首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The red-striped soft scale Pulvinaria tenuivalvata (Newstead) (Hemiptera: Coccidae) is a pest attacking sugarcane (Saccharum officinarum L.) recently recorded in Upper Egypt governorates. Sugarcane plantations in Upper Egypt were thoroughly inspected for 2 years from January 2001 until December 2002 to record infestation with P. tenuivalvata and its population density. Also, crops, plants and weeds growing near sugarcane fields were examined to determine the host range of this pest. A pest species of soft scale insect has become increasingly dangerous on sugarcane in Egypt. The insect occurrence was from 3?–?8 months on the infested hosts. The red-striped soft scale was active from May until December. Sugarcane, Cogon grass and Deccan grass were the hosts, which harboured all insect stages. The infestation was restricted on the lower surface of the leaves and lower numbers were found on the upper surface. Damage to sugarcane including withering of the leaves and reduced yield, with reduction in the sucrose content of the juice. The growth rate of pest population infesting the sugarcane plants in season 2001, increased gradually during the period from June to September and decreased from October to December. The same trend was found for the growth rate of population in season 2002. At the high growth rate it is advisable to use chemical control. The effect of weather factors on the population density of the P. tenuivalvata (the correlation between the total number of pests and temperature or RH.) were positive to both seasons. Many predators and parasites were collected, identified and counted.  相似文献   

2.
Two maize (Zea mays) inbred lines, A-619, (high DIMBOA content) and W-117 (low DIMBOA content) were artificially infested, at similar physiological stages, with 10 first-instar larvae of Sesamia nonagrioides. The DIMBOA concentration in stem and leaf tissues of damaged and undamaged plants was measured quantitatively in response to larval attack. After 60 h of infestation, both inbred lines were found to respond to insect attack by increasing significantly (P< 0·01) the DIMBOA content in leaf tissues compared with uninfested controls. Similar results were observed 5 days after infestation. No significant differences were found between the stem tissues of the two cultivars during this period. After 9 days infestation, significant increases (P <0·01) could still be found in the stem tissues of the two lines, these showing signs of wounding due to direct insect damage. Thereafter, until day 25 following infestation (the last day of measurement) no significant increased level of DIMBOA was recorded in stem and leaves of the infested lines in any sampling. The production of this compound appears to be a physiological response of the plant to attack induced by physical disruption of its tissues.  相似文献   

3.
The aphids Macrosiphum euphorbiae (Thomas) and Myzus persicae (Sulzer) (Homoptera: Aphididae) are serious pests of potato (Solanum tuberosum L.) (Solanaceae), notably in transmitting several plant viruses. Heterospecific interactions may occur between these two species as they are often seen at the same time on the same potato plant in the field. As aphid infestation is known to induce both local and systemic changes, we conducted experiments to determine the effect of previous infestation on probing behaviour and feeding‐related parameters. We used the DC electrical penetration graph technique to characterize the influence of previous infestation by conspecific M. persicae or by heterospecific Ma. euphorbiae on M. persicae feeding behaviour at both local and systemic levels, i.e., on previously infested leaves and on non‐previously infested leaves of infested plants, respectively. Conspecific and heterospecific infestation led to similar modification of M. persicae feeding activities. However, the effects of previous infestation occurring at the local level were opposite to those observed at the systemic level. Myzus persicae food acceptance was slightly enhanced on previously infested leaves, whereas it was inhibited on non‐infested leaves of infested plants, which indicated an induced resistance mechanism. Our results advance the understanding of the mechanisms involved in aphid–host plant acceptance and colonization processes on potato plants in conspecific and heterospecific situations.  相似文献   

4.
Fusarium oxysporum f.sp. asparagi (Foa) incites crown and root rot of asparagus which causes early decline of asparagus plantings. The aim of the present study was to identify the main inoculum sources of the pathogen in the Netherlands. As has been reported for foreign seed lots, Dutch seed lots can be infested with Foa at low levels. We found that seed infestation occurs mainly during the seed harvesting process through infested soil adhering to fallen berries. Soil samples from 59 fields without a history of asparagus growing and differing in their distance from asparagus plantings were tested for infestation with Foa, using a bioassay with asparagus as a bait plant. A high correlation was found between the incidence of infestation and proximity to asparagus fields; Foa was found in 69% of the samples from fresh fields in an asparagus production centre, and in only 6% of the samples from fields at a distance of 1 km and more from asparagus fields and outside a production centre. To evaluate planting material as an inoculum source of Foa, 49 lots of one-year-old crowns from 23 nurseries were collected and rated for disease symptoms. Infestation was found to be common with only two lots free of symptomatic plants. Most of the lots had more than 75% of symptomatic plants. Although most of the plants were infested, they showed only slight root rot symptoms. The procedure for production of Foa-free planting material is discussed. Persistence and infestation of asparagus root residues in former asparagus fields was assessed by retrieving the residues from eight former asparagus fields with an asparagus-free period of one to 25 years, and three fields with a standing asparagus crop. Even after an asparagus-free period of 25 yr asparagus root residues were retrieved from soil, although at low levels. Mean population densities of Fusarium spp. declined from 2 times 106 to 1 times 105 colony forming units g_1 air-dry root tissue during the first 10 years and were still > 104 c.f.u. g“1 air-dry root tissue 20 to 25 yr after asparagus produced was stopped. The population was dominated by F. oxysporum. Eighty-three of the 112 isolates (74%) of F. oxysporum belonged to the forma specialis asparagi. The proportion of Foa in the population did not decrease in time. It was concluded that persistence of Foa in asparagus root residues is a major reason for its long-term survival.  相似文献   

5.
The cabbage stem flea beetle (CSFB), Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae), is one of the most important pests in European winter oilseed rape production. Adult beetles feed on young leaves whereas larvae mine within the petioles and stems. Larval infestation can cause significant crop damage. In this study, the host quality for CSFB of four oilseed rape (Brassica napus L.) cultivars and seven other brassicaceous species with different glucosinolate (GSL) profiles was assessed under controlled conditions. Larval instar weights and mortality were measured after 14 and 21 days of feeding in the petioles of test plants. To study the impact of GSL on the performance of larvae, the GSL contents in petioles from non-infested and infested plants were analysed before, and 21 days after, the start of larval infestation. Larval performance was not significantly different between the four cultivars of oilseed rape, but differed considerably among the other brassicaceous species tested. In comparison to the weight of larvae in the standard B. napus cv. Robust, the larval weight was higher in turnip rape (Brassica rapa L. var. silvestris) and significantly reduced in white mustard (Sinapis alba L.), oil radish (Raphanus sativa L. var. oleiformis), and cabbage (Brassica oleracea L. convar. capitata var. alba). The duration of larval development increased in white mustard and oilseed radish. The GSL profiles of the petioles showed little difference between non-infested and infested plants of oilseed rape whereas the content of aliphatic GSL increased in the infested turnip rape plants. In contrast, the aliphatic and benzenic GSL decreased in infested Indian rape (B. rapa subsp. dichotoma Roxb.). Larval weight was not correlated with the total GSL content of plants, neither before infestation nor 21 days after. Larval weight was positively correlated with progoitrin and 4-hydroxyglucobrassicin. White mustard, which provides inferior host quality for larval development, has the potential to introduce insect resistance into high-yielding oilseed rape cultivars in breeding programmes.  相似文献   

6.
Campoletis chlorideae Uchida (Hymenoptera: Ichneumonidae), a major larval endoparasitoid of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), also attacks many other noctuid caterpillars. We investigated the attractiveness of H. armigera‐ and Pseudaletia separata (Lepidoptera: Noctuidae)‐infested maize [Zea mays L. (Poaceae)] plants to C. chlorideae, and analyzed the volatiles emitted from infested plants and undamaged plants. Considering the reported specific induction of plant volatiles by elicitors in the caterpillar regurgitant, we also tested the response of the parasitoid to mechanically damaged plants treated with caterpillar regurgitant or water and measured the volatiles released by these plants. In wind‐tunnel bioassays, C. chlorideae was strongly attracted to herbivore‐induced maize volatiles. Mechanically damaged plants, whether they were treated with caterpillar regurgitant or water, were more attractive to the parasitoid than undamaged plants. The parasitoid did not distinguish between maize seedlings infested by the two noctuid insects, nor did they show a difference in attraction to mechanically damaged plants treated with caterpillar regurgitant or water. Coupled gas chromatography–mass spectrometer (GC‐MS) analysis revealed that 15 compounds were commonly emitted by herbivore‐infested and mechanically damaged maize plants, whereas only two compounds were released in minor amounts from undamaged plants. Infestation by H. armigera specifically induced four terpenoids, β‐pinene, β‐myrcene, D‐limonene, and (E)‐nerolidol, which were not induced by infestation of P. separata and mechanical damage, plus caterpillar regurgitant or water. Two compounds, geranyl acetate and β‐sesquiphellandrene, were also induced by the infestation of H. armigera, but not by the infestation of P. separata. All treated maize plants released volatiles in significantly larger total amounts than did undamaged plants. Maize plants infested by H. armigera emitted greater amounts of volatiles than plants infested by P. separata. The treatment with caterpillar regurgitant resulted in larger amounts of volatile emission than the treatment with water did in mechanically damaged plants. The amounts of emissions of individual compounds were also different between differently treated plants.  相似文献   

7.
Hegazy  Ahmad K.  Amer  W. M.  Khedr  A. A. 《Hydrobiologia》2001,464(1-3):133-142
Lotus infestation of ricefields is a major cause of crop failure and decrease of grain yield in the newly reclaimed cut-off areas around lake Manzala, Egypt. This study provides insights in the allelopathic effect of Nymphaea lotus L. on rice (Oryza sativa cavr. Giza-177). Lotus rhizome extracts were inhibitory to seed germination and seedling growth of rice. The degree of inhibition was dependent on extract type and concentration. Ethanol and water extracts were more inhibitory than chloroform extracts. The phenolic fraction of ethanol extracts showed the highest inhibitory effects. In a target (rice)-neighbour (lotus) pot experiment, rice dry mass and relative growth rate were dependent on its age and on lotus rhizome density, with decreased growth at increased lotus density. Field data on infested and non-infested ricefields demonstrated a decreased leaf area index and yield in infested fields. Identification of the potential allelochemical compounds by gas chromatography/mass spectrometry revealed the presence of allelopathic phenolics in lotus rhizomes.  相似文献   

8.
Abstract 1. The influence of infestation of the larval host plant Gentiana cruciata on the egg‐laying preferences of the xerophilous ecotype of Alcon Blue butterfly (Maculinea alcon) was studied in a semi‐dry grassland area (Aggtelek Karst Region, Northern Hungary). 2. We examined whether oviposition patterns of females differed when G. cruciata stems were uninfested compared with when they were infested by an aphid (Aphis gentianae) or a rust (Puccinia gentianae) species. 3. Females laid more than 90% of their eggs on fertile, uninfested G. cruciata stems, although these stems comprised only ~ 50% of the total stems available. Stems infested by aphids were similar to uninfested ones in properties that had a strong correlation with egg numbers, and yet there were significantly fewer eggs on infested stems than on intact ones. 4. Females never laid eggs on parts of Gentiana stems infested by aphids, and the presence of Lasius paralienus ants, which have a mutualistic interaction with Aphis gentianae, did not increase the repulsive effect of aphids. Infection of Gentiana by Puccinia did not influence the egg‐laying behaviour of females, even though the flowers and buds of infested stems exhibited a delayed development. 5. Aphid infestation can influence butterfly oviposition patterns through both direct and indirect effects. The presence of aphids directly excluded oviposition, but our data also indicated the possibility of an indirect effect of aphid infestation. Stems that had no aphids at the last egg counting, but were infested prior to it, had significantly fewer eggs than those that were never infested.  相似文献   

9.
Abstract

We studied the effects of previous infestation of broad bean plants by pea aphids Acyrthosiphon pisum on the performance of conspecific nymphs on the plants and the involvement of jasmonic acid (JA)-related defenses. The time needed for newly emerged nymphs to become reproductive adults on broad bean plants previously infested by conspecifics (pre-infested plants) was significantly shorter than on uninfested (control) broad bean plants. The total numbers of nymphs produced by aphids on preinfested and control plants were not significantly different. Preinfested plants produced significantly less endogenous JA than that control plants did. To test the effect of JA decreases, we conducted experiments on the developmental duration of nymphs on broad bean plants treated with JA (JA-treated plants) before infestation. The time needed for nymphs to become reproductive adults on JA treated preinfested broad bean plants was not significantly different from that on JA-treated control plants. The results suggested a possible parental care by pea aphids: the adult aphids manipulated JA-related defenses in broad bean plants that had positive effects for their offspring.  相似文献   

10.
Bemisia tabaci Middle East–Asia Minor 1 (MEAM1) is a worldwide pest. To determine whether MEAM1 nymphs produce the same symptoms in different host plants, we measured the plant growth and chlorophyll content of tobacco and cotton plants that were infested by MEAM1 nymphs. Furthermore, to investigate the spatial and temporal changes in photosynthesis caused by MEAM1 nymphs, the net photosynthetic rate (Pn) and chlorophyll a fluorescence of local and systemic tobacco leaves were assayed at 8, 11, 14, and 20 days after MEAM1 adult removal, which represent the stages of 1st, 2nd, 3rd, and 4th instar nymphs, respectively. The results showed that MEAM1 nymph infestation reduced the plant height and internode length of tobacco at 14 and 20 days, as well as the dry weight of infested and systemic tobacco leaves. However, MEAM1 nymph infestation did not affect the plant height or internode length of cotton. Also, the dry weight and chlorophyll and carotenoid content of infested and systemic leaves of cotton plants were not influenced by MEAM1 nymph infestation. However, the contents of chlorophyll a and b and carotenoids in infested tobacco leaves decreased over time; the chlorophyll a content of systemic tobacco leaves decreased at 11, 14, and 20 days. The chlorophyll and carotenoid contents in infested and systemic leaves of cotton plants were not influenced by MEAM1 nymph infestation. In addition, the Pn of infested tobacco leaves decreased at 14 and 20 days, while the Pn in systemic tobacco leaves decreased after 11 days. The greatest decrease in performance index on absorption basis (PI ABS ) of infested and systemic tobacco leaves occurred on day 14. The fluorescence intensity at 2 ms (J peak) and 300 μs (K peak) increased on day 14, which indicates that 3rd instar nymphs caused serious damage to the primary photochemical reactions and donor side of PSII. These results suggest that MEAM1 nymph infestation had different effects on tobacco and cotton plants. The infestation caused spatial and temporal changes in photosynthesis in tobacco plants. The lower chlorophyll a content may have been related to the lower net photosynthetic rate of systemic and infested tobacco leaves. The decreased stability of the oxygen-evolving complex and the reaction center of PSII and the decrease in electron transport were the main reasons for the decrease in the level of photosynthesis in tobacco leaves caused by MEAM1 nymphs during various stages of infestation.  相似文献   

11.
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) and Pieris rapae L. (Lepidoptera: Pieridae) are serious pests of vegetables, that can occur simultaneously on a single cabbage plant [Brassica oleracea var. capitata L. (Brassicaceae)]. We determined whether pre‐feeding or infestation by B. tabaci on cabbage could induce physiological and biochemical responses of the plant against P. rapae. Developmental time, length, and weight of immature P. rapae, and defense‐related plant compounds (SOD, superoxide dismutase; POD, peroxidase; CAT, catalase; APX, ascorbate peroxidase) were measured. Development of P. rapae larvae was 21% slower on B. tabaci‐pre‐infested plants than on plants without B. tabaci infestation. When feeding on B. tabaci‐pre‐infested plants, 22% of P. rapae larvae pupated as compared with 83% on B. tabaci‐free plants. Weights of P. rapae from first to fourth instars that fed on B. tabaci‐pre‐infested plants were also reduced, whereas those of fifth instars and pupae were not. Similarly, body length of P. rapae from first to fourth instars was affected by B. tabaci pre‐infestation, whereas that of the fifth instars was not. Peroxidase and APX activities of the B. tabaci‐pre‐infested plants increased more than SOD and CAT. Peroxidase and SOD activities of B. tabaci and P. rapae co‐infested plants increased as compared with those of P. rapae‐infested plants; however, CAT and APX activities were not different between B. tabaci‐ and P. rapae‐infested plants. These results showed that B. tabaci infestation had a negative effect on P. rapae when they occurred simultaneously on the same host plant. The implications of the induced plant changes on the herbivore are discussed.  相似文献   

12.
Cotesia kariyai Watanabe (Hymenoptera: Braconidae) is a specialist larval parasitoid of Mythimna separata Walker (Lepidoptera: Noctuidae). Cotesia kariyai wasps use herbivore‐induced plant volatiles (HIPVs) to locate hosts. However, complex natural habitats are full of volatiles released by both herbivorous host‐ and non‐host‐infested plants at various levels of intensity. Therefore, the presence of non‐hosts may affect parasitoid decisions while foraging. Here, the host‐finding efficiency of naive C. kariyai from HIPVs influenced by host‐ and non‐host‐infested maize [Zea mays L. (Poaceae)] plants was investigated with a four‐arm olfactometer. Ostrinia furnacalis Guenée (Lepidoptera: Crambidae) was selected as a non‐host species. One unit (1 U) of host‐ or non‐host‐infested plant was prepared by infesting a potted plant with five host or seven non‐host larvae. In two‐choice bioassays, host‐infested plants fed upon by different numbers of larvae, and various units of host‐ and non‐host‐infested plants (infestation units; 1 U, 2 U, and 3 U) were arranged to examine the effects of differences in volatile quantity and quality on the olfactory responses of C. kariyai with the assumption that volatile quantity and quality changes with differences in numbers of insects and plants. Cotesia kariyai was found to perceive quantitative differences in volatiles from host‐infested plants, preferring larger quantities of volatiles from larger numbers of larvae or plants. Also, the parasitoids discriminated between healthy plants, host‐infested plants, and non‐host‐infested plants by recognising volatiles released from those plants. Cotesia kariyai showed a reduced preference for host‐induced volatiles, when larger numbers of non‐host‐infested plants were present. Therefore, quantitative and qualitative differences in volatiles from host‐ and non‐host‐infested plants appear to affect the decision of C. kariyai during host‐habitat searching in multiple tritrophic systems.  相似文献   

13.
In the Rennes basin, Rhopalosiphum padi is anholocyclic and represents more than 90% of suction trap catches of potential vectors of barley yellow dwarf virus (BYDV) during autumn. From 1983 to 1987 the possibility of predicting the risk of BYDV infection of batches of barley test seedlings (sampling units) exposed each week from September to December near a 12.2 m high suction trap was investigated. Three kinds of variables were checked as possible predictors: weekly mean or maximum temperatures; weekly catches of R. padi (including or excluding males); and percentage of sampling units infested by aphids. Three contrasting examples were observed: during the first three years (1983–1985), infection was high and its change with time followed temperature, aphid catches and plant infestation changes; in 1986, high numbers of aphids caught and a high proportion of plants infested resulted in only low infection and in 1987, both infestation and infection were very low. Simple linear regression analysis showed that the more reliable predictors of infection were the proportion of infested plants and to a lesser extent the numbers of trapped aphids. Multiple linear regressions including either of the three groups of ‘predicting’ variables did not result in any improvement in the prediction. At a practical level, the use of counts of aphid catches would seem a better compromise between accuracy and consistency of prediction and ease of gathering data than that of plant infestation but any significant improvement of the prediction should be sought in an early estimate of the amount of virus available to aphids before they colonise the plants.  相似文献   

14.
1. Herbivores sometimes suppress plant defences. This study tested whether the presence of pea aphids (Acyrthosiphon pisum Harris) on broad bean (Vicia faba) led to decreased secretion of extrafloral nectar (EFN) which functions as an indirect plant defence against herbivores. 2. To determine effects of aphid infestation on EFN secretion, a comparison was done between EFN secretion in uninfested plants and that in plants infested by A. pisum and another aphid species (Aphis craccivora Koch). 3. When broad bean plants were infested by A. pisum, they secreted significantly smaller amounts of EFN than did uninfested plants and A. craccivora‐infested plants. There was no significant difference in EFN secretion between uninfested plants and A. craccivora‐infested plants. The number of extrafloral nectaries did not differ among the three treatments. 4. These results suggest that A. pisum reduced EFN production in broad bean plants.  相似文献   

15.
To cope with pathogen and insect attacks, plants develop different mechanisms of defence, in both direct (physical and chemical) and indirect ways (attractive volatiles to entomophagous beneficials). Plants are then able to express traits that facilitate "top-down" control of pests by attracting herbivore predators. Here we investigate the indirect defence mechanism of potato plants by analyzing the volatile patterns of both healthy and aphid- infested plants. Important changes in the emitted terpene pattern by the Myzus persicae infested host plant were observed. Using Solid Phase MicroExtraction (SPME) and GC-MS, the (E)-fl-farnesene (EBF) appeared to be emitted by aphid-infested potato and not by healthy plants. To assess the infochemical role of these volatile releases after aphid damage on the aphidophagous predators Episyrphus balteams, the hoverfly foraging behavior was assessed using the Observer 5.0 software (Noldus, Wageningen, The Netherlands). Aphidfree potato plants were also used as a control volatile source in the predator behavioral study. While aphid-infested plants induced efficient searching and acceptation behaviors leading to egg-laying, no kairomonal effect of healthy potato plants was observed, leading to longer immobility durations and shorter searching periods in the net cage. High oviposition rate of E. balteatus was observed when aphid-infested potato was used (mean of 48.9 eggs per laying and per female). On the other hand, no egg was produced by the hoverfly on healthy aphid-free plants. The E. balteatus foraging and reproductive behaviors according to the volatile emission from aphid-infested plants are discussed in relation to the potential use of active infochemical molecules in integrated aphid pest management.  相似文献   

16.
Damage caused by two‐spotted spider mites (Tetranychus urticae) at harvest to yield, quality (measured in percentage α‐acids content) and cone infestation was assessed on hop cvs Hallertauer Magnum, Hallertauer Tradition and Perle. Acaricide‐untreated hop plants with known levels of T. urticae infestation were compared with neighbouring acaricide‐treated plants. Although in 24 of the 36 experimental harvests the untreated hop plants had spider mite infestations of > 100 mites leaf?1, yields and α‐acids content from the untreated plants were significantly lower than the treated plants in only four instances. However, although mite infestation of cones from untreated hops were significantly higher than acaricide‐treated plants in 27 of the 36 cases, in only one instance did that cause economic loss. Spider mite infestation levels of c. 90 mites leaf?1 are tolerable at harvest time with little or no risk of causing economic loss to hop growers.  相似文献   

17.
The effectiveness of mating disruption to control the tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), in greenhouse tomato crops was evaluated in four trials carried out in winter–spring and summer–winter growing seasons in Southwestern Sardinia (Italy). Pheromone dispensers loaded with 60 mg of the natural blend of the major and minor sex pheromone component (rate 90 : 10) were applied in disrupted greenhouses at a rate of 1000/ha (60 g of active ingredient/ha). Male captures in monitoring pheromone traps, percentage of tomato plants infested by T. absoluta and damage on leaves and fruits were monitored weekly and compared in disrupted and untreated (control) greenhouses. In greenhouses disrupted with 1000 dispensers/ha, a reduction of 93–97% in male trap captures was observed, compared with control. Leaf damage was significantly lower in greenhouses disrupted with 1000 dispensers/ha than in control ones, with a reduction of infestation throughout the growing season ranging from 57% to 85%. Pheromone dispensers applied at the density of 1000/ha significantly reduced the percentage of damaged fruits by 62–89%. In control greenhouses, the highest damage on leaves and fruits was generally observed in edge plants, while leaf and fruit infestation was uniformly distributed in pheromone‐treated greenhouses, indicating an even distribution of the pheromone cloud inside the greenhouse. Mating disruption showed to be an efficient strategy to control in greenhouse the tomato leafminer and can be included in the overall tomato integrated pest management programs.  相似文献   

18.
The flavone, tricin (5,7,4′‐trihydroxy‐3′,5′‐dimethoxyflavone), is a valuable secondary metabolite that is common in gramineous plants, including cultivated rice (Oryza sativa). It can defend the rice plant against infestation by the brown planthopper (BPH), Nilaparvata lugens Stål, one of the most important pests of rice. This study evaluated the tricin concentration in infested and non‐infested rice plants. The results of the liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) quantitative analysis showed that the tricin concentration in rice leaves was significantly higher than in the stems and roots. The mass concentration of tricin in the leaves at the leaf stage was significantly higher than at the tiller and booting stages. The relationship between rice variety, BPH resistance and tricin concentration was investigated. There was a significant negative correlation between tricin concentration and the injury severity scores for rice varieties. Moreover, BPH infestation caused variations in tricin concentration among rice plants. High BPH infestation levels can significantly reduce the tricin concentration in rice plants. However, there is no significant effect of the length of infestation times on tricin concentrations in rice leaves. These results suggest that there may be an elicitor in BPH saliva, which is injected into rice plants during BPH infestation and triggers the tricin metabolic system. Future studies need to identify the elicitor and clarify the mechanism underlying tricin reduction in infested rice plants.  相似文献   

19.
An aqueous suspension of Nosema marucae spores was sprayed on foliage of sorghum plants that had been infested with neonate Chilo partellus larvae at 3, 5, 7 and 9 weeks after (plant) emergence (WAE). These periods corresponded to plants at the tillering, early booting, soft dough and late maturation phenological stages, respectively. The extent of borer infestation and plant damage was monitored until crop harvest, and compared with plants which had been similarly infested but not sprayed with the pathogen, and with plants in insect‐free control plots. When applied early, infestation with neonate borer larvae caused most damage to the plants and the greatest reduction in yield in the untreated plots. Early treatment with N. marucae spores at 3 and 5 WAE resulted in the greatest reduction in damage to plants and the highest improvement in yield of seeds. It is apparent, therefore, that for maximum crop protection the microsporidian needs to be applied when sorghum is in an early phenological stage.  相似文献   

20.
Abstract

Pediobius furvus (Gahan) (Eulophidae: Hymenoptera) was recorded as a new pupal parasitoid (gregarious endo-parasitoid) of Sesamia cretica pupae (Led.) in El-Noubaria region (El-Beheira Governorate), Egypt. This study was conducted in maize and sorghum fields in El-Beheira and Giza Governorates in Egypt during 1994 and 1995. The percentage parasitism was 8.4 and 15.4% in August and September, respectively. The number of parasitoids emerging from one pupa ranged from 28 to 222. It has been concluded that this new species is a gregarious endo-parasitoid that pupates inside its host. Pediobius furvus has a high reproductive ability, which may afford mass production and enable mass release of the parasitoid to control S. cretica in maize fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号