首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Black root rot (BRR) caused by Lasiodiplodia theobromae is an alarming disease of mulberry that causes tremendous economic losses to sericulture farmers in India and China. Successful control of this disease can be attained by screening germplasm and identifying resistant sources. Seventy four diseased root samples were collected from farmer’s fields belonging to four major mulberry growing states of South India. Based on morpho-cultural and scanning electron microscopy studies, 57 fungal isolates were characterized and identified as L. theobromae. Phylogenetic analysis of concatenated internal transcribed spacer and β-tubulin sequences revealed variation of the representative 20 isolates of L. theobromae. Following the root dip method of inoculation, pathogenicity studies on susceptible mulberry genotypes (Victory-1 and Thailand male) recognized the virulent isolate MRR-142. Accordingly, MRR-142 isolate was used to evaluate resistance on a set of 45 diverse mulberry accessions. In the repeated experiments, the mulberry accession ME-0168 which is an Indonesian origin belonging to Morus latifolia was found to be highly resistant consistently against BRR. Eight accessions (G2, ME-0006, ME-0011, ME-0093, MI-0006, MI-0291, MI-0489, and MI-0501) were found to be resistant. These promising resistant resources may be exploited in mulberry breeding for developing BRR resistant varieties and to develop mapping populations which successively helps in the identification of molecular markers associated with BRR.  相似文献   

3.

Background

Cultivated peanut (Arachis hypogaea L.) is an important crop worldwide, valued for its edible oil and digestible protein. It has a very narrow genetic base that may well derive from a relatively recent single polyploidization event. Accordingly molecular markers have low levels of polymorphism and the number of polymorphic molecular markers available for cultivated peanut is still limiting.

Results

Here, we report a large set of BAC-end sequences (BES), use them for developing SSR (BES-SSR) markers, and apply them in genetic linkage mapping. The majority of BESs had no detectable homology to known genes (49.5%) followed by sequences with similarity to known genes (44.3%), and miscellaneous sequences (6.2%) such as transposable element, retroelement, and organelle sequences. A total of 1,424 SSRs were identified from 36,435 BESs. Among these identified SSRs, dinucleotide (47.4%) and trinucleotide (37.1%) SSRs were predominant. The new set of 1,152 SSRs as well as about 4,000 published or unpublished SSRs were screened against two parents of a mapping population, generating 385 polymorphic loci. A genetic linkage map was constructed, consisting of 318 loci onto 21 linkage groups and covering a total of 1,674.4 cM, with an average distance of 5.3 cM between adjacent loci. Two markers related to resistance gene homologs (RGH) were mapped to two different groups, thus anchoring 1 RGH-BAC contig and 1 singleton.

Conclusions

The SSRs mined from BESs will be of use in further molecular analysis of the peanut genome, providing a novel set of markers, genetically anchoring BAC clones, and incorporating gene sequences into a linkage map. This will aid in the identification of markers linked to genes of interest and map-based cloning.  相似文献   

4.
Thirty two pathogenic isolates of Fusarium udum from different pigeonpea growing areas in India were studied for pathogenic and molecular variability. Pathogenic variability was tested on 12 pigeonpea differential genotypes, which revealed prevalence of five variants in F. udum. The amount of genetic variation was evaluated by Polymerase Chain Reaction (PCR) amplification with 20 random amplified polymorphic DNA (RAPD) markers and nine microsatellite markers. All amplifications revealed scorable polymorphisms among the isolates, and a total of 137 polymorphic fragments were scored for the RAPD markers and 16 alleles for the simple sequence repeat (SSR) markers. RAPD primers showed 86% polymorphism. Genetic similarity was calculated using Jaccard's similarity coefficient and cluster analysis was used to generate a dendrogram showing relationships between them. Isolates could be grouped into three subpopulations based on molecular analysis. Results indicated that there is high genetic variability among a subpopulation of F. udum as identified by RAPD and SSR markers and pathogenicity on differential genotypes.  相似文献   

5.
Simple sequence repeats (SSRs) have become one of the most popular molecular markers for population genetic studies. The application of SSR markers has often been limited to source species because SSR loci are too labile to be maintained in even closely related species. However, a few extremely conserved SSR loci have been reported. Here, we tested for the presence of conserved SSR loci in acanthopterygian fishes, which include over 14 000 species, by comparing the genome sequences of four acanthopterygian fishes. We also examined the comparative genome‐derived SSRs (CG‐SSRs) for their transferability across acanthopterygian fishes and their applicability to population genetic analysis. Forty‐six SSR loci with conserved flanking regions were detected and examined for their transferability among seven nonacanthopterygian and 27 acanthopterygian fishes. The PCR amplification success rate in nonacanthopterygian fishes was low, ranging from 2.2% to 21.7%, except for Lophius litulon (Lophiiformes; 80.4%). Conversely, the rate in most acanthopterygian fishes exceeded 70.0%. Sequencing of these 46 loci revealed the presence of SSRs suitable for scoring while fragment analysis of 20 loci revealed polymorphisms in most of the acanthopterygian fishes. Population genetic analysis of Cottus pollux (Scorpaeniformes) and Sphaeramia orbicularis (Perciformes) using CG‐SSRs showed that these populations did not deviate from linkage equilibrium or Hardy–Weinberg equilibrium. Furthermore, almost no loci showed evidence of null alleles, suggesting that CG‐SSRs have strong resolving power for population genetic analysis. Our findings will facilitate the use of these markers in species in which markers remain to be identified.  相似文献   

6.
In this study, inter-simple sequence repeats (ISSR) ans simple sequence repeat (SSR) markers were used to investigate genetic diversity of 27 mulberry accessions including 19 cultivated accessions (six M. multicaulis, three M. alba, two M. atropurpurea, two M. bombycis, one M. australis, two M. rotundiloba, one M. alba var. pendula, one M. alba var. macrophylla, and one M. alba var. venose) and 8 wild accessions (two M. cathayana, two M. laevigata, two M. wittiorum, one M. nigra and one M. mongolica). ISSRs and SSRs were compared in terms of their informativeness and efficiency in a study of genetic diversity and relationships among 27 mulberry genotypes. SSRs presented a higher level of polymorphism and greater information content. All index values of genetic diversity both markers analyzed using Popgene 32 software indicated that within wild species had higher genetic diversity than within cultivated species. Cultivation may caused the lose of genetic diversity of mulberry compared with wild species revealed by ISSR and SSR markers. The mean genetic similarity coefficients among all mulberry genotypes ascribed by ISSR and SSR matrices were 0.7677 and 0.6131, respectively. For all markers a high similarity in dendrogram topologies was obtained although some differences were observed. Cluster analysis of ISSR and SSR using UPGMA method revealed that the wild species are genetically distant from the domesticated species studied here. The correlation coefficients of similarity were statistically significant for both marker systems used. Principal coordinates analysis (PCA) for ISSR and SSR data also supports their UPGMA clustering. These results have an important implication for mulberry germplasm characterization, improvement, molecular systematics and conservation.  相似文献   

7.
The biotrophic parasitic fungus Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, a devastating disease of wheat, endangering global food security. Because the Pst population is highly dynamic, it is difficult to develop wheat cultivars with durable and highly effective resistance. Simple sequence repeats (SSRs) are widely used as molecular markers in genetic studies to determine population structure in many organisms. However, only a small number of SSR markers have been developed for Pst. In this study, a total of 4,792 SSR loci were identified using the whole genome sequences of six isolates from different regions of the world, with a marker density of one SSR per 22.95 kb. The majority of the SSRs were di- and tri-nucleotide repeats. A database containing 1,113 SSR markers were established. Through in silico comparison, the previously reported SSR markers were found mainly in exons, whereas the SSR markers in the database were mostly in intergenic regions. Furthermore, 105 polymorphic SSR markers were confirmed in silico by their identical positions and nucleotide variations with INDELs identified among the six isolates. When 104 in silico polymorphic SSR markers were used to genotype 21 Pst isolates, 84 produced the target bands, and 82 of them were polymorphic and revealed the genetic relationships among the isolates. The results show that whole genome re-sequencing of multiple isolates provides an ideal resource for developing SSR markers, and the newly developed SSR markers are useful for genetic and population studies of the wheat stripe rust fungus.  相似文献   

8.
A total of 45 microsatellites (SSRs) were developed for mapping in Fragaria. They included 31 newly isolated codominant genomic SSRs from F. nubicola and a further 14 SSRs, derived from an expressed sequence tagged library (EST-SSRs) of the cultivated strawberry, F. × ananassa. These, and an additional 64 previously characterised but unmapped SSRs and EST-SSRs, were scored in the diploid Fragaria interspecific F2 mapping population (FV×FN) derived from a cross between F. vesca 815 and F. nubicola 601. The cosegregation data of these 109 SSRs, and of 73 previously mapped molecular markers, were used to elaborate an enhanced linkage map. The map is composed of 182 molecular markers (175 microsatellites, six gene specific markers and one sequence-characterised amplified region) and spans 424 cM over seven linkage groups. The average marker spacing is 2.3 cM/marker and the map now contains just eight gaps longer than 10 cM. The transferability of the new SSR markers to the cultivated strawberry was demonstrated using eight cultivars. Because of the transferable nature of these markers, the map produced will provide a useful reference framework for the development of linkage maps of the cultivated strawberry and for the development of other key resources for Fragaria such as a physical map. In addition, the map now provides a framework upon which to place transferable markers, such as genes of known function, for comparative mapping purposes within Rosaceae.  相似文献   

9.
BackgroundKawasaki disease (KD) is a self-limiting acute systemic vasculitis occur mainly in infants and young children under 5 years old. Although the use of acetylsalicylic acid (AAS) in combination with intravenous immunoglobulin (IVIG) remains the standard therapy to KD, the etiology, genetic susceptibility genes and pathogenic factors of KD are still un-elucidated.PurposeCurrent obstacles in the treatment of KD include the lack of standard clinical and genetic markers for early diagnosis, possible severe side effect of AAS (Reye's syndrome), and the refractory KD cases with resistance to IVIG therapy, therefore, this review has focused on introducing the current advances in the identification of genetic susceptibility genes, environmental factors, diagnostic markers and adjuvant pharmacological intervention for KD.ResultsWith an overall update in the development of KD from different aspects, our current bioinformatics data has suggested CASP3, CD40 and TLR4 as the possible pathogenic factors or diagnostic markers of KD. Besides, a list of herbal medicines which may work as the adjunct therapy for KD via targeting different proposed molecular targets of KD have also been summarized.ConclusionWith the aid of modern pharmacological research and technology, it is anticipated that novel therapeutic remedies, especially active herbal chemicals targeting precise clinical markers of KD could be developed for accurate diagnosis and treatment of the disease.  相似文献   

10.
Abstract

Leaf yield loss in mulberry due to Macrophomina root rot disease was assessed in three different states of south India at field level. The highest leaf yield loss recorded was in V-1 variety (34.74%), whereas the lowest leaf yield loss was in K-2 variety (28.54%). However, the leaf yields losses in other varieties viz., MR-2 (32.90%), S-36 (32.06%), RFS-175 (31.75%) and S-13 (29.0%) recorded were medium. The average leaf yield loss was 31.49% due to root rot disease caused by M. phaseolina in mulberry.  相似文献   

11.
12.
【目的】本研究从健康桑树茎中分离筛选对桑断枝烂叶病菌具显著拮抗作用的内生细菌,为该病生物防治奠定研究基础。【方法】采用组织培养法分离桑树内生菌,抑菌圈法和平板对峙法筛选抑菌活性稳定的内生拮抗菌;根据形态学、生理生化特征检测和基于16SrDNA、gyrA和gyrB基因的系统发育分析对拮抗菌进行菌种鉴定;利用抑菌圈法测定拮抗菌株活性发酵液热稳定性,菌丝生长速率法检测活性发酵液抑菌谱;并通过观察拮抗菌对桑断枝烂叶病菌BoeremiaexiguaGXH1菌株生长及菌丝形态的影响,扩增抑菌活性物质合成关键基因,以及采用酸沉淀法提取拮抗菌株脂肽类化合物并进行高效液相色谱串联质谱分析(LC-MS),初步探究可能的抑菌机制。【结果】从健康桑树茎中共分离获得17株桑树内生细菌,并从中筛选获得一株对桑断枝烂叶病菌B.exiguaGXH1有稳定拮抗作用的桑树内生细菌NPJ13菌株。该菌株形态学、生理生化特征与芽孢杆菌属一致,基于16SrDNA、gyrA和gyrB基因序列的系统发育分析结果显示该菌株与贝莱斯芽孢杆菌(Bacillusvelezensis)的亲缘关系最近,且处于系统发育树的最小分枝,故将NPJ13菌株鉴定为贝莱斯芽孢杆菌,命名为B. velezensis NPJ13。NPJ13菌株对灰霉病菌SWU5、核地杖菌SXSG-5、核盘菌PZ-2及烟草疫霉SWU20等12种病原真菌具有不同程度的拮抗作用,其活性发酵液具有较好的热稳定性。NPJ13菌株会导致桑断枝烂叶病菌GXH1菌丝发生扭曲、膨大、透明度增加、断裂等畸变现象;基因检测结果显示NPJ13菌株基因组中具有PKSI、NRPS、Sfp、ItuD、Srfc等5种抑菌活性物质合成关键基因,LC-MS检测结果表明菌株NPJ13脂肽类粗提物中含有表面活性素和伊枯草菌素。【结论】本研究分离筛选获得一株对桑断枝烂叶病菌具有显著拮抗作用的桑树内生细菌B. velezensis NPJ13菌株,为桑断枝烂叶病的生物防治提供了候选菌株。  相似文献   

13.
Mulberries are cultivated for different purposes: for feeding larvae of silkworm, Bombyx mori, as fresh and dry food resources, in wood instrument industry, in pharmaceutical industry and as outdoor ornamental trees in Iran. In recent years, twig and branch canker disease symptoms have been noticed on mulberry trees in northwestern parts of Iran. Diplodia isolates were repeatedly recovered from symptomatic tissues. Based on cultural and morphological features, the isolates were identified as Diplodia seriata. The identity of the isolates was further confirmed using sequence data from internal transcribed spacer (ITS)-rDNA and ef-1α gene. A phylogenetic analysis using ITS sequence data clustered the isolates obtained in this study together with known Diplodia seriata isolates of other woody hosts from GenBank. Inoculation studies carried out on white mulberry twigs using an excised shoot method revealed that the isolates are pathogenic on this host. D. seriata have been reported from other woody host plant species such as Juglans nigra and Vitis vinifera in Iran, however, to the best of our knowledge, the occurrence of D. seriata on mulberry trees is new for Iran. The distribution and reaction of different Morus spp. to D. seriata remain to be studied.  相似文献   

14.
The abundance and inherent potential for variations in simple sequence repeats (SSRs) or microsatellites resulted in valuable source for genetic markers in eukaryotes. We describe the organization and abundance of SSRs in fungus Fusarium graminearum (causative agent for Fusarium head blight or head scab of wheat). We identified 1705 SSRs of various nucleotide repeat motifs in the sequence database of F. graminearum. It is observed that mononucleotide repeats (62%) were most abundant followed by di- (20%) and trinucleotide repeats (14%). It is noted that tetra-, penta- and hexanucleotide repeats accounted for only 4% of SSRs. The estimated frequency of Class I SSRs (perfect repeats ≥20 nucleotides) was one SSR per 124.5 kb, whereas the frequency of Class II (perfect repeats >10 nucleotides and ≫20 nucleotides) was one SSR per 25.6 kb. The dynamics of SSRs will be a powerful tool for taxonomic, phylogenetic, genome mapping and population genetic studies as SSR based markers show high levels of allelic variation, codominant inheritance and ease of analysis.  相似文献   

15.
Simple sequence repeats (SSRs) can be derived from the complete genome sequence. These markers are important for gene mapping as well as marker-assisted selection (MAS). To develop SSRs for cotton gene mapping, we selected the complete genome sequence of Gossypium raimondii, which consisted of 4447 non-redundant scaffolds. Out of 775.2 Mb sequence examined, a total of 136,345 microsatellites were identified with a density of 5.69 kb per SSR in the G. raimondii genome leading to development of 112,177 primer pairs. The distributions of SSRs in the genome were non-random. Among the different motifs ranging from 1 to 6 bp, penta-nucleotide repeats were most abundant (30.5%), followed by tetra-nucleotide repeats (18.2%) and di-nucleotide repeats (16.9%). Among all identified 457 motif types, the most frequently occurring repeat motifs were poly-AT/TA, which accounted for 79.8% of the total di-nt SSRs, followed by AAAT/TTTA with 51.5% of the total tetra-nucleotede. Further, 18,834 microsatellites were detected from the protein-coding genes, and the frequency of gene containing SSRs was 46.0% in 40,976 genes of G. raimondii. These genome-based SSRs developed in the present study will lay the groundwork for developing large numbers of SSR markers for genetic mapping, gene discovery, genetic diversity analysis, and MAS breeding in cotton.  相似文献   

16.
Simple sequence repeats (SSRs) are preferred molecular markers because of their abundance, robustness, high reproducibility, high efficiency in detecting variation and suitability for high‐throughput analysis. In this study, an attempt was made to mine and analyse the SSRs from the genomes of two seed‐borne fungal pathogens, viz Ustilago maydis, which causes common smut of maize, and Tilletia horrida, the cause of rice kernel smut. After elimination of redundant sequences, 2,703 SSR loci of U. maydis were identified. Of the remaining SSRS, 44.5% accounted for di‐nucleotide repeats followed by 29.8% and 2.7% tri‐ and tetranucleotide repeats, respectively. Similarly, 2,638 SSR loci were identified in T. horrida, of which 20.2% were di‐nucleotide, 50.4% tri‐ and 20.5% tetra‐nucleotide repeats. A set of 65 SSRs designed from each fungus were validated, which yielded 23 polymorphic SSRs from Ustilago and 21 from Tilletia. These polymorphic SSR loci were also successfully cross‐amplified with the Ustilago segetum tritici and Tilletia indica. Principal coordinate analysis of SSR data clustered isolates according to their respective species. These newly developed and validated microsatellite markers may have immediate applications for detection of genetic variability and in population studies of bunt and smut of wheat and other related host plants. Moreover, this is first comprehensive report on molecular markers suitable for variability studies in wheat seed‐borne pathogens.  相似文献   

17.
18.
Jatropha curcas L., a multipurpose shrub has acquired significant economic importance for its seed oil which can be converted to biodiesel, is emerging as an alternative to petro-diesel. The deoiled seed cake remains after oil extraction is toxic and cannot be used as a feed despite having best nutritional contents. No quantitative and qualitative differences were observed between toxic and non-toxic varieties of J. curcas except for phorbol esters content. Development of molecular marker will enable to differentiate non-toxic from toxic variety in a mixed population and also help in improvement of the species through marker assisted breeding programs. The present investigation was undertaken to characterize the toxic and non-toxic varieties at molecular level and to develop PCR based molecular markers for distinguishing non-toxic from toxic or vice versa. The polymorphic markers were successfully identified specific to non-toxic and toxic variety using RAPD and AFLP techniques. Totally 371 RAPD, 1,442 AFLP markers were analyzed and 56 (15.09%) RAPD, 238 (16.49%) AFLP markers were found specific to either of the varieties. Genetic similarity between non-toxic and toxic verity was found to be 0.92 by RAPD and 0.90 by AFLP fingerprinting. In the present study out of 12 microsatellite markers analyzed, seven markers were found polymorphic. Among these seven, jcms21 showed homozygous allele in the toxic variety. The study demonstrated that both RAPD and AFLP techniques were equally competitive in identifying polymorphic markers and differentiating both the varieties of J. curcas. Polymorphism of SSR markers prevailed between the varieties of J. curcas. These RAPD and AFLP identified markers will help in selective cultivation of specific variety and along with SSRs these markers can be exploited for further improvement of the species through breeding and Marker Assisted Selection (MAS).  相似文献   

19.
To determine the chromosomal location of bunching onion (Allium fistulosum L.) simple sequence repeats (SSRs) and bulb onion (A. cepa L.) expressed sequence tags (ESTs), we used a complete set of bunching onion–shallot monosomic addition lines and allotriploid bunching onion single alien deletion lines as testers. Of a total of 2,159 markers (1,198 bunching onion SSRs, 324 bulb onion EST–SSRs and 637 bulb onion EST-derived non-SSRs), chromosomal locations were identified for 406 markers in A. fistulosum and/or A. cepa. Most of the bunching onion SSRs with identified chromosomal locations showed polymorphism in bunching onion (89.5%) as well as bulb onion lines (66.1%). Using these markers, we constructed a bunching onion linkage map (1,261 cM), which consisted of 16 linkage groups with 228 markers, 106 of which were newly located. All linkage groups of this map were assigned to the eight basal Allium chromosomes. In this study, we assigned 513 markers to the eight chromosomes of A. fistulosum and A. cepa. Together with 254 markers previously located on a separate bunching onion map, we have identified chromosomal locations for 766 markers in total. These chromosome-specific markers will be useful for the intensive mapping of desirable genes or QTLs for agricultural traits, and to obtain DNA markers linked to these.  相似文献   

20.
Recent studies have suggested a potential role for wild birds in zoonotic transmission of Campylobacter jejuni, the leading cause of gastroenteritis in humans worldwide. In this study, we detected Campylobacter spp. in 66.9% (85/127) of free-ranging American crows (Corvus brachyrhyncos) sampled in the Sacramento Valley of California in 2012 and 2013. Biochemical testing and sequence analysis of 16S rRNA revealed that 93% of isolates (n = 70) were C. jejuni, with cytolethal distending toxin (CDT) and flagellin A genes detected by PCR in 20% and 46% of the C. jejuni isolates (n = 59), respectively. The high prevalence of C. jejuni, coupled with the occurrence of known virulence markers CDT and flagellin A, demonstrates that crows shed Campylobacter spp. in their feces that are potentially pathogenic to humans. Crows are abundant in urban, suburban, and agricultural settings, and thus further study to determine their role in zoonotic transmission of Campylobacter will inform public health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号