. To test the fact that transgenic tobacco, tomato and rape roots with pea lectin gene may affect specific interaction with rhizobia, transgenic roots have been artificially inoculated by fluorescently-labeled pea rhizobia R. leguminosarum and east galega rhizobia Rhizobium galega. Microscopic and microbiological tests have shown that the number of adhered R. leguminosarum onto tobacco, rape and tomato roots which transformed with pea lectin gene is higher in comparison with the control, but no such effect through inoculation of these plants with R. galegae has been found. This confirms the interaction of R. leguminosarum with pea lectin at the surface of transformed roots. Undoubtedly, the improvement of recognition and attachment processes by using lectins can lead to the achievement of a stable associative relationship between non-symbiotic plants and rhizobia.  相似文献   

9.
The effects of mycorrhisation and inoculation with soil bacteria on the disease caused by Meloidogyne incognita on tomato were studied in pots under greenhouse conditions. Efficacy in promoting plant growth and reducing disease severity and final nematode densities were evaluated for two arbuscular mycorrhizal fungi (AMF; Funneliformis mosseae and Rhizophagus irregularis), three soil bacteria with different living strategies (the endophyte Bacillus megaterium, a rhizospheric Pseudomonas putida and the hyperparasite of nematodes Pasteuria penetrans) and combinations of the fungi and bacteria. In M. incognita-infested plants, F. mosseae increased tomato growth more than R. irregularis, and plants inoculated with B. megaterium presented higher shoot fresh weight than with P. putida or P. penetrans, but dual inoculation did not improve tomato growth more than single inoculations. Disease severity and final nematode densities were reduced by F. mosseae compared to non-mycorrhizal plants. B. megaterium and P. penetrans reduced both the root galling and the final nematode densities compared to treatments without bacteria. P. penetrans reduced final nematode densities more than B. megaterium or P. putida. Dual inoculation of AMF and P. penetrans showed the highest efficacy in reducing the final nematode densities in tomato.  相似文献   

10.
Summary Seed of maize, tomato, and wheat was inoculated with cultures of Azotobacter, Clostridium, and a nitrogen-fixing facultative Bacillus and grown in a nutrient-deficient sand and a highly fertile silt loam.In sand, wheat showed a significant positive response to inoculation with Azotobacter and Clostridium but maize and tomato were unaffected by inoculation.When inoculated seed was planted in Lima silt loam there were significant increases in the growth of maize, tomato, and wheat to treatment with Clostridium, inoculated maize and wheat responded to Azotobacter inoculation while only wheat responded to inoculation with the facultative Bacillus.In pure-culture studies of the ability of these cultures to establish upon plant roots it was shown that Azotobacter did not colonize the roots of lucerne, maize, tomato, or wheat to any great extent. Bacillus and Clostridium were moderate colonizers of plant roots reaching from 1 to 20 per cent the levels reached byPseudomonas fluorescens on the same plants.The author held a Fulbright Travel Grant for the 1961–1962 academic year.Agronomy Paper No. 595. Supported in part by funds provided by Regional Research Project NE 39.  相似文献   

11.
《Journal of Asia》2022,25(3):101971
The symbiotic relationship between plants and arbuscular mycorrhizal fungi (AMF) improves plant growth and increases its resistance to pests and diseases. Mycorrhizal fungi are among the specialized fungi associated with the rhizosphere and are completely dependent on plant organic carbon. In this research tomato, Solanum lycopersicum L. was used as the host plant to evaluate the interaction effects between inoculation of tomato plant with AMF and feeding of tomato leaf miner, Tuta absoluta (Meyrick). In addition, plant growth parameters and growth rate of insect were assessed. The mycorrhizal treatment included a mixture of four fungal species (Funneliformis mosseae, Rhizophagus intraradices, R. irregularis and Glomus iranicus). The results of the experiment showed that tomato plant roots were well colonized (66.29%) by AMF and there was a significant mutual relationship between the insects feeding on the plants and the fungi. Feeding by the insects on plants inoculated with the fungus increased percentage of colonization by AMF in plants infested with the insect as compared to the control plants. The results also indicated that growth parameters and phosphorus content of the plants inoculated with fungi significantly increased compared to the control group. Moreover, significantly lower growth rate and consumption index observed in the T. absoluta larvae were fed on the leaves of plants treated with AMF compared to leaves of plants not inoculated with AMF.  相似文献   

12.
  • Salinity is now an increasingly serious environmental issue that affects the growth and yield of many plants.
  • In the present work, the influence of inoculation with the symbiotic fungus, Piriformospora indica, on gas exchange, water potential, osmolyte content, Na/K ratio and chlorophyll fluorescence of tomato plants under three salinity levels (0, 50, 100 and 150 mm NaCl) and three time periods (5, 10 and 15 days after exposure to salt) was investigated.
  • Results indicate that P. indica inoculation improved growth parameters of tomato under salinity stress. This symbiotic fungus significantly increased photosynthetic pigment content under salinity, and more proline and glycine betaine accumulated in inoculated roots than in non‐inoculated roots. P. indica further significantly improved K+ content and reduced Na+ level under salinity treatment. After inoculation with the endophytic fungus, leaf physiological parameters, such as water potential, net photosynthesis, stomatal conductance and transpiration, were all higher under the salt concentrations and durations compared with controls without P. indica. With increasing salt level and salt treatment duration, values of F0 and qP increased but Fm, Fv/Fm, F′v/F′m and NPQ declined in the controls, while inoculation with P. indica improved these values.
  • The results indicate that the negative effects of NaCl on tomato plants were alleviated after P. indica inoculation, probably by improving physiological parameters such as water status and photosynthesis.
  相似文献   

13.
A. W. Spanjers  E. S. Pierson 《Planta》1982,155(3):193-198
Ludwigia perennis L. infected with rice necrosis mosaic virus (RNMV) showed an increase in both shoot growth and leaf size, along with characteristic chlorotic lesions on leaves. The promotion of growth over the controls extended over a considerable period of time (70 d). Inoculation with RNMV resulted in increased plant height, leaf size, stem diameter, and number and size of fiber bundles in Corchorus olitorius L., C. capsularis L., Hibiscus sabdariffa L. and H. cannabinus L.Abbreviation RNMV rice necrosis mosaic virus  相似文献   

14.
15.
由灰葡萄孢(Botrytis cinerea)引起的灰霉病是番茄生产中最重要的病害之一,当前使用的杀菌剂因药物残留、病原菌抗药性及食品安全等原因逐渐受到限制。因此,利用拮抗微生物的生物防治逐渐成为灰霉病防控的有效策略。【目的】从番茄植株体内筛选具有抗病促生特性内生菌株并对其生防潜力进行评估,为开发番茄灰霉病生物防治新策略提供理论依据。【方法】采用组织分离法在番茄植株不同部位分离出内生细菌、真菌,结合16SrRNA和ITS序列分析,对候选菌株进行初步鉴定;通过菌株对峙培养、果实离体接种筛选对灰葡萄孢具有拮抗活性的内生菌;进一步测定菌株分泌生长素、嗜铁素的能力及其对拟南芥和番茄幼苗生长的促生特性。【结果】从番茄植株不同部位共分离出72株内生细菌和31株内生真菌,通过平板对峙法筛选出1株对多种病原菌具有较好抑菌活性的内生细菌FQ-G3,分子鉴定为Bacillus velezensis。FQ-G3对灰葡萄孢抑菌率达80.93%,并显著抑制灰葡萄孢在番茄果实上的扩展。该菌株能够分泌生长素、蛋白酶和嗜铁素,且对拟南芥、番茄幼苗具有明显的促生效果。【结论】本研究表明分离自番茄植株的内生菌FQ-G3具...  相似文献   

16.
Bacterial spot disease caused by Xanthomonas campestris pv. vesicatoria is one of the most important destructive diseases of tomato in many parts of the agricultural world. Therefore, the present study aims to determine the effects of Bacillus subtilis CBR05 inoculation on bacterial spot disease severity and the induction of defence-related enzymes response in tomato. Tomato leaves were evaluated to determine the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and polyphenol oxidase (PPO)) and the content of malondialdehyde (MDA). A reduction in bacterial spot severity was observed in plants inoculated with B. subtilis, compared with those of uninoculated controls. A significant increase in SOD, CAT, POD, and PPO activities was observed in plants treated with B. subtilis after 24?h inoculation compared with non-inoculated pathogen control and mock-inoculated controls. Moreover, the MDA content was induced by pathogen infection, and its amount in B. subtilis inoculated plants was significantly lower than that in pathogen control. Our results suggest that early increases in antioxidant enzymes and the reduction in MDA content with B. subtilis inoculation may play a pivotal role in mitigating oxidative stress, thereby induced systemic resistance against bacterial spot disease in tomato.  相似文献   

17.
It is documented that some plant-growth-promoting rhizobacteria (PGPR) enhance plant salt tolerance. However, as to how PGPR may influence two crucial components of plant salt tolerance such as, root hydraulic characteristics and aquaporin regulation has been almost unexplored. Here, maize (Zea mays L.) plants were inoculated with a Bacillus megaterium strain previously isolated from a degraded soil and characterized as PGPR. Inoculated plants were found to exhibit higher root hydraulic conductance (L) values under both unstressed and salt-stressed conditions. These higher L values in inoculated plants correlated with higher plasma membrane type two (PIP2) aquaporin amount in their roots under salt-stressed conditions. Also, ZmPIP1;1 protein amount under salt-stressed conditions was higher in inoculated leaves than in non-inoculated ones. Hence, the different regulation of PIP aquaporin expression and abundance by the inoculation with the B. megaterium strain could be one of the causes of the different salt response in terms of root growth, necrotic leaf area, leaf relative water content and L by the inoculation treatment.  相似文献   

18.
通过盆栽试验,用刺槐根瘤菌(Rhizobium of Robinia pseudoacacia)与纤维素分解菌(Cellulose-decomposing Bacteria)对高粱和上海青进行单独接种和混合接种,采用针刺、浸种和涂叶3种接种方法,测量其各种生长指标。初步探究刺槐根瘤菌与纤维素分解菌联合对禾本科作物高粱和双子叶作物上海青两种非豆科植物的促生效应。结果表明,在非针刺条件下,两种菌混接组(B组)比单独接种根瘤菌组(D组)的促生效应更显著,上海青B组在灭菌条件下的根长促生率比D组高出48.97%,高粱B组在非灭菌条件下干重的促生率比D组高出30.76%;而且除了高粱的B组干重以外,盆栽试验条件下,B、D两组的其他生长指标在灭菌情况下的促生率比非灭菌条件下的促生率高,差别最大的为上海青B组鲜重,灭菌条件下比非灭菌条件下高出47.13%。根瘤菌与纤维素分解菌混合接种非针刺组,对高粱和上海青的各项生长指标促生效应明显,可为今后进一步开发非豆科作物菌肥提供试验依据。  相似文献   

19.
Sugar mill by-products compost may be a good soil amendment to promote tomato (Lycopersicon esculentum L.) growth. In addition, the compost may further promote plant growth by inoculation with N2-fixing bacteria. Compost from sugar-mill waste was prepared with and without the N2-fixing bacteria, Azotobacter vinelandii, Beijerinckia derxii and Azospirillum sp. and incubated for 50 days. Each compost type was added to 10 kg of soil in pots at rates of 0, 15, and 45 g with and without fertilizer N at rates of 0, 0.75, and 1.54 g. A blanket application of P and K was applied to all pots. Shoot and root dry weights and N content of the whole plant was measured at 55 days. Dry weight of tomato shoots was increased by 40% by addition of fertilizer N and root weight was increased by 66%. Without fertilizer N the high rate of inoculated compost increased shoot growth 180% and uninoculated compost increased shoot growth 112%. For most treatments with and without fertilizer N, inoculated compost enhanced shoot growth and nitrogen content more than uninoculated compost. Root weights were nearly doubled by addition of either compost in comparison to the 0 N treatment. At the low rate of compost addition without fertilizer N, root weight was the same for uninoculated and inoculated compost but at the high rate of compost addition root weight was 32% higher for inoculated compost. The N2-fixing bacteria colonized roots when inoculated compost was used. Sugar mill by-products compost proved to be an effective soil amendment for promoting the growth of tomato plants.  相似文献   

20.
Meloidogyne spp. causes root-knot disease in tomato plants. Biological control of the disease may present economically feasible, agronomically durable and environmentally safe alternative of nematicides. A chitinolytic bacterial strain, Paenibacillus ehimensis RS820, previously isolated from the soil in Korea, produced lytic enzymes in higher amounts and inhibited the growth of phytopathogenic root-knot nematodes. Moreover, the juveniles and eggs of root-knot nematodes induced secretion of lytic enzymes by RS820 including chitinases, gelatinases and collagenases. Furthermore, mixed compost containing increased amounts of chitin and inoculated with RS820 was prepared in the present study. Use of the mixed compost not only reduced the disease caused by root-knot nematodes but also improved the plant growth. The extent of inoculation of the mixed compost with RS820 significantly influenced its ability to control the root-knot disease in tomato. The mixed compost also significantly altered the activity and density of the rhizosphere bacteria. Chitinase and gelatinase producing soil bacteria, as well as their enzyme activities, were significantly influenced by the mixed compost. The mixed compost proposed in the present study may represent a viable alternative to nematicides against the root-knot nematodes in tomato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号