首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antifungal activity of the essential oils of Carum carvi and Pimpinella anisum against Botrytis cinerea fruit rot of key kiwi fruit was studied. In vitro experiments, antifungal activities of essential oils were tested on potato dextrose agar media. Results of an in vitro experiment showed that these essential oils, at all applied concentrations, inhibited grey mould growth. Black caraway essential oil at concentrations of 600 and 800?μL?L?1 inhibited germination spores of grey mould. Then, the fruits were artificially inoculated with a suspension at 1?×?105?conidia/ml and then treated with different concentrations of these essential oils. The results of in vivo conditions showed that black caraway and anise essential oils applied at all concentrations were increasing the shelf life and inhibited the grey mould growth on kiwi fruits completely in comparison to control. The result showed that black caraway and anise oils at a concentration of 800?μL?L?1 had higher total soluble solids, ascorbic acid, titrable acidity and antioxidant content compared to untreated fruits.  相似文献   

2.
Considering the invasion to food commodities by insects and harmful effect of chemical pesticides, essential oils are among the best known substances tested against stored product pests. These compounds may act as fumigants, contact insecticides, repellents or anti-feedants. In present study, fumigant toxicity of essential oils from Laurus nobilis L. and Myrtus communis L. was assessed on larvae and adults of Tribolium castaneum Herbst at 27?±?2?°C, 60?±?5% RH in darkness. Each essential oil was tested in five concentrations with three replicates. The LC50 values of L. nobilis and M. communis against adults of beetle were calculated 243.78 and 56.11?μl/l and LC95 values for them were 685.85 and 144.01?μl/l, respectively. For the larvae of T. castaneum, the LC50 values for L. nobilis and M. communis were 211.64 and 69.63 and LC95 values were 656.84 and 183.65?μl/l, respectively. Results showed that these essential oils may have potential as botanical control agents against larvae and adults of T. castaneum.  相似文献   

3.
Thirty essential oils from higher plants of Gorakhpur Division (India) were evaluated at 0.36?μl/ml against two pulse beetles, Callosobruchus chinensis L. and C. maculatus F., causing infestation of pigeon pea seeds during storage. Clausena pentaphylla oil was more effective and exhibited absolute repellency against both the insects followed by Ocimum canum, Salvia plebeia and Zingiber zerumbet oils. Among these four oils, C. pentaphylla oil was most toxic and showed 100% mortality of both the insects at 10-μl dosage and 24-h exposure (LD50?=?2.7?μl for C. chinensis & 2.4?μl for C. maculatus). Physical factors, viz. temperature, storage and autoclaving, did not cause any adverse effect on the toxicity of Clausena oil. During in vivo investigation, the oil protected 1?kg of pigeon pea seeds completely without reducing weight loss and seed damage up to 6?months when stored in gunny bags and glass containers. The oil was standardised by determining its various physicochemical properties. Thus, C. pentaphylla oil can be judiciously exploited as herbal insecticide against pulse beetles of pigeon pea seeds during storage.  相似文献   

4.
Fumigant activity of essential oil vapours distilled from Zingiber officinale (L.) and Mentha pulegium (L.) was tested against eggs, larvae and adults of Callosobruchus maculatus (F.). Fumigant toxicity was assessed at 27?±?1?°C and 60?±?5% RH, in dark condition. The influence of different concentrations of the essential oil vapours on egg hatchability, larval and adult mortality was significant. Data probit analysis showed that lethal concentration of the essential oil to kill 50% of the population (LC50) for egg, larvae and adult was found to be 1.151, 2.336 and 2.183?μl/l air of Z. officinale, followed by 0.072, 0.113 and 0.093?μl/l air essential oil of M. pulegium, respectively. Between these essential oils, Z. officinale is almost more toxic than M. pulegium on all growth stages of C. maculatus. The present study suggests that essential oils from these medicinal plants may be potential grain protectants as botanical alternative fumigants and could be used in the management of various life stages of C. maculatus.  相似文献   

5.
Naturally derived compounds such as essential oils and natural mineral are relatively cheap, non-toxic to food grains and environmentally friendly and would be suitable alternatives for currently used chemical insecticides if they have high insecticidal effectiveness. In the present study, acute toxicity of kaolin and essential oils from Mentha pulegium and Zingiber officinale were assessed on different stages of Callosobruchus maculatus at 28?±?2?°C, 65?±?5% R. H and dark condition. The calculated LC50 values on the egg, larvae and adult stages of C. maculatus were 1.15, 2.33 and 2.18?μl/ml air for Z. officinale and 0.07, 0.11 and 0.09?μl/ml air for M. pulegium, respectively. The result showed that M. pulegium was more effective essential oil against different stages of C. maculatus compared with the Z. officinale, and also the egg and adult stages of C. maculatus were more susceptible against essential oils compared with larval stage. The LC50 values of kaolin were 0.71 and 0.18?mg/cm2 on egg and adult of C. maculatus, respectively. The combination of tested essential oils with kaolin increased mortality of C. maculatus adults compared with their application alone. It was found that tested essential oils and kaolin had high potential in controlling different stages of C. maculatus.  相似文献   

6.
The mosquito Aedes aegypti L. (Diptera: Culicidae) is a vector of arboviral diseases such as dengue fever. Currently, the main approach to mosquito control is the application of synthetic insecticides, which can lead to negative environmental impacts and insecticide resistance in mosquito populations. As such, there has been increased interest in developing alternative methods for control of vector populations such as utilizing plant compounds that act as larvicides. The aim of this work is to evaluate the effectiveness of Eucalyptus sp. (Myrtaceae) essential oils for control of Ae. aegypti larvae. The essential oils of seven Eucalyptus species and hybrids were extracted by hydrodistillation and analyzed by gas chromatography coupled to mass spectrometry. The essential oils were further diluted in water with acetone (0.40%) at the following concentrations: 100, 50, 25, and 10 μg ml−1. Mortality trials were conducted in plastic containers with a solution of ultrapure water and 200 μl of diluted oil for a total volume of 50 ml per treatment. The experiments for each Eucalyptus species/hybrid and concentration were performed in triplicate, using a control containing only water and acetone. Twenty larvae were added to each container and mortality was recorded at 1, 2, 4, and 24 h. The Eucalyptus essential oils showed larvicidal activity in most of the evaluated concentrations, mainly at 50 and 100 μg ml−1. Eucalyptus benthamii Maiden & Cambage and the hybrid Urograndis displayed the highest larvicidal potential (100% at 24 h) in the 100 μg ml−1 treatment. Larval mortality of Ae. aegypti showed a positive correlation with the compounds γ-, o-cymol, o-cymene, terpineol, 3-dodecylfuran-2,5-dione, α-pinene, globulol, and ledol. The most abundant compounds identified in the essential oils were 1,8-cineole and α-pinene. These results highlight the potential of using Eucalyptus essential oils for the isolation of natural larvicidal products.  相似文献   

7.
The increasing consumption of natural products lead us to discover and study new plant materials, such as conifer seeds and cones, which could be easily available from the forest industry as a waste material, for their potential uses. The chemical composition of the essential oils of Picea pungens and Picea orientalis was fully characterized by GC and GC/MS methods. Seed and cone oils of both tree species were composed mainly of monoterpene hydrocarbons, among which limonene, α‐ and β‐pinene were the major, but in different proportions in the examined conifer essential oils. The levorotary form of chiral monoterpene molecules was predominant over the dextrorotary form. The composition of oils from Ppungens seeds and cones was similar, while the hydrodistilled oils of Porientalis seeds and cones differed from each other, mainly by a higher amount of oxygenated derivatives of monoterpenes and by other higher molar mass terpenes in seed oil. The essential oils showed mild antimicrobial action, however Porientalis cone oil exhibited stronger antimicrobial properties against tested bacterial species than those of Ppungens. Effects of the tested cone essential oils on human skin fibroblasts and microvascular endothelial cells (HMEC‐1) were similar: in a concentration of 0 – 0.075 μl/ml the oils were rather safe for human skin fibroblasts and 0 – 0.005 μl/ml for HMEC‐1 cells. IC50 value of Picea pungens oils was 0.115 μl/ml, while that of Picea orientalis was 0.105 μl/ml. The value of IC50 of both oils were 0.035 μl/ml for HMEC‐1 cells. The strongest effect on cell viability had the oil from Picea orientalis cones, while on DNA synthesis the oil from Picea pungens cones.  相似文献   

8.
The archeological objects constitute an important part of the worldwide cultural heritage. The impact of the fungal activity on the deterioration of cultural heritage is a global problem and their preservation over time is a challenging task. Antifungal activities of 12 essential oils (EOs) (black cumin, castor, cinnamon, clove, cumin, garlic, geranium, lavender, lemongrass, menthe, olive, and thyme) were examined against 16 fungal species isolated from three tested archaeological objects (wall painting stone, wooden statue, and pottery coffin) from Saqqara stores in Egypt. Molecular identification was carried out for the highly frequent species (Aspergillus niger, A. flavus and Rhizopus oryzae) in the three tested archaeological samples. Antifungal activity and minimal inhibitory concentration (MIC) of the tested EOs with different concentrations (0.125, 0.25, 0.5, 0.75, 1?μl/ml) were measured.

The most efficient EOs were thyme (MIC ranged from 0.25–0.75μl/ml) followed by clove (MIC ranged from 0.25–1?μl/ml) and geranium, (MIC ranged from 0.5–1?μl/ml). Thymol (37.1%) and p-Cymene (26.32%) were the active constituents of thyme, while Triacetin (69.36%) and eugenol (28.67) were the most efficient components of clove oil followed by geranium active components (à-Citronellol 20.62% and Geraniol 14.43%). Aspergillus niger was the most resistance species, while Fusarium oxysporum and Penicilium citrinium were the most susceptible ones.  相似文献   


9.
The study of chemical composition and biological activity of unexplored essential oils may open new perspectives on their potential use in facing major health concerns such as drug‐resistant infections. The present study investigates the chemical composition and antimicrobial effects of previously unstudied essential oils obtained from genus Eryngium: Eryngium glomeratum Lam . and Eryngium barrelieri Boiss . The chemical compositions of the essential oils from aerial parts and roots of both species were studied using GC and GC/MS analytical technics. The analysis led to the identification of 102 compounds totalizing 85 – 94% of all detected compounds. Essential oils were characterized by the predominance of oxygenated sesquiterpenes. The oils obtained from aerial parts were tested against 36 microbial strains by agar dilution method and showed minimum inhibitory concentrations (MIC) in the range of 2 – 625 μg/ml. A strong antibacterial activity against multiresistant Pseudomonas aeruginosa was observed especially from E. glomeratum essential oil with MIC value up to 2 μg/ml. These findings give significant information about the pharmacological activity of these essential oils, which suggest their potential use to develop new remedies, or as sources of active compounds.  相似文献   

10.
Essential oils of several plants are widely used in ethnomedicine for their antimicrobial and anti-inflammatory properties. However, very limited data exist on their use in connection to periodontal diseases. The aim of the present study was to investigate the bacterial growth inhibiting and anti-biofilm effects of Satureja hortensis L. (summer savory), Salvia fruticosa M. (sage), Lavandula stoechas L. (lavender), Myrtus communis L., and Juniperus communis L. (juniper) essential oils. Chemical compositions of the essential oils were analyzed by gas chromatography–mass spectrometry, minimum inhibitor concentrations (MICs) with the agar dilution method, and anti-biofilm effects by the microplate biofilm assay. The toxicity of each essential oil was tested on cultured keratinocytes. Of the 5 essential oils, S. hortensis L. essential oil had the strongest growth inhibition effect. Subinhibitory dose of S. hortensis L. essential oil had anti-biofilm effects only against Prevotella nigrescens. Essential oils did not inhibit keratinocyte viability at the concentrations of 1 and 5 μl/ml, however at the concentration of 5 μl/ml epithelial cells detached from the culture well bottom. The present findings suggest that S. hortensis L. essential oil inhibits the growth of periodontal bacteria in the concentration that is safe on keratinocytes, however, in the subinhibitory concentration its anti-biofilm effect is limited.  相似文献   

11.
The indiscriminate use of synthetic fungicides has caused several problems to the environment, which place human and animal health at risk. Due to this fact, the search for natural alternatives to control phytopathogenic fungi growth has increased. This study aims to evaluate the antifungal activity of two essential oils (EOs) and three major components of EOs on the radial growth and spore germination of Fusarium verticillioides and Alternaria tenuissima. Minimum and half‐maximal inhibitory concentrations (CMI and CI50) at 96 h for each treatment were calculated. Lemongrass EO and citral caused the highest inhibition for A. tenuissima (CMI of 1000 μl/l and CI50 of 10 μl/l). For F. verticillioides, the most effective component was geraniol (CMI and CI50 of 1000 and 250 μl/l, respectively). Spore germination rate was delayed by the EOs and major components tested. The use of EOs was effective to control these two fungal species in their different grow stages.  相似文献   

12.
The development of natural crop protection products as alternatives to the use of synthetic fungicides is currently popular. The aim of this study is to evaluate the antifungal effects of several essential oils against the fungal pathogens, Botrytis cinerea and Rhizopus stolonifer, under in vitro condition. Four essential oils (fennel, black caraway, peppermint and thyme) were each tested at five concentrations (0, 200, 400, 600 or 800 μl l?1). In vitro results showed that the essential oil of black caraway and fennel had the highest fungicidal effect against B. cinerea and R. stolonifer, respectively. The growth of B. cinerea was completely inhibited by the essential oil of black caraway at 400 μl l?1. Fennel oil perfectly inhibited growth of R. stolonifer fungus colonies at concentration higher than 600 μl L?1 in potato dextrose agar medium. Percentage of spores germination was the lowest in medium of Fennel and black caraway essential oils, and was the highest in Thyme ones. These results show that plant essential oils can have a strong effect on reducing post-harvest decay. These plant essential oils could provide an alternative to synthetic chemicals to control post-harvest phytopathogenic fungi on fruit.  相似文献   

13.
Certain compounds of plants, essential oils, with insecticidal properties have been considered as alternatives to chemical pesticides for pest control in recent years. In this study, the synergistic effect of diethyl maleate (DEM) on the toxicity of Citrus reticulata Blanco (Rutaceae) peel essential oil against a stored-product insect pest, i.e. red flour beetle, Tribolium castaneum Herbst (Tenebrionidae) adults was studied. DEM [one part], combined with acetone [two parts], was applied on T. castaneum adults. Five concentrations of essential oil from C. reticulata were tested. Three replicates and 30 adult insects/replicate/each concentration were used. LC50 values after 24 and 48?h of exposure were 33.8 and 28.2?μl/l air, respectively. Combination of the essential oil from C. reticulata with the synergist DEM after 24 and 48?h of exposure decreased the corresponding LC50 values to 18.1 and 12.2?μl/l air, respectively. These results revealed that DEM can considerably improve the potency of essential oil from C. reticulata and maybe applied successfully in the stored-product pest control programmes.  相似文献   

14.
Proteinaceous extract obtained from Cassia occidentalis seeds with purification fold of 3.91 and 82.7% of bovine trypsin inhibitory activity was assessed at different concentrations (25, 50, 100, 200, 400 and 800 μg/ml) against Spodoptera litura. Assay of larval feeding suggested proteinaceous extract to be toxic as prepupal (80.16%) and pupal mortalities (100%) along with growth deterrent effect with only 16.71% pupation was observed at 800 μg/ml. Fifty per cent mortality (LC50) was observed at 132.91 μg/ml. Also the inhibitor affected fecundity, longevity and percentage of egg hatching. Nutritional indices were adversely affected as both efficiency of conversion of ingested and digested food decreased while approximate digestibility and metabolic cost increased. In vitro studies on proteolytic enzymes of S. litura revealed inhibition of trypsin and chymotrypsin in lumen and faecal matter at all tested concentrations. Also proteinaceous extract inhibited mycelial growth in Fusarium oxysporum, Alternaria brassicicola and Alternaria alternata at 100 μg/ml.  相似文献   

15.
Late blight caused by Phytophthora infestans is the most important disease attacking potato plants. Four concentrations of essential oils i.e. 0.0, 1.25, 2.5, 5.0 and 7.5 ml/l of Orange, Citral, Methyl antranate (MA), and Terbinol were tested for controlling late blight disease. Results indicate that all treatments except orange oil have an inhibitory effect against the linear growth of P. infestans. Complete reduction in linear growth was obtained with Citral and MA at concentrations of 5.0 and 7.5 ml/l. Other treatments showed moderate effect against P. infestans. In greenhouse experiments, results indicate that all treatments have protective and therapeutic effects against late blight disease except Orange oil which has a protective effect only. High reduction was obtained with Citral and MA at concentrations of 2.5 and 5.0 ml/l which reduced the disease severity by more than 77.1 and 62.8% when applied as protective and therapeutic treatments respectively. Moderate effect was obtained with orange oil and Citral at concentration of 7.5 ml/l for both treatments which reduced the disease severity by more than 65.7% when applied as protective treatments. Similar results were obtained under field coditions; results indicate that all treatments reduced the late blight severity during two growing seasons. High reduction was obtained with Citral and MA at concentrations of 2.5 and 5.0 ml/l which reduced the disease severity by more than 80.0%. As for potato yield, results indicate that all treatments increased potato yield during two growing seasons. A high increase was obtained with Citral and MA at concentrations of 2.5 and 5.0 ml/l which increased the potato yield by more than 59.1%. Other treatments showed a moderate increase. It could be suggested that some essential oils of citrus or their constituents might be used for controlling late blight disease potato plants under field conditions.  相似文献   

16.
Ten essential oils were tested against the cabbage looper, Trichoplusia ni larvae for contact, residual and fumigant toxicities and feeding deterrent effects. Against third instar T. ni, Syzygium aromaticum (LD50 = 47.8 μg/larva), Thymus vulgaris (LD50 = 52.0 μg/larva) (the two positive controls) and Cinnamomum glanduliferum (LD50 = 76.0 μg/larva) were the most toxic via topical application. Litsea pungens (LD50 = 87.1 μg/larva), Ilex purpurea (LD50 = 94.0 μg/larva), Cinnamomum cassia (LD50 = 101.5 μg/larva) and Litsea cubeba (LD50 = 112.4 μg/larva) oils were equitoxic. Thymus vulgaris (LC50 = 4.8 mg/ml) and S. aromaticum (LC50 = 6.0 mg/ml) oils were the most toxic in residual bioassays. Cymbopogon citratus (LC50 = 7.7 mg/ml) and C. cassia (LC50 = 8.5 mg/ml) oils were equitoxic followed by Cymbopogon nardus (LC50 = 10.1 mg/ml) in this bioassay. The remaining five oils showed little or no residual effects. In a fumigation bioassay, L. cubeba (LC50 = 16.5 μl/l) and I. purpurea (LC50 = 22.2 μl/l) oils were the most toxic. Cinnamomum glanduliferum (LC50 = 29.7 μl/l) and Sabina vulgaris (LC50 = 31.2 μl/l) oils were equitoxic. Interestingly, S. aromaticum did not exhibit any fumigant toxicity. Cymbopogon citratus, C. nardus and C. cassia strongly deterred feeding by third instar T. ni (DC50s = 26.9, 33.8 and 39.6 μg/cm2, respectively) in a leaf disc choice bioassay. The different responses of T. ni larvae to the oils in different bioassays suggest that these essential oils exhibit different modes of action. Based on their comparable efficacy with essential oils already used as active ingredients in many commercial insecticides (i.e. clove oil and thyme oil), some of these essential oils may have potential as botanical insecticides against T. ni.  相似文献   

17.
Soylu EM  Soylu S  Kurt S 《Mycopathologia》2006,161(2):119-128
The aim of this study was to find an alternative to synthetic fungicides currently used in the control of devastating oomycete pathogen Phytophthora infestans, causal agent of late blight disease of tomato. Antifungal activities of essential oils obtained from aerial parts of aromatic plants such as oregano (Origanum syriacum var. bevanii), thyme (Thymbra spicata subsp. spicata), lavender (Lavandula stoechas subsp. stoechas), rosemary (Rosmarinus officinalis), fennel (Foeniculum vulgare), and laurel (Laurus nobilis), were investigated against P. infestans. Both contact and volatile phase effects of different concentrations of the essential oils used were determined by using two in vitro methods. Chemical compositions of the essential oils were also determined by GC-MS analysis. Major compounds found in essential oils of thyme, oregano, rosemary, lavender, fennel and laurel were carvacrol (37.9%), carvacrol (79.8), borneol (20.4%), camphor (20.2%), anethole (82.8%) and 1,8-cineole (35.5%), respectively. All essential oils were found to inhibit the growth of P. infestans in a dose-dependent manner. Volatile phase effect of oregano and thyme oils at 0.3 μg/ml air was found to completely inhibit the growth of P. infestans. Complete growth inhibition of pathogen by essential oil of fennel, rosemary, lavender and laurel was, however, observed at 0.4–2.0 μg/ml air concentrations. For the determination of the contact phase effects of the tested essential oils, oregano, thyme and fennel oils at 6.4 μg/ml were found to inhibit the growth of P. infestans completely. Essential oils of rosemary, lavender and laurel were inhibitory at relatively higher concentrations (12.8, 25.6, 51.2 μg/ml respectively). Volatile phase effects of essential oils were consistently found to be more effective on fungal growth than contact phase effect. Sporangial production was also inhibited by the essential oil tested. Light and scanning electron microscopic (SEM) observation on pathogen hyphae, exposed to both volatile and contact phase of oil, revealed considerable morphological alterations in hyphae such as cytoplasmic coagulation, vacuolations, hyphal shrivelling and protoplast leakage.  相似文献   

18.
The fumigant effect of Mentha piperita and Ocimum basilicum oils and their mixture against adults and eggs of Callosobruchus chinensis (L.) was evaluated. Bioassay experiments showed that Ocimum basilicum oil was significantly effective against adult and egg stage which was the least effective. However, in the fumigant toxicity experiments against adult stage, Ocimum basilicum oil at a dose of 1.0 μl/38.5 ml air caused 100% mortality (LC50 = 1.88), the mixture of both oils at a dose of 6.0 μl/38.5 ml air caused 100% mortality (LC50 = 10.3) and Mentha piperita oil at a dose of 80.0 μl/38.5 ml air caused 80.0% mortality (LC50 = 41.224) during a one day exposure period. Regarding the oviposition deterrent activity, Ocimum basilicum oil achieved 100% oviposition deterrent (at a dose of 0.5 μl/38.5 ml air) followed by the mixture of Mentha piperita and Ocimum basilicum oils, which achieved 71.22% oviposition deterrent (at a dose of 1.0 μl/38.5 ml air) and Mentha piperita oil, which achieved 39.6% oviposition deterrent (at a dose of 5.0 μl/38.5 ml air). The essential oils and their mixtures studied here determined a significant decrease in the number of eggs hatched and in the emergence of adults. The eggs failed to hatch on using Ocimum basilicum oil at a dose of 0.6 μl/38.5 ml air. However, the number of eggs hatched decreased to 7.4 on using a mixture of oils at a dose of 2.0 μl/38.5 ml air and 14.0 with Mentha piperita oil at a dose of 80.0 μl/38.5 ml air compared with 25.0 eggs hatched in the control experiments. On the other hand, the percentage reduction in emerging adults were 100% for Ocimum basilicum oil, 90.9% for a mixture of the two oils and 72.7% for Mentha piperita oil. Results showed that Ocimum basilicum oil and Ocimum basilicum oils plus Mentha piperita oils in blend are potential alternatives to synthetic fumigants in the treatment of durable agricultural products. Successful adoption of plant oils in the protection of food commodities promises an eco-friendly option compatible with international biosafety regulations.  相似文献   

19.
Greenhouse whitefly Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) is one of the most injurious pests of greenhouse crops and ornamental plants in worldwide, both outdoor and indoor. This insect, feeding on plant sap, producing honeydew and transmitting plant viruses, causes quantitative and qualitative damages in plants. For controlling this pest in greenhouse, plant essential oils are mentioned instead of chemical insecticidal. So, in this research, fumigant toxicity of Carum copticum L. (Fam.: Apiaceae) plant oil on mentioned adult pest was surveyed. Dry ground seeds were subjected to hydrodistillation using a modified Clevenger-type apparatus and the resulting oil contained Thymol (50.07%), Gama-Terpinene (23.99%), P-Cymene (22.9%), Myrcene (0.51%) and 1,8-Cineole (0.5%). All bioassay tests were conducted at 27?±?2?°C, 65?±?5 RH and a photoperiod of 16:8?h (light: dark). This research was performed with a completely random design with six treatments (five different concentrations of essential oils plus control). Each concentration includes of three replicates and each replicate consisted of 20 adult of pests. The results showed that aforementioned essential oil shows significant mortality of adults 24?h after exposure. The value LC50 of mentioned plant oil on T. vaporariorum was 1.03?μl?L/L air. And mortality percentage shows higher sensitivity of T. vaporariorum against application of essential oil. The value LT50 estimated for T. vaporariorum in concentration of 1.03?μl?L/L air was 7.18?h. Fumigant toxicity this essential oil has had an ordered relationship with the concentration and time exposure. The results of this research showed that mentioned plant oil had appropriate insecticidal effects on these greenhouse pests. The findings showed that C. copticum L. oil has high impact on the above-mentioned pests and it is suggested because of its high potential in fumigant toxicity and its use in integrated pest management programmes in greenhouses is mentioned.  相似文献   

20.
Antimicrobial properties and chemical composition of four citrus fruit essential oils to control Paenibacillus larvae, the causal agent of American foulbrood disease (AFB) were determined. This honeybee larvae disease occurs throughout the world and is found in many beekeeping areas of Argentina. Citrus fruit essential oils tested were those from grapefruit (Citrus paradisi), sweet orange (Citrus sinensis), mandarin (Citrus nobilis) and lemon (Citrus limon). The components of the essential oils were identified by SPME-GC/MS analysis. The antimicrobial activity of the oils against P. larvae were determined by the broth microdilution method. Two way ANOVA tests for minimum inhibitory concentrations (MICs) data and minimal bactericide concentrations (MBCs) data, indicated significant differences between the strains and the oils tested. The antimicrobial assays showed that the oil of C. paradisi inhibited the bacterial strains at the lowest concentrations tested, MICs and MBCs averages of 385.0 mg/l and 770.0 mg/l, respectively. This property could be attributed to the kind and percentage of the volatile components of the oil, like limonene (69.9%) and myrcene (9.6%). The use of essential oils or their specific volatile components individually against pests related to food provision may represent an alternative scope for the control of this serious disease because it does not leave toxic chemical residues in honey nor in its by products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号