首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The alfalfa weevil Hypera postica is a serious economic pest in most alfalfa grown in many countries worldwide. Digestive α-amylase and pectinase activities of larvae were investigated using general substrates. Midgut extracts from larvae showed an optimum activity for α-amylase against starch at acidic pH (pH 5.0). α-Amylase from larval midgut was more stable at mildly acidic pH (pH 5–6) than highly acidic and alkaline pH. The enzyme showed its maximum activity at 35°C. α-Amylase activity was significantly decreased in the presence of Ca2+, Mg2+ and sodium dodecylsulfate. On the contrary, K+ and Na+ did not significantly affect the enzyme activity. Zymogram analysis revealed the presence of one band of α-amylase activity in in-gel assays. Pectinase activity was assayed using agarose plate and colorimetric assays. Optimal pH for pectinase activity in the larval midgut was determined to be pH 5.0. Pectinase enzyme is more stable at pH 4.0–7.0 than highly acidic and alkaline pH. However, the enzyme was more stable at slightly acidic pH (pH 6.0) when incubation time increased. Maximum activity for the enzyme incubated at different temperatures was observed to be 40°C. Optimum pH activity for α-amylase and pectinase is not completely consistent with the pH prevailing in the larval midgut. This is the first report of the presence of pectinase activity in H. postica.  相似文献   

2.
Activity of α-amylase was revealed in the midgut and salivary glands of the wheat and barley pentatomid pest, A. acuminata. The activity was determined in salivary gland more than those in midgut. Optimal activity of the enzyme occurred at 40°C. Optimal pH activity in salivary gland (pH = 6) was more than those in the midgut (pH = 4.5). pH stability analysis of the enzyme showed that the enzyme is more stable at slightly acidic pHs than those at acidic and alkaline pHs. However, α-amylase is more stable at acidic pH in long period of time. Temperature stability analysis determined the enzyme was remarkably active over a broad range of temperature (5–40°C). α-Amylase activity was decreased after addition of MgCl2, Tris, Triton X-100, CuSO4, SDS, urea and CaCl2. The salts NaCl and KCl increased the enzyme activity from midgut and salivary glands. Zymogram analysis of midgut and salivary gland extract showed at least two bands of amylase activity in the midgut and salivary glands.  相似文献   

3.
The α‐amylase in the midgut and salivary glands of Eurygaster integriceps was isolated and characterized. The specific activity of α‐amylase in the midgut was 1.77 U/mg protein and in the salivary glands was 1.65 U/mg protein. Sodium dodecylsulfate electrophoresis showed that both midgut and salivary glands contain isozymes. Only a trace amount of α‐amylase activity was detected in the first nymphal stage (0.19 U/mg protein), whereas α‐amylase activity was highest in the third nymphal stage (1.21 U/mg protein). The results show that α‐amylase activity in the immature stages increase constantly to the third instar stage. There was no significant difference in enzyme activity between the third, fourth and fifth nymphal stages and adults. The optimum pH and temperature for the enzyme activity was determined to be 6.5 and 35°C, respectively. The enzyme activity was inhibited by addition of ethylenediaminetetraacetic acid, urea, sodium dodecylsulfate and Mg2+, but NaCl and KCl enhanced enzyme activity.  相似文献   

4.
The wheat bug Eurygaster maura (Hemiptera: Scutelleridae) is a potential pest of wheat and barley in Iran and other countries. Two major digestive enzymes of this insect, α‐d ‐glucosidase and β‐d ‐glucosidase, have been investigated. The midgut has four distinct regions including the first ventriculus (V1), second ventriculus (V2), third ventriculus (V3) and fourth ventriculus (V4). The study showed that the first three regions of the wheat bug midgut were acidic (pH 5.5–6), the fourth region of the midgut and hindgut pH were slightly acidic (pH 6.5–6.9) and the salivary gland (labial gland) pH was determined to be somewhat acidic (pH 5–5.5). Enzyme assay showed that α‐ and β‐glucosidase activity is present in both midgut and salivary glands of adult E. maura. The specific activities of midgut α‐ and β‐glucosidase were 11.2 and 10.8 mU/mg protein, respectively. The specific activities of these enzymes in salivary glands were 3.06 and 2.73 mU/mg protein, respectively. Optimum temperature and pH values for glucosidases were determined to be 30–35°C and 5, respectively. Glucosidases of the midgut were more stable than salivary glucosidases at 35°C. Evaluating enzymatic kinetic parameters showed that glucosidases of the midgut had more affinity as well as more velocity than that of salivary glands.  相似文献   

5.
Almost all current genetically modified plant commercial products are derived from seeds. The first protein product made in leaves for commercial use is reported here. Leaf pectinases are validated here with eight liquid commercial microbial enzyme products for textile or juice industry applications. Leaf pectinases are functional in broad pH/temperature ranges as crude leaf extracts, while most commercial enzyme products showed significant loss at alkaline pH or higher temperature, essential for various textile applications. In contrast to commercial liquid enzymes requiring cold storage/transportation, leaf pectinase powder was stored up to 16 months at ambient temperature without loss of enzyme activity. Commercial pectinase products showed much higher enzyme protein PAGE than crude leaf extracts with comparable enzyme activity without protease inhibitors. Natural cotton fibre does not absorb water due to hydrophobic nature of waxes and pectins. After bioscouring with pectinase, measurement of contact‐angle water droplet absorption by the FAMAS videos showed 33 or 63 (leaf pectinase), 61 or 64 (commercial pectinase) milliseconds , well below the 10‐second industry requirements. First marker‐free lettuce plants expressing pectinases were also created by removal of the antibiotic resistance aadA gene. Leaf pectinase powder efficiently clarified orange juice pulp similar to several microbial enzyme products. Commercial pilot scale biomass production of tobacco leaves expressing different pectinases showed that hydroponic growth at Fraunhofer yielded 10 times lower leaf biomass per plant than soil‐grown plants in the greenhouse. Pectinase enzyme yield from the greenhouse plants was double that of Fraunhofer. Thus, this leaf‐production platform offers a novel, low‐cost approach for enzyme production by elimination of fermentation, purification, concentration, formulation and cold chain.  相似文献   

6.
The elm leaf beetle, Xanthogaleruca luteola, is a serious pest of elm trees in urban areas. Partial biochemical characterization of pectinases and cellulases was conducted using the larval digestive system of the pest. Midgut extracts from larvae showed optimum activity for pectinase and cellulase against pectin and carboxymethyl cellulose, respectively, under acidic conditions (pH 6). Pectinases and cellulases were respectively more stable under acidic conditions (pH 4–7) and slightly acidic conditions (pH 5–7) than under highly acidic and alkaline conditions. However, the enzymes were more stable in slightly acidic conditions (pH 6) when incubation time was increased. Maximum activity for the pectinases and cellulases incubated at different temperatures was observed at 45 and 50 °C, respectively. Mg2+ remarkably increased pectinase activity, and cellulase activity increased significantly in the presence of Ca2+ and Mg2+. Sodium dodecyl sulfate significantly decreased pectinase and cellulase activity. The Michaelis–Menten constant (KM) and the maximal reaction velocity (Vmax) values for pectinase were 2 mg·mL? 1 and 0.017 mmol·min? 1·mg? 1 protein toward pectin, respectively. Zymogram analyses revealed the presence of one and five bands of pectinase and cellulase activity, respectively, in the larval midgut extract.  相似文献   

7.
The pistachio green stink bug, Brachynema germari, has 3–5 generations per year and causes severe damages to pistachio crops in Iran. Physiological digestive processes, such as digestive carbohydrases, can be used to design new strategies in IPM programs for controlling this pest. The enzyme α-amylase digests starch during the initial stage of digestion. Complete breakdown of carbohydrates takes place in the midgut where α- and β-glucosidic activities are highest. Alpha-amylase and α- and β-glucosidase activities were found in the midgut and salivary glands of pistachio green stink bug adults. Overall enzyme activities were significantly higher in the midgut than in salivary glands. The highest α-amylase and α- and β-glucosidase activities were in section v3, whereas the lowest activities were in section v4. Vmax was higher and Km was lower in the midgut than in the salivary glands for these enzymes. In the pistachio green stink bug, the optimal pH was pH 5–6.5 and the optimal temperature was 30 °C to 35 °C for these enzymes. Alpha-amylase activity in the midgut and salivary glands decreased as the concentrations of MgCl2, EDTA and SDS increased. Enzyme activities in both midgut and salivary glands increased in the presence of NaCl, CaCl2, and KCl. NaCl had a negative effect on alpha-amylase extracted from salivary glands.  相似文献   

8.
Pectinase is an important kind of enzyme with many industrial applications, among which pectinases produced by bacteria were scarce compared with fungal sources. In this study, a novel bacterium which produced extracellular pectinase was firstly isolated from flue-cured tobacco leaves and identified as Bacillus subtilis PB1 according to its 16S rRNA gene. The pectinolytic enzyme was purified by ammonium sulfate precipitation, ion-exchange and gel filtration chromatography, after which molecular weight was determined as 43.1?±?0.5 kDa by SDS–PAGE. Peptide mass fingerprinting of the pectinase by MALDI-TOF MS showed that the purified enzyme shared homology with pectate lyase and was designated as BsPel-PB1. The optimal temperature for BsPel-PB1 was 50 °C. The optimal pH was pH 9.5 for BsPel-PB1 while it had a broad pH stability from 5 to 11. The values of K m and V max were 0.312 mg/mL and 1248 U/mL, respectively. Accordingly, the BsPel-PB1 was a novel alkaline pectate lyase which could find potential application as a commercial candidate in the pectinolytic related industries.  相似文献   

9.
This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10–30 min), ultrasound temperature (30–50°C), pH (2.0–8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40°C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.  相似文献   

10.
An extracellular pectinase (PEC-I) was isolated from the crude extract of Aspergillus oryzae when grown on passion fruit peel (PFP) as the carbon source and partially purified by ultra filtration, gel filtration and ion-exchange chromatography procedures. Pectinase activity was predominantly found in the retentate. The pectinase from retentate (PEC-Ret) was most active at 50?°C and pH 7.0 and stable at 50?°C with a half-life of approximately 8?h. PEC-I showed higher activity at pH 4.5 and 55?°C, 70?°C and 75?°C and was inhibited by cations (Ag+, Fe2+, Fe3+, Co2+, Ca2+ and Hg2+), EDTA, tannic acid and vanillin. On the other hand, PEC-I was activated by Cu2+, ferulic acid, cinnamic acid and 4-hydroxybenzoic acid. The gel under denaturing conditions of PEC-Ret and PEC-I samples showed a protein band of ~45?kDa coincident with that found by staining for pectinase activity. In the bioscouring of cotton fabric the PEC-Ret pectinase preparation led to a better wettability and removed more pectin from the cotton fibers than the commercial enzyme preparation Viscozyme L, but was less effective than a commercial alkaline pectate lyase preparation and alkaline scouring. The incubation of PEC-Ret with guava juice resulted in a 4.15% decrease in juice viscosity.  相似文献   

11.
棉秸秆降解高温菌株的筛选及产酶分析   总被引:1,自引:1,他引:1  
从新疆地区分离具有降解棉秸秆纤维素功能的菌株,得到4株耐高温真菌(50°C)。纤维素酶学性质分析表明,该4株菌的纤维素酶具有良好的耐酸性(最适pH为4.5)和耐高温性(最高达60°C)。以羧甲基纤维素钠(CMC-Na)、微结晶纤维素、棉花、滤纸、淀粉、果胶为底物测定酶活力,滤纸酶活力(FPA)最高达2.63 U/mL、淀粉酶活力最高达6.17 U/mL、果胶酶活力最高达5.86 U/mL。4株真菌酶学特性分析表明,该系列菌株在秸秆生物质利用方面有很大的应用潜力。  相似文献   

12.
An alkalophilic Streptomyces sp. RCK-SC, which produced a thermostable alkaline pectinase, was isolated from soil samples. Pectinase production at 45 °C in shaking conditions (200 rev min−1) was optimal (76,000 IU l−1) when a combination of glucose (0.25% w/v) and citrus pectin (0.25% w/v) was added along with urea (0.25% w/v) in the basal medium devoid of yeast extract and peptone. All the tested amino acids and vitamins greatly induced pectinase production and increased the specific productivity of pectinase up to 550%. In an immobilized cell system containing polyurethane foam (PUF), the pectinase production was enhanced by 32% (101,000 IU l−1) compared to shake flask cultures. In solid-state cultivation (SSC) conditions, using wheat bran as solid substrate, pectinase yield of 4857 IU g−1 dry substrate was obtained at substrate-to-moisture ratio of 1:5 after 72 h of incubation. The partially purified pectinase was optimally active at 60 °C and retained 80% of its activity at 50 °C after 2 h of incubation. The half life of pectinase was 3 h at 70 °C. Pectinase was stable at alkaline pH ranging from 6.0 to 9.0 for more than 8 h at room temperature retaining more than 50% of its activity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Streptomyces sp. QG-11-3, which produces a cellulase-free thermostable xylanase (96 IU ml−1) and a pectinase (46 IU ml−1), was isolated on Horikoshi medium supplemented with 1% w/v wheat bran. Carbon sources that favored xylanase production were rice bran (82 IU ml−1) and birch-wood xylan (81 IU ml−1); pectinase production was also stimulated by pectin and cotton seed cake (34 IU ml−1 each). The partially purified xylanase and pectinase were optimally active at 60°C. Both enzymes were 100% stable at 50°C for more than 24 h. The half-lives of xylanase and pectinase at 70, 75 and 80°C were 90, 75 and 9 min, and 90, 53 and 7 min, respectively. The optimum pH values for xylanase and pectinase were 8.6 and 3.0, respectively, at 60°C. Xylanase and pectinase were stable over a broad pH range between 5.4 and 9.4 and 2.0 to 9.0, respectively, retaining more than 85% of their activity. Ca2+ stimulated the activity of both enzymes up to 7%, whereas Cd2+, Co2+, Cr3+, iodoacetic acid and iodoacetamide inhibited xylanase up to 35% and pectinase up to 63%; at 1 mM, Hg2+ inhibited both enzymes completely. Journal of Industrial Microbiology & Biotechnology (2000) 24, 396–402. Received 29 September 1999/ Accepted in revised form 02 February 2000  相似文献   

14.
A Streptomyces sp. was isolated that produced novel thermoalkalotolerant cellulase activity after growth on crystalline cellulose at 50°C. Three major components of the cellulases (CMCase, Avicelase and cellobiase) were produced with maximal activities (11.8, 7.8 and 3.9 IU/ml) and maximum specific activities 357, 276 and 118 IU/mg protein, respectively, after 120 h growth. Maximum CMCase activity was between 50 and 60°C measured over 3 h. The enzyme also retained 88% of its maximum activity at 70°C and pH 5, and 80% of the activity at pH 10 and 50°C when assayed after 1 h. After incubation at 40°C for 1 h with commercial detergent (Tide) at pH 11, 95% activity was retained. The enzyme mixture produced glucose from crystalline cellulose.  相似文献   

15.
The production of pectin lyase (PL) was dependent on medium pH with two peaks of production, at pH 61 and 7-2, that at pH 61 showing considerably higher activity. Crude PL activity was stable for at least 3 h at both 30 and 40C. At 50C there was a 20%, reduction in activity after 1 h; at 60C there was a 40% reduction after 30 min yet > 50% activity was retained for a further 2 h. The crude enzyme exhibited macerating ability against carrot tissue commensurate with that of a currently available commercial pectinase enzyme.  相似文献   

16.
Simultaneous production of xylanase and pectinase by Bacillus pumilus AJK under submerged fermentation was investigated in this study. Under optimized conditions, it produced 315?±?16 IU/mL acidic xylanase, 290?±?20 IU/mL alkaline xylanase, and 88?±?9 IU/mL pectinase. The production of xylano-pectinolytic enzymes was the highest after inoculating media (containing 2% each of wheat bran and Citrus limetta peel, 0.5% peptone, 10?mM MgSO4, pH 7.0) with 2% of 21-hr-old culture and incubated at 37°C for 60?hr at 200?rpm. Xylanase retained 100% activity from pH 6.0 to10.0 after 3?hr of incubation, while pectinase showed 100% stability from pH 6.0 to 9.0 even after 6?hr of incubation. Cost-effective and concurrent production of xylanase and pectinase by a bacterial isolate in the same production media suggests its potential for various biotechnological applications. This is the first report of simultaneous production of industrially important extracellular xylano-pectinolytic enzymes by B. pumilus.  相似文献   

17.
An improved method for assaying of the total endodepolymerase activity of pectinases has been developed. The method is based on the determination of the viscosity of a citrus pectin solution in the presence of the enzyme using an Ostwald viscometer. The depolymerizing activity of different pectinases can be detected including polygalacturonase, polymethylgalacturonase, pectin lyase, and pectate lyase. One unit of the endodepolymerase activity corresponds to the activity resulting in 50% decrease in the relative viscosity of 0.5% citrus pectin solution for 5 min at 40°C and the appropriate pH. Depending on the pH-optima of the enzymes, two modifications of the method are described: 1) for acid pectinases at pH 5.0, and 2) for neutral (mildly alkaline) pectinases at pH 8.0. The modifications differed in the control and in the calculation of the activity. Six enzyme preparations were used to demonstrate the applicability of the method. The parameter used for the calculation of the enzymatic activity was directly proportional to the enzyme concentration (the dependence was linear in the range of at least 10-fold change in the enzyme concentration). The relative error of the method did not exceed 10%.  相似文献   

18.
Morphology, pH and carbohydrate hydrolyzing enzyme activities of the Sunn pest gut were investigated in this study. The Sunn pest midgut is separated into the first ventriculus (V1), the second ventriculus (V2), the third ventriculus (V3) and the fourth ventriculus (V4). The first three regions of the midgut were acidic (pH 5.0–5.2), while the fourth region of the midgut and rectum was moderately acidic (pH 6.2–6.4 and pH 6.5–6.8, respectively). Activity of α-amylase was highest at pH 6 to 7, which correlates with the pH of the midgut. The optimum pH for α-glucosidase and β-glucosidase is 4 to 6 and 5 to 6, respectively. Different gut regions had different carbohydrate hydrolyzing enzyme activities. Carbohydrate hydrolyzing enzyme activities in V2 and V4 were the same, but activities in V1 were slightly higher than in V2 and V4 and lower than in V3. Levels of α- and β-glucosidase activities were similar in various midgut sections. However, the V3 had the highest activity followed by V4, V2, V1, respectively.  相似文献   

19.
A strain of thermophilic bacterium, Bacillus sp., with pectolytic activity has been isolated. It produced an extracellular endo-polygalacturonate trans-eliminase (PL, EC 4.2.2.1) when grown at 60°C on a medium containing polygalacturonate (PGA). The PL was purified by hydrophobic, cation exchange, and size exclusion column chromatographies. The molecular mass of the enzyme was 50 kDa by SDS-PAGE. The isoelectric point of the enzyme was pH 5.3. The enzyme had a half-life of 13 and 1 h at 65 and 70°C, respectively, and showed optimal activity around at 70°C and pH 8.0. It had protopectinase activity, besides PL activity, on lemon protopectin and cotton fibers. The first 20 amino acids sequence of the enzyme had significant similarity with that of PL from methophilic Bacillus subtilis, with 50% identity.  相似文献   

20.
The application of protease as a laundry detergent additive from a newly isolated Nocardiopsis sp., isolated from a soil sample collected in Northeast Brazil is reported. The optimal pH and temperature for protease activity were pH 10.5 and 50 °C, respectively. The enzyme was stable in a long-term incubation, showed 73.5% of initial activity at pH 10.5 and 61.7% at pH 12.0 for 120 min. Approximately 60% of initial activity remained after 120 min at 50 °C or after 30 min at 80 °C. Almost 87% of enzyme activity was retained in the presence of 10% (v/v) of peroxide at 40 °C, after 1 h. The protease also was stable in the presence of oxidants and surfactants such as SDS, saponin, Tween 20 and Tween 80 after 30 min. In the presence of Omo®, the enzyme retained 64% of its activity at 40 °C for 1 h. An increase in the proteolytic activity (6–17%) was observed with K+, Na+, and Mg++ ions. At pH 8.0, the protease hydrolysed casein maximally (50 U/mg).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号