首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of the present study was to examine the efficacy of various seed extracts of Terminalia chebula as an antifungal potential against certain important plant pathogenic fungi. The organic extracts of methanol, ethyl acetate and chloroform at the used concentration of 1500 ppm/disc revealed remarkable antifungal effect as a fungal mycelial growth inhibitor against Fusarium oxysporum, Fusarium solani, Phytophthora capsici and Botrytis cinerea, in the range of 41.6–61.3%, along with MIC values ranging from 62.5 to 500 μg/ml. Also, the extracts had a strong detrimental effect on spore germination of all the tested plant pathogens along with concentration as well as time-dependent kinetic inhibition of B. cinerea. The results obtained from this study suggest that the natural products derived from Terminalia chebula could become an alternative to synthetic fungicides for controlling such important plant pathogenic fungi.  相似文献   

2.
The methanol and chloroform extracts of Marchantia polymorpha were tested against three Gram-negative bacterial strains, viz. Xanthomonas oryzae pv. oryzae, Salmonella enterica and Pasturella multocida and four fungal strains, viz. Tilletia indica Mitra, Fusarium oxysporum f. sp. lini, Sclerotium rolfsii Sacc. and Rhizoctonia solani Kuhn. by using disc diffusion and micro broth dilution techniques. Both the extracts showed unique activity against X. oryzae and P.multocida [per cent inhibition (PI) 11.58 and 12.55, minimum inhibitory concentration (MIC) 2.50 and 1.25 μg/mL, minimum bactericidal concentration (MBC) 2.75 and 1.25 μg/mL, respectively] but for fungi, it was shown against S.rolfsii and F. oxysporum [PI 32.65 and 33.44, MIC 2.50 and 0.65 μg/mL, minimum fungicidal concentration (MFC) 4.50 and 0.65 μg/mL, respectively].The extracts possessed antimicrobial activity with different potency against variety of micro-organisms pathogenic to plants as well as animals. Some extracts were fungistatic and bacteriostatic (methanol extract against R. solani and chloroform extract against F. oxysporum and methanol extract for bacteria, respectively), while rest showed fungicidal/bactericidal potential. The results suggest the potential of M. polymorpha for developing a broad spectrum antimicrobial formulation in future.  相似文献   

3.
Antimicrobial activities of rhizome extracts of Cyperus rotundus were investigated on selected plant pathogenic bacteria and fungi. Ethyl acetate and hexane extracts showed antibacterial activity against three isolates of Clavibacter michiganensis subsp. michiganensis at concentrations of 900 and 1000 μg/ml. However, Gram-negative bacterial pathogens of tomato; Pseudomonas syringae pv. tomato and Ralstonia solanacearum were not inhibited from the extracts. Ethyl acetate extracts at 100 μg/ml inhibited mycelial growth and spore germination of the two strawberry isolates of Botrytis cinerea; however, no significant inhibition was found in tomato fungal pathogen, Fusarium oxysporum f. sp. radicis lycopersici. Minimum inhibitory concentrations were determined as 0.0625 and 0.125 mg/ml against C. michiganensis subsp. michiganensis for ethyl acetate and hexane extracts of rhizomes, respectively. This study shows the potentials of extracts of C. rotundus rhizomes as antimicrobial agents that are effective against the tested plant pathogenic bacteria and fungi.  相似文献   

4.
A plant growth‐promoting rhizobacterium, Pseudomonas aeruginosa strain IE‐6, and a fungal antagonist, Pochonia chlamydosporia, were tested for their ability to inhibit mycelial growth of root‐infecting fungi under laboratory conditions including Macrophomina phaseolina, Fusarium oxysporum, F. solani and Rhizoctonia solani. Biocontrol effectiveness of the bacterium and the fungus alone or in combination was also determined for the control of root‐infecting fungi under field conditions. In a dual‐culture plate assay, the colonies of P. chlamydosporia and P. aeruginosa met each other and no further growth of either organism occurred. Against M. phaseolina, F. solani and R. solani, an ethyl acetate extract of the culture filtrates of P. aeruginosa inhibited fungal growth greater than the hexane extract, but against F. oxysporum the hexane extract caused greater inhibition of fungal growth. By contrast, against M. phaseolina, F. oxysporum and F. solani, the hexane extract of P. chlamydosporia was more effective in the inhibition of fungal growth than the ethyl acetate fraction. Ethyl acetate extracts of P. aeruginosa at 1.0 mg/ml not only inhibited the radial colony growth of R. solani but also lysed the fungal mycelium. P. aeruginosa produced siderophores and hydrogen cyanide under laboratory conditions. Field experiments conducted in 1997 and repeated in 1998 revealed that Pochonia chlamydosporia and P. aeruginosa significantly suppressed the root‐infecting fungi M. phaseolina, F. oxysporum, F. solani and R. solani and that the combination of the two caused greater inhibition of the fungal pathogens than either alone. Application of P. chlamydosporia and P. aeruginosa as a soil drench also resulted in enhanced growth of tomato plants.  相似文献   

5.
This study investigated the antagonistic effects of Trichoderma harzianum isolate (TRIC8) on mycelial growth, hyphal alteration, conidial germination, germ tube length and seed colonization by the seedborne fungal pathogens Alternaria alternata, Bipolaris cynodontis, Fusarium culmorum and F. oxysporum, the causes of seedling rot in over 30% of sunflowers. The antagonistic effect of TRIC8 on mycelial growth of pathogens was evaluated on dual culture that included two inoculation assays: inoculation of antagonist at 48 h before pathogen (deferred inoculation) and inoculation at the same time with pathogen (simultaneous inoculation). TRIC8 inhibited mycelial growth of the fungal pathogens between 70·67 and 76·87% with the strongest inhibition seen with deferred inoculation. Alterations in hyphae were observed in all pathogens. Conidial germination of F. culmorum was inhibited by most of the fungal pathogens (38·28%) by TRIC8. Inhibition of germ tube length by the antagonist varied from 31·83 to 37·67%. In seed colonization experiments, TRIC8 was applied in combination with each pathogen to seeds of a sunflower genotype that is highly tolerant to downy mildew. Seed death was inhibited by TRIC8 and the antagonist did not allow growth of A. alternata, B. cynodontis and F. culmorum on seeds and inhibited the growth of F. oxysporum at the rate of 58·32%.  相似文献   

6.
Abstract

Aqueous extracts of 46 plants belonging to 32 different families of the plant kingdom were screened for antifungal activity against eight important species of Fusarium viz., Fusarium equiseti, F. moniliforme, F. semitectum, F. graminearum, F. oxysporum, F. proliferatum, F. solani and F. lateritium. The test fungi were isolated from maize, paddy and sorghum seeds collected from Mysore district, Mysore, India. Among the several plants screened only 12 plants have recorded significant antifungal activity. The antifungal activity of aqueous extracts varied among the test pathogens and was compared with that of the synthetic fungicides Blitox, Captan, Dithane M-45 and Thiram. F. proliferatum, which showed high susceptibility for the aqueous extracts, was tested using different solvent extracts viz., petroleum ether, benzene, chloroform, methanol and ethanol extracts of all the 12 plants. The results revealed that these plants could be exploited for ecofriendly management of the diseases caused by the test fungal pathogens and seed biodeterioration during storage.  相似文献   

7.
The antifungal activity for several medicinal plants against the early blight fungus (Alternaria solani) has been investigated. These plants were Syrian marjoram (Majorana syriaca), rosemary (Rosmarinus officinalis), Greek sage (Salvia fruticosa), roselle (Hibiscus sabdariffa) and cotton lavender (Santolina chamaecyparissus). The inhibitory effect of these extracts on the radial mycelial growth as well as on spore germination was measured in vitro at various concentrations of crude extract (0.5 g dry plant powder/ml medium). Extracts of M. syriaca and H. sabdariffa were most effective causing total inhibition of mycelial growth and spore germination at 8–10% concentration. Extract of R. officinalis also caused total inhibition of the above two parameters but at double the concentration (20%). Extracts of S. fructicosa and S. chamaecyparissus produced relatively moderate antifungal activity. At 25% concentration, these extracts showed an incomplete inhibition in mycelial growth being around 75–85% and 70–90%, respectively. However, at this same concentration both plant extracts produced total inhibition of spore germination. Results of this study indicated that both extracts of M. syriaca and H. sabdariffa were strong inhibitors of this fungus and to levels comparable to standard fungicides. Further studies are required to determine the effect of these extracts in vivo to evaluate their potential as natural treatments for this disease.  相似文献   

8.
Plant growth-promoting bacteria-mediated biocontrol of plant pathogens is renowned to enhance the growth of the plants using different direct or indirect mechanisms. The goal of the present investigation was the evaluation of Pseudomonas aeruginosa Z5 isolated from cotton grown in Pakistani soils for the suppression of Fusarium oxysporum associated with cotton seedling disease. In dual culturing techniques, four bacterial strains inhibited fungal pathogens, i.e. F. oxysporum, Fusarium moniliforme, Fusarium solani and Rhizoctonia solani, significantly with percent inhibition ranging from 25% to 91.5%. P. aeruginosa Z5 showed maximum suppression of all the tested pathogens. Net-house experiments showed that the application of P. aeruginosa Z5 both separately and in combination with Bacillus fusiformis S10 significantly reduced the disease incidence by suppressing F. oxysporum (the causal agent of cotton seedling disease) up to 64–65% and improved the percent germination as compared to the infected control plants. The production of antibiotics, proteases and siderophores may be the contributing factors for its antagonistic properties. Highest bacterial population (8.9 CFU/g root) observed on roots of cotton plants inoculated with P. aeruginosa Z5 showed its good colonisation aptitudes even in the presence of high inoculation of soil with F. oxysporum. Confocal laser scanning microscopy supported the root colonisation of cotton plants with fluorescently labelled P. aeruginosa Z5. Because of innate fungicidal potential, growth promoting P. aeruginosa Z5 can be used as a bioinoculant and an antagonist to suppress the growth of cotton root-associated fungal pathogen.  相似文献   

9.
Ace-AMP1 is a potent antifungal peptide found in onion (Allium cepa) seeds with sequence similarity to plant lipid transfer proteins. Transgenic plants over-expressing Ace-AMP1 gene have enhanced disease resistance to some fungal pathogens. However, mass production in heterologous systems and in vitro application of this peptide have not been reported. In this study, Ace-AMP1 was highly expressed in a prokaryotic Escherichia coli system as a fusion protein. The purified protein inhibited the growth of many plant fungal pathogens, especially Alternaria solani, Fusarium oxysporum f. sp. vasinfectum, and Verticillium dahliae. The inhibitory effect was accompanied by hyphal hyperbranching for V. dahliae but not for F. oxysporum f. sp. vasinfectum and A. solani, suggesting that the mode of action of Ace-AMP1 on different fungi might be different. Application of Ace-AMP1 on tomato leaves showed that the recombinant protein conferred strong resistance to the tomato pathogen A. solani and could be used as an effective fungicide.  相似文献   

10.
This study was aimed to evaluate the effectiveness of the aqueous and ethanolic extracts of fruits of Syzygium cumini, against the mycelial growth of Alternaria alternata and Fusarium oxysporum. The results showed that ethanolic extract at the concentrations of 7.5 and 9?mg/ml completely inhibited the mycelial growth of A. alternata and F. oxysporum, respectively. While the aqueous extract at a highest tested concentration (37.5?mg/ml) exhibited only 27.86 and 37.23% inhibition of mycelial growth of A. alternata and F. oxysporum, respectively. The spore germination assay also showed the complete inhibition of spore germination of A. alternata and F. oxysporum by ethanolic extract at 50 and 60?mg/ml concentrations, respectively. Minimum inhibitory concentration was recorded as 0.039 and 0.156?mg/ml in ethanolic extract and 20 and 6.25?mg/ml in aqueous extract against A. alternata and F. oxysporum, respectively. Phytochemical analysis also showed the presence of high amount of phenolics, tannins, flavonoids, alkaloids and saponins.  相似文献   

11.
Root-rotted samples of grapevine cv. superior were collected from Nobaria province, Beheira Governorate, Egypt. Fusarium oxysporum Schlech. was the most fungal causing root-rot syndrome of grapevine and directly affected the yield productivity. Seven isolates of Streptomyces were isolated from grapevine rhizospheric soil and screened for antagonistic activities against F. oxysporum on dual culture plate. All isolates showed antifungal activity, but isolate No. 1 exhibited the highest activity. It was identified as Streptomyces alni according to morphological, cultural, physiological and biochemical studies. The properties of the antagonism were revealed by scanning electron microscopy (SEM) examination of F. oxysporum and S. alni on PDA medium. The forms of antagonism found in this study according to the interaction between the S. alni and the pathogen indicated a hyperparasite, including inhibition of fungal growth and colonisation of S. alni over F. oxysporum hyphae. Also, malformation and lysis of F. oxysporum hyphae and conidiophores were observed. Conidia and normal branches of fungal hyphae were absent. Greenhouse and field studies were performed to evaluate the ability of S. alni and some commercial biofertilisers incorporated into the soil for root-rot control. Pot trails indicated that antagonistic S. alni isolate and biofertilisers i.e. blue green algae, phosphoren and rhizobacterin reduced the root-rot incidence of grapevine plants Cv. superior. Soil treatment before sowing with 50 ml of S. alni suspension (1 × 108 spore/ml) + 50 g of rhizobacterin for each pot was the best and significant treatment reduced root-rot of grapevine plants. Also, the total count of F. oxysporum in rhizosphere soil of grapevine treated plants was reduced compared with control. Under field conditions, drenching soil of diseased grape trees with a spore suspension of S. alni (1 × 108 spore/ml) 200 ml/tree + 250 g/tree of rhizobacterien caused a significant reduction in root rot of treated grapevine trees as well as high fruit yield/tree when compared with other treatments. The obtained results suggest that S. alni could be used successfully in combination with biofertilisers, as environmentally safe, for controlling root-rot of grapevine and other soil-borne plant pathogens especially with organic farming systems.  相似文献   

12.
Criconemella xenoplax, Fusarium solani, and F. oxysporum caused necrosis of Nemaguard peach feeder roots in greenhouse tests. Root necrosis was more extensive in the presence of either fungus than wtih C. xenoplax alone. Shoot growth and plant height were less for plants inoculated with F. oxysporum or F. solani than for plants inoculated with the fungi plus C. xenoplax. Neither synergistic nor additive effects on root necrosis or plant growth occurred between C. xenoplax and the fungal pathogens.  相似文献   

13.
We report here the development of transgenic tobacco plants with thaumatin gene of Thaumatococcus daniellii under the control of a strong constitutive promoter-CaMV 35S. Both polymerase chain reaction and genomic Southern analysis confirmed the integration of transgene. Transgenic plants exhibited enhanced resistance with delayed disease symptoms against fungal diseases caused by Pythium aphanidermatum and Rhizoctonia solani. The leaf extract from transgenic plants effectively inhibited the mycelial growth of these pathogenic fungi in vitro. The transgenic seeds exhibited higher germination percentage and seedling survival under salinity and PEG-mediated drought stress as compared to the untransformed controls. These observations suggest that thaumatin gene can confer tolerance to both fungal pathogens and abiotic stresses.  相似文献   

14.
Glomus mosseae and the two pod rot pathogens Fusarium solani and Rhizoctonia solani and subsequent effects on growth and yield of peanut (Arachis hypogaea L.) plants were investigated in a greenhouse over a 5-month period. At plant maturity, inoculation with F. solani and/or R. solani significantly reduced shoot and root dry weights, pegs and pod number and seed weight of peanut plants. In contrast, the growth response and biomass of peanut plants inoculated with G. mosseae was significantly higher than that of non-mycorrhizal plants, both in the presence and absence of the pathogens. Plants inoculated with G. mosseae had a lower incidence of root rot, decayed pods, and death than non-mycorrhizal ones. The pathogens either alone or in combination reduced root colonization by the mycorrhizal fungus. Propagule numbers of each pathogen isolated from pod shell, seed, carpophore, lower stem and root were significantly lower in mycorrhizal plants than in the non-mycorrhizal plants. Thus, G. mosseae protected peanut plants from infection by pod rot fungal pathogens. Accepted: 10 February 2000  相似文献   

15.
Six medicinal plants such as Amaranthus spinosus, Barbeya oleoides, Clutia lanceolata, Lavandula pubescens, Maerua oblongifolia and Withania somnifera collected from different locations in the southwestern part of Saudi Arabia were tested for antifungal activities against five plant pathogenic fungi causing serious diseases of vegetable crops. These fungi were Alternaria brassicae, Alternaria solani, Botrytis fabae, Fusarium solani and Phytophthora infestans. Aqueous plant extracts reduced mycelial growth and inhibited spore germination of all fungi tested. It is clear that the aqueous extract of Lavandula pubescens leaves was the best for controlling all phytopathogenic fungi under study. These results suggested that medicinal plant extracts play an important role in controlling the phytopathogenic fungi.  相似文献   

16.
Improved pathogen-free seed germination and better seedling growth were obtained by hot-water treatments at 60 °C for 10 min of seed of the cotton varieties Karnak and Ashmouni, and at 45 °C for 5 min of seed of the flax varieties Giza 4 and Baladi. These treatments also reduced pre- and post-emergence losses due to Rhizoctonia solani and Fusarium oxysporum f.sp. vasinfectum in cotton, and to F. oxysporum f.sp. lini in flax, and resulted in better growth of the surviving plants.  相似文献   

17.
This study investigates the use of botanical extracts (Piper guineense, Xylopia aethiopica and Bambusa vulgaris at 5, 10 and 15% concentration levels) for controlling deteriorating fungal pathogens in vitro. Identification of the fungal pathogens after pathogenicity test reaffirm isolates identity as Fusarium oxysporum, Fusarium solani, Macrophomina phaseolina, Fusarium verticillioides and Botryodiplodia theobromae. All the fungal pathogens induced rot in the watermelon fruit. The botanical extracts were best effective at high concentration levels (10 and 15%), though varied in their inhibitory activity. P. guineense and X. aethiopica were observed to be more effective than B. vulgaris. This study showed the efficacy of the botanical extracts on deteriorating fungal pathogens of watermelon fruit. Thus, the botanical extracts can be employed as antideteriorating biological-based fungicides for watermelon fruits.  相似文献   

18.
Abstract

Tobacco necrosis virus (TNV) was tested to induce systemic acquired resistance (SAR) in Phaseolus vulgaris cv. Lima against three important soil-borne fungal pathogens viz: Rhizoctonia solani, Macrophomina phaseolina and Fusarium oxysporum. Application of TNV as a local infection of seven-day old primary leaves of Phaseolus vulgaris cv. Lima resulted in reduction of the mean disease rating of root-rot and damping-off caused by the tested fungal pathogens. The pre-inoculated plants with TNV showed a significant enhancement in their content of photosynthetic pigments (chlorophyll a, b and carotenoids) compared to those inoculated with fungal pathogens only. The percentage of cell membrane stability and ion leakage of viral-treated plants were significantly increased confirming the healthy cytological status of the treated plants. Results demonstrated that inoculation of the primary leaves of beans with TNV before infection with the fungal pathogens leads to changes in protein patterns and showed differences compared with control and caused the appearance of at least one new protein band compared with only fungal-infected plants. Also, an increase in peroxidase activity emerged in the thickness of the isozymic pattern in addition to the synthesis of new bands which was observed as a result of TNV application before infection with the three fungal pathogens. Induction of the synthesis of a new protein and increasing peroxidase activity in the inoculated plants enhanced the defense system against the target pathogen. The results greatly supported the successful application of TNV in the induction of systemic acquired resistance in P. vulgaris cv. Lima against the fungal pathogens.  相似文献   

19.
Agrobacterium radiobacter B6 and agrobacteran (an exopolysaccharide of the succinoglycan group) stimulated seed germination and tomato plant emergence. The germination was most stimulated by dipping the seeds in 0.1 % agrobacteran for 30 min whereas plant emergence in garden soil was best with 0.4 % agrobacteran at 10–20°C. Treatment of the plants withA.radiobacter cells and agrobacteran solution at 30–35°C. had a lower effect.A.radiobacter cells applied on seed surface protected the plants against damping off in garden soil artificially inoculated with the fungiRhizoctonia solani andPythium ultimum; in soils contaminated withFusarium solani 0.1 to 0.2% agrobacteran had a higher protective effect than the bacterization. The difference can be attributed to the varying density ofA.radiobacter population in plant rhizosphere in the presence of different plantpathogenic fungi, different interactions of microorganisms in the rhizosphere and different mode of penetration of the pathogens into plant roots.  相似文献   

20.
The individual, concomitant and sequential inoculation of second stage juveniles (at 2000 J2/kg soil) of Meloidogyne incognita and Rhizoctonia solani (at 2 g mycelial mat/kg soil) showed significant reduction in plant growth parameters viz. plant length, fresh weight and dry weight as compared to control. The greatest reduction in plant growth parameters was recorded in the plants simultaneously inoculated with M. incognita and R. solani followed by sequential and individual inoculation. In sequential inoculation, plant inoculated with M. incognita 15 days prior to R. solani shows more reduction in comparison to plant inoculated with R. solani 15 days prior to M. incognita. Moreover, the multiplication of nematode and number of galls/root system were significantly reduced in concomitant and sequential inoculation as compared to individual inoculation, whereas the intensity of root-rot/root system caused by R. solani was increased in the presence of root-knot nematode M. incognita as compared to when R. solani was inoculated individually.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号