首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Five-week-old pepper plants with wounds created on stems and roots were transplanted to soils having inoculum of Phytophthora capsici incorporated for different lengths of time. Disease severity (39.99%) on root trimmed seedlings was not significantly different (P ≤ 0.05) from the severity (36.24%) obtained on stem lacerated seedlings. The wound treatments did not result in significantly different rates of lesion extension per day; stem lacerated seedling had the fastest, 1.99 mm/day lesion extension rate, followed by 1.90 and 1.89 mm/day extension rates obtained on root trimmed and unwounded treatments, respectively. However, time of soil inoculation had significant effect on severity; root trimmed and stem lacerated treatments had 46.3% and 39.8% severities, respectively. Tissue wounding × time of soil inoculation interaction did not have significant effect on disease severity; stem lacerated seedlings transplanted to 1-day and 3-day inoculated soils gave highest severity (49.9%), followed by seedlings inoculated at the time of transplantation. Root trimmed seedlings inoculated at the time of transplantation had highest severity (61.1%), while the lowest severity was obtained on seedlings transplanted to 5-day inoculated soil.  相似文献   

2.
Inoculation with Fusarium oxysporum f. sp. lycopersici (FOL) protects pepper plants from subsequent infection with Phytophthora capsici . In the present paper, the level of local and systemic protection achieved by plants induced with FOL was evaluated by quantifying the pathogen biomass and using real-time PCR. Differences in the amount of pathogen were found in stems and roots between FOL-treated and untreated plants, while pathogen biomass could not be detected in leaves of induced plants. Five defence-related genes coding for a PR-1 protein, a β-1,3-glucanase, a chitinase, a peroxidase and a sesquiterpene cyclase were up-regulated 48 h after treatment in all the tissues studied, and maximal mRNAs levels were found in leaves.  相似文献   

3.
Aims: Phytophthora capsici is a major pathogen of black pepper and zoospores play an important role in the infection process. Fluorescent pseudomonads that produce biosurfactants with zoosporicidal activities were isolated from the black pepper rhizosphere in Vietnam, and their genotypic diversity and potential to control Phy. capsici root rot was determined. Methods: Biosurfactant‐producing pseudomonads were genotypically and biochemically characterized by BOX‐polymerase chain reaction (PCR), 16S‐rDNA sequencing, reverse‐phase‐high‐performance liquid chromatography and liquid chromatography‐masss spectrometry analyses. Results: Biosurfactant‐producing fluorescent pseudomonads make up c. 1.3% of the culturable Pseudomonas population in the rhizosphere of black pepper. Although BOX‐PCR revealed substantial genotypic diversity, the isolates were shown to produce the same biosurfactants and were all identified as Pseudomonas putida. When applied to black pepper stem cuttings, several of the biosurfactant‐producing strains provided significant disease control. In absence of the disease, several of the bacterial strains promoted shoot and root growth of black pepper stem cuttings. Conclusions: Biosurfactant‐producing pseudomonads indigenous to the rhizosphere of black pepper plants are genotypically diverse and provide a novel resource for the control of Phy. capsici root rot and growth promotion of black pepper stem cuttings. Significance and Impact of the Study: The results of this study provide a strong basis for further development of supplementary strategies with antagonistic bacteria to control foot and root rot of black pepper and to promote plant growth.  相似文献   

4.
Phytophthora foot rot of black pepper caused by Phytophthora capsici is a major disease of black pepper throughout production areas in Vietnam. The disease causes collar, foot and tap root rots and eventual death of the infected vine. Potassium phosphonate was evaluated for the control of this disease in greenhouse and field trials. In greenhouse trials three-month-old vines treated with phosphonate by soil drenching (10–20 g a.i./l) and then inoculated with P. capsici mycelium (2% v/v soil) had significantly less foot rot compared to vines grown in non-treated soil. In field trials mature vines were treated with phosphonate at 50–100 g a.i/pole soil drenching or 10 g a.i./l by root infusion. After 10 days root, stem and leaf specimens were removed for bioassay by inoculation with 5 ml of P. capsici zoospores suspension (106–108 spores/ml). Soil drenching with phosphonate inhibited the colonisation of pathogen on excised leaf, stem and root tissues, significantly more than phosphonate root infusion. Our study provides further evidence supporting the efficacy of potassium phosphonate in the management of black pepper foot rot caused by P. capsici. The excised leaf and stem bioassay used in this study is a rapid and useful technique for testing the efficacy of systemic fungicides in controlling this disease.  相似文献   

5.
Safflower (Carthamus tinctorius L.) plants were affected by a severe root rot disease caused by Phytophthora drechsleri and Fusarium solani in Isfahan province of Iran during 2005–2007. Disease incidence was more than 30% in severely infected fields. Twenty-one safflower genotypes, including six local cultivars and 15 internal pure lines were evaluated for their resistance to root rot disease in laboratory and greenhouse conditions. Safflower seedlings were evaluated for lesion length on infected roots in laboratory, as well percentage of live seedlings in greenhouse. The results indicated a high negative correlation between lesion length on roots and percentage of live seedlings. The most resistant and susceptible genotypes to P. drechsleri were identified as pure line Karaj row 12 (KW12) and cultivar Koseh with lesion lengths of 10.01 and 15.51?mm on roots and 45.60 and 18.00% live seedlings, respectively. The most resistant genotype to F. solani was identified as pure line KW11 with a lesion length of 9.31?mm on roots as well 62.80% live seedlings. The most susceptible genotypes were identified as cultivar Koseh and pure lines KW2 and KW3 with lesion lengths of 13.29, 12.72 and 12.13?mm on roots and 25.60, 28.40 and 28.40% live seedlings, respectively. The most resistant genotypes to both P. drechsleri and F. solani were identified as pure lines KW15 and KW9 with a 55.40% live seedlings. The most susceptible genotypes were cultivars Koseh, Goldasht and pure lines KW6, KW3 and KW2 with 35.40, 35.40, 35.40, 37.60 and 37.60% live seedlings in greenhouse, respectively.  相似文献   

6.
Superoxide production by mitochondria isolated from green bell pepper fruit   总被引:6,自引:1,他引:6  
Evidence is increasing to suggest that a wide range of environmentally induced plant disorders, including chilling injury, is mediated by reactive oxygen species produced during stress or upon relief from stress. Mitochondria were isolated from pericarp tissue of chilling-sensitive bell pepper fruit and their respiratory activity and ability to produce superoxide when supplied with NADH, succinate or malate-pyruvate were determined. Oxygen uptake rates were greater and less sensitive to cyanide with succinate than with NADH; rates increased and sensitivity to cyanide and respiratory control ratios (RCRs) decreased in fruit stored at 2°C. Disrupting mitochondrial membranes led to increased oxygen consumption with NADH and decreased consumption with succinate. resulting in RCRs of approximately 1 with both substrates. Superoxide production was greater with NADH than with either succinate or malatepyruvate. Superoxide dismutase and cyanide inhibited superoxide production almost completely. Antimycin A did not inhibit superoxide production with NADH, but did partially with succinate, especially in mitochondria sensitive to cyanide. Disrupting mitochondrial membranes enhanced superoxide production with NADH. Superoxide production by mitochondria isolated from fruit stored at 2°C increased with NADH and decreased with succinate. Results provide evidence that mitochondria may be a major source of superoxide in chilling-sensitive plant tissues exposed to low temperatures.  相似文献   

7.
Aqueous extracts of 48 plants belonging to six different major groups of the plant kingdom, two commercially available botanicals and different fungicides were screened for antifungal activity against Drechslera bicolor causing leaf blight of bell pepper. The test fungi were isolated from bell pepper leaves collected from Udaipur district, Rajasthan, India. Among several botanicals, maximum inhibition of fungal growth was obtained by marigold, lat jeera, lemon grass, mehandi, onion and neem, respectively. Neem oil was superior over Zatropin against the fungus. Vitavax was also found as the best fungicide followed by Quintal and Saaf against the test fungus. The results revealed that these plants could be exploited for ecofriendly management of the diseases caused by the test fungal pathogen and seed biodeterioration during storage.  相似文献   

8.
Naturally occurring endophytic bacteria from black pepper vines were found to exhibit strong antagonistic activities against Phytophthora capsici and Radopholus similis. In order to deliver these bacterial strains, as well as to produce disease-free plantlets of black pepper, a pre-plant stem and root bacterisation was standardised. Stem bacterisation with endophytic Pseudomonas spp. was found to suppress P. capsici infection (over 90% reduction in lesion length) on cut shoots. Pre-plant root bacterisation with Pseudomonas aeruginosa, Pseudomonas putida and Bacillus megaterium yielded over 60% of plantlets free from P. capsici infection on roots. Curtobacterium luteum and B. megaterium recorded over 70% reduction of nematode population in soil with concomitant production of over 65% of nematode-free plantlets. Besides protecting the plants from the pathogens, the bacteria were also found to enhance the growth of rooted cuttings. The biocontrol potential of the above endophytic bacteria and their exploitation for disease management in the black pepper nursery are discussed.  相似文献   

9.
Aim:  To isolate and identify black pepper ( Piper nigrum L) associated endophytic bacteria antagonistic to Phytophthora capsici causing foot rot disease.
Methods and Results:  Endophytic bacteria (74) were isolated, characterized and evaluated against P. capsici . Six genera belong to Pseudomonas spp (20 strains), Serratia (1 strain), Bacillus spp. (22 strains), Arthrobacter spp. (15 strains), Micrococcus spp. (7 strains), Curtobacterium sp. (1 strain) and eight unidentified strains were isolated from internal tissues of root and stem. Three isolates, IISRBP 35, IISRBP 25 and IISRBP 17 were found effective for Phytophthora suppression in multilevel screening assays which recorded over 70% disease suppression in green house trials. A species closest match (99% similarity) of IISRBP 35 was established as Pseudomonas aeruginosa ( Pseudomonas EF568931), IISRBP 25 as P. putida ( Pseudomonas EF568932), and IISRBP 17 as Bacillus megaterium ( B. megaterium EU071712) based on 16S rDNA sequencing.
Conclusion:  Black pepper associated P. aeruginosa , P. putida and B. megaterium were identified as effective antagonistic endophytes for biological control of Phytophthora foot rot in black pepper.
Significance and Impact of the Study:  This work provides the first evidence for endophytic bacterial diversity in black pepper stem and roots, with biocontrol potential against P. capsici infection.  相似文献   

10.
Two experiments, a split-root experiment and a root pressurizing experiment, were performed to test whether hydraulic signalling of soil drying plays a dominant role in controlling stomatal closure in herbaceous bell pepper plants. In the split-root experiment, when both root parts were dried, synchronous decreases in stomatal conductance (gs), leaf water potential (LWP) and stem sap flow (SFstem) were observed. The value of gs was found to be closely related to soil water potential (SWP) in both compartments. Tight relationships were observed between gs and stem sap flow under all conditions of water stress, indicating a complete stomatal adjustment of transpiration. When the half-root system has been dried to the extent that its water uptake dropped to almost zero, declines in gs of less than 20% were observed without obvious changes in LWP. The reduced plant hydraulic conductance resulting from decreased sap flow and unchanged LWP may be a hydraulic signal controlling stomatal closure; the results of root pressurizing supported this hypothesis. Both LWP and gs in water-stressed plants recovered completely within 25 min of the application of root pressurizing, and decreased significantly within 40 min after pressure release, indicating the hydraulic control of stomatal closure. Our results are in contrast to those of other studies on other herbaceous species, which suggested that chemical messengers from the roots bring about stomatal closure when plants are in water stress.  相似文献   

11.
辣椒疫霉菌侵染模型和侵染条件定量研究   总被引:6,自引:0,他引:6  
在生长箱内控制条件下分析测定了土壤温度、水分含量对辣椒疫病死苗率的影响.结果表明:土壤温度和水分状况是决定辣椒疫病菌侵染的重要因子,病菌侵染的最适土壤温度为22 ℃~28 ℃,最适土壤含水量为40%,土壤过于干燥和过饱和都不利于病菌侵染发病;辣椒疫病死苗率与土壤温度、水分含量及其互作可用数学模式描述.田间调查发现,辣椒疫病田间流行趋势可用Gompertz模型描述,发病率与初始发病率、土壤温度、水分含量以及空气温度密切相关.建立了田间辣椒疫病发病率预测模型.  相似文献   

12.
13.
Onyeka TJ  Dixon AG  Ekpo EJ 《Mycopathologia》2005,159(3):461-467
Field evaluation of six cassava genotypes for resistance to root rot disease was compared with three rapid laboratory methods (whole root inoculation, root slice inoculation, and stem inoculation) for resistance screening. Both the field evaluation and the three laboratory methods separated the varieties into resistant and susceptible groups. Genotypes 30572 and 91/02324 were resistant while 92/0247, 92/0057 and TME-1 were susceptible. One genotype (30001) was not consistent in its reaction between field evaluation and laboratory assays. In the laboratory assays with three fungal pathogens, different pathogens varied in their levels of virulence on host genotypes. With the most virulent pathogen (Botryodiplodia theobromae), the majority of the genotypes reacted in the same way across trials with the root slice and whole root assays. Due to the good correlation between the whole root assay and the field results, we recommend this for the routine assessment of cassava resistance to root rot disease and for the analysis of virulence of pathogen isolates. However, because of the advantages in terms of economy of labour, space, time, quantity of root and inoculum required, the root slice assay could be used for the preliminary screening of large cassava accessions. The selected genotypes can then be further screened with the whole root inoculation method.  相似文献   

14.
Cell suspension cultures of three cultivars of Capsicum annuum L., with different degrees of sensibility to the fungus Phytophthora capsici, responded to elicitation by both lyophilized mycelium and fungus filtrate. They showed conductivity changes, browning, production of the phytoalexin capsidiol and synthesis or accumulation of pathogenesis-related (PR) proteins with glucanase (EC 3.2.1.39) and chitinase (EC 3.2.1.14) activities. The cultivation medium was optimised for growth of both the plant and the fungus in order to avoid any stress during their combination. The resistant cv. Smith-5, showed a more rapid and intense response to the elicitor preparations than the sensitive cvs Americano and Yolo Wonder. This was particularly evident when the cell suspensions were elicited with the filtrate, when differences became clearly visible after only 6 h incubation. The greatest rate of capsidiol accumulation occurred after 18 h in the mycelium-elicited cells and after 12 h in those elicited with the filtrate. These times are the optimal for capsidiol accumulation, and the phytoalexin is produced much more rapidly than it can be excreted into the extracellular medium. The inhibition threshold of fungal growth (300 µg capsidiol [g dry weight]?1) was reached only in the resistant cultivar. The induction of an intracellular glucanase (pI 8.9 and Rf 0.18) and an extracellular chitinase (pI 5.4 and Rf 0.70) only in the resistant cultivar 24 h after elicitation suggests that these enzymes are involved in the resistance to Phytophthora capsici, while other hydrolases common to all three cultivars form part of a more general defence. The results indicate that elicitation of pepper cell suspension cultures by signal molecules from P. capsici exhibits properties of a multicomponent dynamic system in which different protective mechanisms play complementary roles in the overall expression of the defence reaction. We confirm that the differential responses of resistant and susceptible pepper cultivars to P. capsici previously seen in plant stem sections are retained in suspension culture.  相似文献   

15.
Abstract

A survey was conducted in February 2004 on the outbreak of stem rot and wilt disease of pepper at the Kitabawa/Danzakara and Ajiwa irrigation sites in Katsina State, Nigeria. Laboratory investigations revealed that it was elicited by Phytophthora capsici (Leon). The disease caused severe loss in yield and $1,700.00 to $3,200.00 loss in revenue/ha. The pathogen was probably further aggravated by the presence of Fusarium sp. as well as ecto- and endo-parasitic nematodes. Reasons for the outbreak were elucidated and solutions proffered.  相似文献   

16.
Abstract

A field study was conducted to investigate powdery mildew disease incidence and fruit yield of locally available bell pepper genotypes by Kharif 2004 and Rabi 2005. The study includes a single chemical molecule in managing the powdery mildew disease during both the seasons. Field studies include five chemical treatments (T1 to T5) plus one water spray control and an untreated control in five replications each. The result shows that out all treatments T5 was best in controlling the powdery mildew disease in genotype Indra by 77.1 and 73.7% of disease decrease over control and 85.3 and 95.7% increase in yield over control respectively during Kharif and Rabi. The next best performing genotypes were Arka Basant and California Wonder in terms of less disease incidence and high yield. Further, the study was extended to relate the selected varieties for its genetic diversity using Random Amplified Polymorphic DNAs, with respect to the disease incidence and yield. The highest genetic dissimilarity of 49% was noticed between the genotypes Indra and Arka Gaurav having contrasting characters such as high and low fruit yield, respectively. The lowest genetic diversity of 21% was noticed between the genotypes Arka Mohini and California Wonder that were similar in most of the morphological characters, fruit yield and susceptibility to the powdery mildew disease. Based on the molecular data, a remarkable difference was exhibited by the commercially grown bell pepper genotypes.  相似文献   

17.
During the 1999–2000 and 2000–2001 seasons, 19 commercial squash fields in the vicinity of Homestead, Florida (USA) were examined for diseases caused by Phytophthora capsici. In each of the six fields in which two or more isolates of P. capsici were recovered, both the Al and A2 mating types were present, and both mating types were recovered from the same plant five times. Insensitivity to mefenoxam was common among isolates, with EC50s ranging from 5 μg mefenoxam ml?1 to more than 60 μg ml?1. Of 15 weed species that were examined as possible alternative hosts of the pathogen, only common purslane, Portulaca oleracea, was infected by P. capsici. Few or no oospores of the pathogen formed in a glasshouse (c. 28°C) when artificially inoculated pepper plants were covered with plastic bags or kept under continuous mist. In studies in the laboratory (c. 22°C) with detached pepper leaves, no oospores were formed on wire screens over water reservoirs. Consistent production of oospores occurred only when leaves were in constant contact with water. Maximum production occurred at 18°C, and production also occurred at 14°C, 20°C, 24°C and 26°C, but not at 6°C, 12°C, 30°C and 32°C.  相似文献   

18.
Inoculation of the stems of three Capsicum annuum L. cultivars showing different degrees of sensitivity to the fungal pathogen Phytophthora capsici , resulted in a hypersensitive reaction being expressed along the stems. One of the peppers (cv. Smith-5) showed resistance by total inhibition of fungal growth. Capsidiol, a phytoalexin, which accumulates in the area of necrosis appears to be involved in this resistance. Capsidiol accumulation was analyzed by gas chromatography and was correlated with the restricted growth of P. capsici , in vivo and in vitro, confirming the former's fungistatic and fungitoxic properties. The capacity to inhibit pathogenic growth was evident only when capsidiol production exceeded 1 204 μg ml-1, a level reached in the resistant variety after 6 days of incubation. Experiments on induced resistance showed that a second inoculation of the stems of the three cultivars also resulted in necrosis and in an accumulation of capsidiol, although to a lesser extent than in the first inoculation. The greater accumulation of capsidiol in the stems of cv. Smith-5 is in accordance with the resistance shown by this cultivar to P. capsici , and confirms the implication of capsidiol in the disease resistance of this cultivar to fungal pathogens. Capsidiol has a fungistatic character at a mean concentration of 3.75 mM, and is fungitoxic at levels above 5 mM. This level must be exceeded and all the growing hyphae must be affected for capsidiol to qualify from being fungistatic to being fungitoxic.  相似文献   

19.
[背景]近年来,随着猕猴桃种植面积的不断扩大,病害的频繁发生已逐渐影响猕猴桃的产量和品质。恶疫霉(Phytophthora cactorum)、樟疫霉(P.cinnamomi)和雪松疫霉(P.lateralis)是一类可以引起猕猴桃根腐病的致病疫霉菌。[目的]建立并优化可以同时检测3种致病疫霉的多重实时定量检测技术,并调查猕猴桃主要产区的致病菌分布情况。[方法]基于Ypt1 (ras-related protein gene)基因设计恶疫霉、樟疫霉和雪松疫霉的特异性TaqMan探针和引物,建立并优化多重实时荧光定量PCR检测体系。利用近缘种检验检测体系特异性并进行灵敏度测试,应用该检测体系分析猕猴桃主要产区根际土壤中3种致病疫霉的Yt1基因含量。[结果]供测试的11个恶疫霉近缘种、11个樟疫霉近缘种、13个雪松疫霉近缘种及非目标菌种DNA样品中均无荧光信号,反应结果为阴性,而在恶疫霉、樟疫霉和雪松疫霉DNA样品中分别检测出HEX、FAM和ROX荧光信号,反应结果为阳性。三种疫霉的检测灵敏度均达到100fg。此外,通过对猕猴桃主产区陕西省周至县和眉县果园共166份土壤样品的检测发现,恶疫霉的分布最广泛且Ypt1基因含量最高,樟疫霉和雪松疫霉则相对较少。[结论]建立的猕猴桃根腐病致病疫霉多重实时定量检测体系特异性强、灵敏度高,适合于恶疫霉、樟疫霉和雪松疫霉的检测及定量分析。该技术可为猕猴桃疫霉病害的早期诊断、监测及预防提供指导。  相似文献   

20.
大豆种质对疫霉根腐病抗性特点研究   总被引:6,自引:0,他引:6  
对1027份中国和国外引进的大豆种质进行了大豆疫霉(Phytophthora sojae)根腐病的抗病性鉴定评价.结果表明,中国大豆种质的抗病性高于国外引进种质;中国南方的大豆种质抗病性较北方种质强,长江流域大豆中抗病种质比率最高,其次为黄淮海流域种质,而东北地区抗病种质较少;不同省份大豆种质的总体抗病性差异明显;育成品系的抗性好于改良品种和农家种,但不同省份来源的农家种、品系和品种抗性存在差异,黑龙江材料抗病性最低,这也是该省大豆疫霉根腐病严重发生的重要原因之一;在大豆籽粒脐色为黄色和褐色的材料中,抗病种质较多.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号