首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 782 毫秒
1.
Abstract

A pot trial was conducted to estimate the role of Trichoderma harzianum alone or in combination with two organic substances, potassium humate and chitosan in controlling Meloidogyne incognita on tomato. All treatments caused greater decreases in parameters of M. incognita in comparison to the control treatment (nematode only) and this led to noticeable enhancements in growth and yield of tomato. The lowest numbers of eggmasses, eggs/eggmass, galls/root, females/root, and second stage juveniles/250?g soil were recorded due to the combination of T. harzianum (1010 spore/ml) with chitosan and potassium humate after 120 days from the transplanting of tomato seedlings. Also, this treatment showed the best promotion for all tomato parameters (lengths and weights of shoots and roots, and productivity). So, mixing chitosan, potassium and T. harzianum is highly recommended to be used as an effective bio-nematicide against M. incognita on tomato plants.  相似文献   

2.
The investigations on attraction of nematodes to nematophagous fungi have mostly dealt with the nematode-trapping species. Esteya vermicola is the endoparasitic fungus of pinewood nematode (PWN) with high infection activity. In the present study, the attraction of PWNs to E. vermicola was investigated. It was confirmed that the living mycelia and exudative substances of E. vermicola were attractive to PWN. Compared with the nematode-trapping fungus A. brochopaga as well as nematode-feeding fungus B. cinerea, E. vermicola showed the significantly strongest attraction ability to nematode. It therefore appeared that the attraction ability reflects the dependence of the fungi on nematodes for nutrients. Furthermore, a new method was developed and used in the study to confirm the effect of volatile substances for the attraction of nematode to fungi. The results suggested that the attractive substances were consisted of avolatile exudative and volatile diffusing compounds.  相似文献   

3.
This study measured trap induction and trapping on agar disks as affected by juvenile stages (J1, J2, J3, and J4) of the nematode Caenorhabditis elegans and by species of nematode-trapping fungi. Eight species of nematode-trapping fungi belonging to the family Orbiliaceae and producing four kinds of traps were studied: adhesive network-forming Arthrobotrys oligospora, A. vermicola, and A. eudermata, constricting ring-forming Drechslerella brochopaga, and Dr. stenobrocha, adhesive column-forming Dactylellina cionopaga, and adhesive knob-forming Da. ellipsospora, and Da. drechsleri. The number of traps induced generally increased with increasing juvenile stages of C. elegans. The ability to capture the juveniles tended to be similar among isolates that produced the same kind of trap but differed among species that produced different kinds of traps. Trapping by Dr. stenobrocha and Da. cionopaga was correlated with trap number and with juvenile stage. A. oligospora and A. vermicola respectively captured more than 92 and 88% of the J1, J3, and J4 but captured a lower percentage of J2. The knob-producing isolates captured more younger than elder juveniles. Partial correlation analyses demonstrated that the trap induction of the most fungal species positively correlated with the juvenile size and motility, which was juvenile stage dependent. Overall, trap induction and trapping correlated with C. elegans juvenile stage (size and motility) in six species of trapping fungi.  相似文献   

4.
The root-knot nematode Meloidogyne incognita is one of the most damaging plant parasitic nematodes in the world. In this study, the effect of cystatin from Amaranthus hypochondriacus (AhCPI) as a potential control agent for M. incognita was explored. In vitro bioassays demonstrated that AhCPI affects the growth and development of eggs and the infectivity of juveniles (J2) of M. incognita, such as mortality and slower development, showing characteristic tissue damage. Mortality levels were quantified by Probit analysis, estimating LC50s of 1.4 mg/mL for eggs and 0.028 mg/mL for J2. In planta bioassays showed that infected tomato seedlings treated with 0.056 mg/mL of AhCPI showed a 60% reduction in the number of galls, as compared with untreated J2-inoculated seedlings. Under greenhouse conditions, three applications of 10 mL of AhCPI (1.4 mg/mL) in the soil around the stem of M. incognita-infected tomato plants, reduced the number of galls by 93 ± 8%, as compared to the control M. incognita-infected plants. The application of AhCPI to the infected plants increased the yield (10.7%) of harvested tomato fruits, as compared to infected plants. These results show the potential of AhCPI for the control of M. incognita in tomato plants.  相似文献   

5.
All the six species of the phytonematodes induced traps directly on the spores of all the five isolates of Dactylaria brochopaga. The maximum rings induction was observed in the presence of second-stage juveniles of Meloidogyne incognita followed by Meloidogyne graminicola (J2), Xiphinema basiri, Helicotylenchus dihystera, Tylenchorynchus brassicae and Hoplolaimus indicus. Maximum number of induced traps was recorded at temperature 28°C (98.3%) and pH 7 (96.7%) in the presence of H. indicus. In attraction assay, irrespective of the isolates of the fungus, all the six phytonematodes were attracted towards the fungal discs of the different isolates of D. brochopaga. Among all the five isolates, Isolate D attracted maximum (34.7%) number of nematodes closely followed by Isolate C (31.0%), whereas, Isolate A, B and E did not differ significantly. Maximum in vitro trapping was recorded in the case of M. incognita (J2) followed by M. graminicola (J2), H. dihystera and T. brassicae. The maximum ringing (pre-capturing), trapping and killing was recorded for the second-stage juveniles of M. incognita followed by M. graminicola, T. brassicae and H. dihystera. The inflation of ring cells did not occur immediately after ringing; however, the time between ringing and inflation varied with different nematodes species. Clear hyphae were observed in the invaded nematodes body after the content of nematode body was consumed. External growth of hyphae occurred only from the inflated cells of the constricting rings, which further developed several rings. Higher number of rings was observed in mycelia developed from bigger nematodes.  相似文献   

6.
The effects of soil management systems on root-knot nematode (Meloidogyne incognita) eggs and gall incidence on tomato (Lycopersicon esculentum) and cucumber (Cucumis sativus) following tomato were evaluated. Soil was collected from a replicated field experiment in which six management systems were being assessed for vegetable production. Soil management systems were conventional production, organic production, bahiagrass (Paspalum notatum) pasture, bahiagrass: Stylosanthes (Stylosanthes guianensis) pasture, bare ground fallow, and weed fallow. Soil was collected from field plots and used in greenhouse experiments. Identification of egg-parasitic fungi and the incidence of root-knot nematode galling were assessed both on tomato and cucumber planted in the same pots following the removal of tomato plants. Organic, bare ground fallow and conventional production treatments reduced galling both on tomato and on cucumber following tomato. Although no treatment consistently enhanced egg-parasitic fungi, management system did affect egg viability and the types of fungi isolated from parasitized eggs.  相似文献   

7.
The ability of nematode-trapping fungi to colonize the rhizosphere of crop plants has been suggested to be an important factor in biological control of root-infecting nematodes. In this study, rhizosphere colonization was evaluated for 38 isolates of nematode-trapping fungi representing 11 species. In an initial screen, Arthrobotrys dactyloides, A. superba, and Monacrosporium ellipsosporum were most frequently detected in the tomato rhizosphere. In subsequent pot experiments these fungi and the non-root colonizing M. geophyropagum were introduced to soil in a sodium alginate matrix, and further tested both for establishment in the tomato rhizosphere and suppression of root-knot nematodes. The knob-forming M. ellipsosporum showed a high capacity to colonize the rhizosphere both in the initial screen and the pot experiments, with more than twice as many fungal propagules in the rhizosphere as in the root-free soil. However, neither this fungus nor the other nematode-trapping fungi tested reduced nematode damage to tomato plants.  相似文献   

8.
Fifteen isolates of Bacillus, isolated from the root-knot nematode suppressive soils, were used for the biocontrol of Meloidogyne incognita on tomato. Bacillus isolates B1, B4, B5 and B11 caused greater inhibitory effect on hatching of M. incognita than caused by other isolates. In addition, these isolates (B1, B4, B5 and B11) caused greater colonisation of tomato roots and also caused greater increase in the growth of tomato seedling than caused by other isolates. All the isolates of Bacillus were able to increase growth of tomato and caused reduction in galling and nematode multiplication in green house tests. Isolates B1, B4, B5 and B11 caused a greater increase in growth of tomato and higher reduction in galling and nematode multiplication than other isolates in a green house test. These isolates were also tested for hydrogen cyanide (HCN) and indole acetic acid productions. Only one isolate (B13) produced HCN out of 15 tested. On the other hand, isolates B5, B11, B4 and B1 showed greater production of IAA than the other 11 isolates tested. This study suggests that Bacillus isolates B5, B11, B4 and B1 may be used for the biocontrol of M. incognita on tomato.  相似文献   

9.
Talc based formulations of two antagonistic fungi, Acremonium strictum W. Gams and Aspergillus terreus Thom were tested separately and together for their ability to suppress the development of root-knot disease of tomato caused by the root-knot nematode, Meloidogyne incognita Kofoid & White in two consecutive trials (2007–08). Tomato seedlings were each inoculated with M. incognita at 2 infective second stage juveniles /g of soil. M. incognita caused up to 48% reduction in plant growth parameters compared to un-inoculated control. Control efficacy achieved by combined soil application of both fungi, in terms of galls/root system and soil population/50 ml of soil, was 66 and 69% respectively at 60 days of inoculation compared to control. Soil application by individual fungus did not achieve as much effectiveness as the biocontrol agents applied together. The combined treatment was found to have antagonistic effect on M. incognita development and increased plant vigor. Incorporation of fine powder of chickpea pod waste with talc powder was beneficial in providing additional nutrients to both plant and biocontrol agents and increased the activity of the nematophagous fungi in soil. A. strictum and A. terreus were successfully established in the rhizosphere of tomato plants up to the termination of the experiment.  相似文献   

10.
Summary Effect of mycorrhizal colonisation byGlomus fasciculatum on survival, penetration and development of the root knot nematodeMeloidogyne incognita in tomato was studied. The number of giant cells formed in mycorrhizal plants was significantly low. Mycorrhizal roots did not prevent the penetration by nematode larvae. Root extract from the mycorrhizal plants brought about 50% mortality of the nematode larvae in four days time.  相似文献   

11.
The common soil inhabiting nematophagous fungus Paecilomyces lilacinus (Thom) Samson and the nematode trapping fungus Monacrosporium lysipagum (Drechsler) Subram were assayed for their ability to reduce the populations of three economically important plant-parasitic nematodes in pot trials. The fungi were tested individually and in combination against the root-knot nematode Meloidogyne javanica (Treub) Chitwood, cereal cyst nematode Heterodera avenae Wollenweber, or burrowing nematode Radopholus similis (Cobb) Thorne on tomato, barley and tissue cultured banana plants, respectively. In all cases, nematode populations were controlled substantially by both individual and combined applications of the fungi. Combined application of P. lilacinus and M. lysipagum reduced 62% of galls and 94% of M.␣javanica juveniles on tomato when compared to the experiment with no fungi added. Sixty five percent of H. avenae cysts were reduced on barley by combined application of fungi. Control of R. similis on banana, both in the roots and in the soil, was greatest when M. lysipagum was applied alone (86%) or in combination with P. lilacinus (96%), using a strategy where the fungi were inoculated twice in 18 weeks growth period. Overall, combined application of P. lilacinus and M. lysipagum was the most effective treatment in controlling nematode populations, although in some cases M. lysipagum alone was as effective as the combined application of fungi, particularly against M. javanica.  相似文献   

12.
Biocontrol of root-knot nematode Meloidogyne incognita was studied on tomato using 15 isolates of fluorescent Pseudomonads isolated from pathogen suppressive soils. Pseudomonas aeruginosa (isolates Pa8, Pa9 and Pa3) caused greater inhibitory effect on hatching of M. incognita than other isolates. In addition, isolates Pa8, Pa9 and Pa3 caused greater colonisation of tomato roots and also caused a greater increase in the growth of tomato seedlings. These isolates also caused a greater increase in growth of tomato and higher reduction in galling and nematode multiplication in a green house test than is caused by other isolates. Isolates Pf1, Pf5, Pf6 and Pa13 were unable to increase growth of tomato and caused less reduction in galling and nematode multiplication compared to other isolates. Only 10 isolates produced siderophores on chromo-azurol sulfonate (CAS) agar medium and isolate Pa12 showed greater production of siderophore followed by Pa11, Pa9, Pf10, Pa3 and Pf5. Similarly, isolates Pa14, Pa12, Pf10, Pa9, Pa8, Pa7 and Pa6 produced greater amount of HCN than the other isolates tested. Isolates Pa8 and Pa9 showed greater production of IAA than the other 13 isolates tested. This study suggests that P. aeruginosa isolates Pa8 and Pa9 may be used for the biocontrol of M. incognita on tomato.  相似文献   

13.
Tioxazafen is a seed-applied nematicide used in row crops. Currently, there are no data on nematode toxicity, nematode recovery, or effects of low concentrations of tioxazafen on nematode infection of a host root for Meloidogyne incognita or Rotylenchulus reniformis. Nematode toxicity and recovery experiments were conducted in water solutions of tioxazafen, while root infection assays were conducted on tomato. Nematode paralysis was observed after 24 hr of exposure at 27.0 µg/ml tioxazafen for both the nematode species. Based on an assay of nematode motility, 24-hr EC50 values of 57.69 µg/ml and 59.64 µg/ml tioxazafen were calculated for M. incognita and R. reniformis, respectively. Tioxazafen rates of 2.7 µg/ml and 27.0 µg/ml reduced the nematode hatch after 3 d of exposure for both the nematode species. There was no recovery in nematode motility after the 24-hr exposure of M. incognita and R. reniformis to their corresponding 48-hr EC50 values of 47.15 µg/ml and 47.25 µg/ml tioxazafen, respectively. Mortality of M. incognita continued to increase after 24 hr exposure, whereas R. reniformis mortality remain unchanged after nematodes were rinsed and removed for 48 hr from the tioxazafen solution. A 24-hr exposure to low concentrations of 0.38 to 47.15 µg/ml for M. incognita and 47.25 µg/ml for R. reniformis reduced the infectivity of each nematode species on tomato roots. The toxicity of tioxazafen was similar between nematode species; however, a greater rate of tioxazafen was needed to suppress R. reniformis infection of tomato than for M. incognita.  相似文献   

14.
Culture filtrates of selected soil fungi, namely Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Fusarium oxysporum, Penicillium vermiculatum and Rhizopus nigricans exhibited variable response to egg hatching and mortality of the root-knot nematode, Meloidogyne incognita. Higher concentrations of the culture filtrates of all the fungi inhibited egg hatching and proved to be toxic to the juveniles of M. incognita. In addition, development of the gall and multiplication of M. incognita were also found adversely affected in varying degrees on all the plants of Vigna radiata treated with the filtrates. The culture filtrate of A. niger showed highest toxicity to the nematode than those of any other fungus tested. Soil drench application of the culture filtrates gave better seedling growth and least nematode multiplication in comparison to seed soaking treatment.  相似文献   

15.
Root galls of rice caused by Meloidogyne graminicola were examined for natural colonization by nematophagous fungi from four fields with different nematode infestations. Old galls from severely infested fields had a higher frequency of Monacrosporium eudermatum and Stylopaga hadra than young galls. The frequency of Arthrobotrys oligospora, Arthrobotrys dactyloides, Dactylaria brochopaga and Monacrosporium gephyropagum was lower. A greater proportion (%) of root galls were colonized by nematophagous fungi in those fields in which rice roots had a greater root gall index. This indicated that disease severity supported the colonization of galls by nematophagous fungi. In vitro predacity tests of four fungi showed that A. dactyloides was most effective in capturing and killing J2 of Mel. graminicola followed by D. brochopaga and Mon. eudermatum. Application of inocula of A. dactyloides and D. brochopaga in soil infested with Mel. graminicola, respectively, reduced the number of root galls by 86% and of females by 94%, and eggs and juveniles by 94%. The application of these fungi to soil increased plant growth: shoot length by 42.7% and 39.8%, root length by 45.5% and 48.9%, fresh weight of shoot by 59.9% and 56.7% and fresh weight of root by 20.3% and 25.1%, respectively, compared to these parameters for plants grown in nematode‐infested soil.  相似文献   

16.
Liu R  Dai M  Wu X  Li M  Liu X 《Mycorrhiza》2012,22(4):289-296
Arbuscular mycorrhizal (AM) fungi and plant growth-promoting rhizobacteria (PGPR) have potential for the biocontrol of soil-borne diseases. The objectives of this study were to quantify the interactions between AM fungi [Glomus versiforme (Karsten) Berch and Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe] and PGPR [Bacillus polymyxa (Prazmowski) Mace and Bacillus sp.] during colonization of roots and rhizosphere of tomato (Lycopersicon esculentum Mill) plants (cultivar Jinguan), and to determine their combined effects on the root-knot nematode, Meloidogyne incognita, and on tomato growth. Three greenhouse experiments were conducted. PGPR increased colonization of roots by AM fungi, and AM fungi increased numbers of PGPR in the rhizosphere. Dual inoculations of AM fungi plus PGPR provided greater control of M. incognita and greater promotion of plant growth than single inoculations, and the best combination was G. mosseae plus Bacillus sp. The results indicate that specific AM fungi and PGPR can stimulate each other and that specific combinations of AM fungi and PGPR can interact to suppress M. incognita and disease development.  相似文献   

17.
Kokalis–Burelle  N.  Vavrina  C. S.  Rosskopf  E. N.  Shelby  R. A. 《Plant and Soil》2002,238(2):257-266
Field trials were performed in Florida to evaluate tomato and pepper transplants amended with formulations of several plant growth-promoting rhizobacteria (PGPR) in a production system that included soil solarization. Transplants grown in five different formulations of PGPR were planted into plots treated by soil solarization, MeBr fumigation, or untreated soil. Treatments were assessed for incidence of several naturally occurring tomato and pepper pathogens including root-knot nematode (Meloidogyne incognita) and species of Pythium, Phytophthora, and Fusarium. Highly significant increases in tomato and pepper transplant growth occurred in response to most formulations of PGPR tested. Transplant vigor and survival in the field were improved by PGPR treatments in both tomato and pepper. Diseases of tomato caused by root-knot nematodes, Fusarium, Phytophthora, and Pythium were not affected by PGPR treatments. PGPR formulation LS261 reduced numbers of root-knot nematode galls on pepper while pepper root condition was improved with formulations LS213, LS256 and LS261. Individual PGPR strains affected the number of Pythium colonies isolated from pepper roots, but did not affect isolation of Pythium from tomato roots. Greater numbers of colonies of Pythium were isolated from pepper roots in the MeBr treatment and fewest in the solarization treatment. Numbers of colony forming units of Fusarium were significantly higher in the untreated soil than in MeBr fumigated or solarized soil with no effect of PGPR on isolation of Fusarium from either crop. Incidence of wilt symptoms on tomato was significantly lower in MeBr treated plots and highest in the untreated plots. Yield of extra large tomato fruit and total yield increased with PGPR formulation LS256. Yield of pepper was increased with formulations LS255 and LS256. Solarization combined with LS256 on pepper produced yields comparable to MeBr.  相似文献   

18.
The influence of two vesicular-arbuscular mycorrhizal fungi and phosphorus (P) nutrition on penetration, development, and reproduction by Meloidogyne incognita on Walter tomato was studied in the greenhouse. Inoculation with either Gigaspora margarita or Glomus mosseae 2 wk prior to nematode inoculation did not alter infection by M. incognita compared with nonmycorrhizal plants, regardless of soil P level (either 3 μg [low P] or 30 μg [high P] available P/g soil). At a given soil P level, nematode penetration and reproduction did not differ in mycorrhizal and nonmycorrhizal plants. However, plants grown in high P soil had greater root weights, increased nematode penetration and egg production per plant, and decreased colonization by mycorrhizal fungi, compared with plants grown in low P soil. The number of eggs per female nematode on mycorrhizal and nonmycorrhizal plants was not influenced by P treatment. Tomato plants with split root systems grown in double-compartment containers which had either low P soil in both sides or high P in one side and low P in the other, were inoculated at transplanting with G. margarita and 2 wk later one-half of the split root system of each plant was inoculated with M. incognita larvae. Although the mycoorhizal fungus increased the inorganic P content of the root to a level comparable to that in plants grown in high P soil, nematode penetration and reproduction were not altered. In a third series of experiments, the rate of nematode development was not influenced by either the presence of G. margarita or high soil P, compared with control plants grown in low P soil. These data indicate that supplemental P (30 μ/g soil) alters root-knot nematode infection of tomato more than G. mosseae and G. margarita.  相似文献   

19.
The integration of chemical insecticides and infective juveniles of the entomopathogenic nematode Steinernema carpocapsae (Wesier) (Nematoda: Steinernematidae), to control second instars of the sweetpotato whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) was investigated. Using a sand bioassay, the effects of direct exposure of S. carpocapsae for 24 h to field rate dilutions of four insecticides (spiromesifen, thiacloprid, imidacloprid and pymetrozine) on infectivity to Galleria mellonella larvae were tested. Although all chemicals tested, except spiromesifen, produced acceptable nematode infectivity rates, they were all significantly less than the water control. The effect of insecticide treatment (dry residues of spiromesifen, thiacloprid and pymetrozine and soil drench of imidacloprid) on the efficacy of the nematode against B. tabaci was also investigated. Nematodes in combination with thiacloprid and spiromesifen gave higher B. tabaci mortality (86.5% and 94.3% respectively) compared to using nematodes alone (75.2%) on tomato plants. There was no significant difference in B. tabaci mortality when using the chemicals imidacloprid, pymetrozine and spiromesifen in conjunction with nematodes compared to using the chemicals alone. However, using thiacloprid in combination with the nematodes produced significantly higher B. tabaci mortality than using the chemical alone. The integration of S. carpocapsae and these chemical agents into current integrated pest management programmes for the control of B. tabaci is discussed.  相似文献   

20.
Selection in plant parasites for virulence on resistant hosts and the resulting effects on parasite fitness may be considered as a driving force in host-parasite coevolution. In the present study, we tested the hypothesis that a fitness cost may be associated with nematode virulence, using the interaction between the parthenogenetic species Meloidogyne incognita and tomato as a model system. The reproductive parameters of near-isogenic lines of the nematode, selected for avirulence or virulence against the tomato Mi resistance gene, were analysed and combined into a reproductive index that was taken as a measure of fitness. The lower fitness of the virulent lines on the susceptible tomato cultivar showed for the first time that a measurable fitness cost is associated with unnecessary virulence in the nematode. Although parthenogenesis should theoretically lead to little genetic variability, such cost may impose a direct constraint on the coevolution between the plant and the nematode populations, and suggests an adaptive significance of trade-offs between selected characters and fitness-related traits. These results indicate that, although plant resistance can be broken, it might prove durable in some conditions if the virulent nematodes are counterselected in susceptible plants, which could have important consequences for the management of resistant cultivars in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号