首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sugar mill by-products compost may be a good soil amendment to promote tomato (Lycopersicon esculentum L.) growth. In addition, the compost may further promote plant growth by inoculation with N2-fixing bacteria. Compost from sugar-mill waste was prepared with and without the N2-fixing bacteria, Azotobacter vinelandii, Beijerinckia derxii and Azospirillum sp. and incubated for 50 days. Each compost type was added to 10 kg of soil in pots at rates of 0, 15, and 45 g with and without fertilizer N at rates of 0, 0.75, and 1.54 g. A blanket application of P and K was applied to all pots. Shoot and root dry weights and N content of the whole plant was measured at 55 days. Dry weight of tomato shoots was increased by 40% by addition of fertilizer N and root weight was increased by 66%. Without fertilizer N the high rate of inoculated compost increased shoot growth 180% and uninoculated compost increased shoot growth 112%. For most treatments with and without fertilizer N, inoculated compost enhanced shoot growth and nitrogen content more than uninoculated compost. Root weights were nearly doubled by addition of either compost in comparison to the 0 N treatment. At the low rate of compost addition without fertilizer N, root weight was the same for uninoculated and inoculated compost but at the high rate of compost addition root weight was 32% higher for inoculated compost. The N2-fixing bacteria colonized roots when inoculated compost was used. Sugar mill by-products compost proved to be an effective soil amendment for promoting the growth of tomato plants.  相似文献   

2.
Wilt of tomato caused by Fusarium oxysporum f.sp. lycopersici and wilt of brinjal caused by Fusarium solani are very common in different agricultural fields of West Bengal, India. The study on the effect of salicylic acid (SA) on in vitro growth of the pathogens revealed that SA completely checks the growth at 0.7 mM concentration and above. On the other hand, the percentage of mycorrhisation in the host plants with an arbuscular mycorrhizal (AM) fungus, Glomus fasciculatum was found to be decreased in the presence of SA in the plants with or without pathogenic infection. Treatment of tomato and brinjal plants either singly with AM fungus or with SA (0.5 and 1.0 mM) and also with their combined treatment showed amelioration of plant height, length of root, fresh weight of root and fresh weight of plants. However, the AM fungus-treated plants showed highest growth responses. The result also reveals that integrated treatment with AM plus SA has significant effect on reduction of infection where application of AM + SA (1.0 mM) resulted in 67.16 and 69.70% reduction of fusarial wilt infection in tomato and brinjal plants, respectively.  相似文献   

3.
Figueiredo  M.V.B.  Vilar  J.J.  Burity  H.A.  de frança  F.P. 《Plant and Soil》1999,207(1):67-75
Experiments were carried out to investigate the effects of different degrees of water stress on cowpea in the presence and absence of Bradyrhizobium spp. inoculation and to evaluate physiological responses to stress. The soil used was Yellow Latosol, pH 6.3 and the crop used was cowpea (Vigna unguiculata (L.) Walp.) cv. ‘IPA 204’. Stress was applied continuously by the control of matric potential (ψ m ) through a porous cup. The lowered soil ψ m had a direct effect on the N2 fixation, but the strains Bradyrhizobium introduced by inoculation in the cowpea plants were superior to the indigenous strain demonstrating the importance of inoculation in the stressed plants. At the more negative ψ m plants inoculated with the strains EI 6 formed associations of greater symbiotic efficiency which helped the cowpea plants to withstand drought stress better than the strain BR 2001 and the uninoculated control. The leghaemoglobin concentration was not inhibited in the drought-stressed plants at ψ m -70 kPa when inoculated with the strain EI 6, which confered a differential degree of drought resistance in plants. The ψ w declined in the stressed plants reaching values of -1.0 MPa which was sufficient to cause disturbance in nodulation and biomass production. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Wang HY  Fan BQ  Hu QX  Yin ZW 《Bioresource technology》2011,102(24):11189-11193
Compost prepared from wheat straw and cattle/chicken mature was inoculated with the lignocellulolytic fungus, Penicillium expansum. Compared to uninoculated compost, the inoculated compost exhibited a 150% higher germination index, more than 1.2 g kg(-1)-dw of changes in NH(4)(+)-N concentrations, a ca. 12.0% higher humus content and a lignocellulose degradation that proceeded 57.5% faster. Culture-based determinations of microbial populations demonstrated that aerobic heterotrophic bacteria and fungi were about 1-2 orders of magnitude higher in inoculated than in uninoculated compost. The number of ammonifying, ammonium-oxidizing, nitrite-oxidizing, denitrifying bacteria and cellulose-decomposing bacteria was 6.1-9.0 log(10) CFU g(-1)-dw, 1.2-4.3 log(10) MPN g(-1)-dw, 3.5-6.8 log(10) MPN g(-1)-dw, 3.58-4.34 log(10) MPN g(-1)-dw, 1.4-3.8 log(10)MPN g(-1)-dw, and 4.2-8.8 log(10) CFU g(-1)-dw higher in the compost inoculated with P. expansum.  相似文献   

5.
  1. Both mutualistic and pathogenic soil microbes are known to play important roles in shaping the fitness of plants, likely affecting plants at different life cycle stages.
  2. In order to investigate the differential effects of native soil mutualists and pathogens on plant fitness, we compared survival and reproduction of two annual tallgrass prairie plant species (Chamaecrista fasciculata and Coreopsis tinctoria) in a field study using 3 soil inocula treatments containing different compositions of microbes. The soil inocula types included fresh native whole soil taken from a remnant prairie containing both native mutualists and pathogens, soil enhanced with arbuscular mycorrhizal (AM) fungi derived from remnant prairies, and uninoculated controls.
  3. For both species, plants inoculated with native prairie AM fungi performed much better than those in uninoculated soil for all parts of the life cycle. Plants in the native whole prairie soil were either generally similar to plants in the uninoculated soil or had slightly higher survival or reproduction.
  4. Overall, these results suggest that native prairie AM fungi can have important positive effects on the fitness of early successional plants. As inclusion of prairie AM fungi and pathogens decreased plant fitness relative to prairie AM fungi alone, we expect that native pathogens also can have large effects on fitness of these annuals. Our findings support the use of AM fungi to enhance plant establishment in prairie restorations.
  相似文献   

6.
In order to establish some cultural practices that can improve growth and survival of somatic embryo (SE)-derived microplants during the acclimatization period, Kalopanax septemlobus was uninoculated or inoculated with mycorrhizal fungi coded as AMM6 (a mixture of unidentified species of Glomus and Acaulospora collected in a closed mine tailing site in Bonghwa, Korea) during ex vitro and grown in oven-sterilized peat vermiculite medium. After 2 months, treated microplants were transferred into pots filled with the same medium amended with phosphorus fertilizer {0, 2, 4, 8, 16 and 32 mg P [as Ca(H2PO4)2·H2O] kg medium?1 coded as P0, P2, P4, P8, P16 and P32, respectively}. At this stage, inoculated plants were greener, with broader leaves and well-developed root systems and had higher survival than the uninoculated ones. After 6 months, inoculated plants were 54 % heavier than the uninoculated counterpart. In sterile medium, total dry weight of uninoculated plants was promoted at P8 and highest at P16. Total dry weight at P16 by uninoculated plants was attained at P4 by the mycorrhiza-inoculated counterpart. In non-sterile medium, total dry weight of inoculated plants was increased at P8. By contrast, uninoculated plants did not respond to the applied P rates. In conclusion, more SE-derived microplants survived and grew better in sterile medium. Maximum benefits from AMM6 was attained with applied 4 and 8 mg P kg medium?1 (P4–P8) in sterile and non-sterile medium, respectively.  相似文献   

7.
With the broad aim of biologically improving P uptake by wheat fertilized with Tilemsi phosphate rock (TPR), we investigated the effect of inoculation with TPR-solubilizing microorganisms isolated from Malian soils and with a commercial isolate of the arbuscular mycorrhizal (AM) fungus Glomus intraradices (Gi). AM root length colonization, and growth yield and P concentration of the cultivar Tetra of wheat were measured under field conditions in Mali. Experimental plots were established in Koygour (Diré) during the 2001–2002 cropping season. Inoculation treatments included two fungal isolates, Aspergillus awamori (C1) and Penicillium chrysogenum (C13), and an isolate of Pseudomonas sp. (BR2), used alone or in fungus-bacterium combinations in the presence or absence of the AM fungus Gi. In fertilized treatments, 0 or 30 kg P ha−1 was applied as TPR or diammonium phosphate (DAP). In 45-day-old wheat plants, the highest root length AM colonization (62%) was observed with TPR fertilized wheat inoculated with Gi and BR2. Our results suggest that BR2 is a mycorrhizal-helper bacteria and a good plant growth-promoting rhizobacteria. In fact, inoculation of wheat Tetra fertilized with TPR with a combination of Gi, BR2 and C1 produced the best grain yield with the highest P concentration. This work shows that by inoculating seeds with TPR-solubilizing microorganisms and AM fungi under field conditions in Mali it is possible to obtain wheat grain yields comparable to those produced by using the expensive DAP fertilizer.  相似文献   

8.
Intrinsic promiscuity in cowpea and bean enables plants to nodulate with native rhizobia, though sometimes ineffective rhizobia may occupy nodules, resulting in poor response to inoculation. Field trials were conducted from 2014 to 2017 in Marondera, Natural Region II, Zimbabwe, to determine the effect of increasing inoculation rates on legume growth parameters, nitrogen uptake and grain productivity. Treatments included an un-inoculated control and inoculant rates of ×1 (standard), ×2, ×3, ×4, ×5, ×7 and ×10 for both cowpea (rhizobia - inoculant-strain-MAR 1510) and bean (rhizobia-inoculant-strain-CIAT 899). Biomass productivity ranged from 2.05 (×2) - 2.94 t ha?1 (×4) and 1.10 (×10) – 1.95 t ha?1 (×4) for cowpea and bean, respectively. Nitrogen uptake increased with increasing inoculation rates reaching up to 57.56 kg N ha?1 for bean (×4) and 100.20 kg N ha?1 for cowpea (×3). The uninoculated control was not significantly different from the standard, {(×1); 1 g inoculant 500 g seed?1} treatment, for cowpea nodule weight and grain productivity. The highest cowpea and bean nodule weights were recorded from the ×3 and ×4 treatments, respectively, in the first season. Cowpea grain yield significantly varied across treatments, ranging between 0.63 and 1.55 t ha?1 with the ×3 recording the highest yield. The “×4” treatment recorded the highest bean grain productivity reaching up to 0.88 t ha?1. It can be concluded that, increasing rhizobia cells concentration per unit seed up to ×3 (cowpea) and ×4 (bean) improves response to inoculation and grain productivity suggesting a need to change product formulation or increase inoculation rate.  相似文献   

9.
Abstract

Legume-Rhizobium symbiotic nitrogen (N2) fixation plays a critical role in sustainable nitrogen management in agriculture. The nitrogen fixed by the root nodules not only affects the nitrogen cycle of nature, but is also of great economic importance. A number of physiological and biochemical processes in the nodules are affected by salt stress. The objective of this study was to evaluate the role of arbuscular mycorrhiza (AM) in moderating toxic effects of salt stress on nodular metabolism in Cajanus cajan (L.) Millspaugh (pigeonpea) cv. Manak. Exposure of plants to salinity stress (4, 6 and 8 dSm?1) caused ionic imbalance, which resulted in increased Na+ and reduced K+ and Ca2+ contents in the nodules. Salinity induced increased synthesis and accumulation of proline and glycine betaine. Salt stress significantly increased the antioxidant enzyme activities in the nodules of all plants. Nodular growth suffered remarkably and a marked decline in nodule biomass was observed under salt stress. Leghemoglobin content and acetylene reduction activity (ARA) also declined under saline conditions. AM could significantly improve nodule dry mass, leghemoglobin content and nitrogenase activity, and phosphorus content under salt stress. Activities of antioxidant enzymes increased markedly in nodules of mycorrhizal-stressed plants. This study suggested a correlation between improved functional efficiency of nodules and higher osmolyte accumulation and enhanced antioxidant enzyme activities of AM plants under stressed conditions relative to the nodules of uninoculated plants.  相似文献   

10.
Compost sustaining a multitude of chitinase-producing bacteria was evaluated in a greenhouse study as a soil amendment for the control of late blight (Phytophthora capsici L.) in pepper (Capsicum annuum L.). Microbial population and exogenous enzyme activity were measured in the rhizosphere and correlated to the growth and health of pepper plant. Rice straw was composted with and without a chitin source, after having been inoculated with an aliquot of coastal area soil containing a known titer of chitinase-producing bacteria. P. capsici inoculated plants cultivated in chitin compost-amended soil exhibited significantly higher root and shoot weights and lower root mortality than plants grown in pathogen-inoculated control compost. Chitinase and β-1,3-glucanase activities in rhizosphere of plants grown in chitin compost-amended soil were twice that seen in soil amended with control compost. Colony forming units of chitinase-producing bacteria isolated from rhizosphere of plants grown in chitin compost-amended soil were 103 times as prevalent as bacteria in control compost. These results indicate that increasing the population of chitinase-producing bacteria and soil enzyme activities in rhizosphere by compost amendment could alleviate pathogenic effects of P. capsici.  相似文献   

11.
Aspergillus niger, a soil-borne fungus is a causative agent of hypocotyl malformations in infected groundnut (Arachis hypogaea L.) plants, but its effect on yield is unknown. This study sought to determine its effect on growth and yield. Seeds of Chinese and JL45 varieties were sown in soil inoculated with A. niger. Fresh and dry weights of the shoots and roots were taken at 10-day intervals. Nodule count was done at 30 days after emergence and subsequently at 10-day intervals. Pods of 20 plants each from inoculated and uninoculated soils were harvested. Growth was suppressed in plants grown on A. niger inoculated soil. Eight-day old plants grown in inoculated soil developed curvatures on their hypocotyls. Nodulation was suppressed (p < 0.05) in plants grown in inoculated soil. Although growth was suppressed in plants grown on inoculated soil, yield of both varieties of groundnut was not affected.  相似文献   

12.
The effect of arbuscular mycorrhizal (AM) fungi on the accumulation and transport of lead was studied in a pot experiment on maize plants grown in anthropogenically-polluted substrate. The plants remained uninoculated or were inoculated with different Glomus intraradices isolates, either indigenous to the polluted substrate used or reference from non-polluted soil. A considerably lower tolerance to the conditions of polluted substrate was observed for the reference isolate that showed significantly lower frequency of root colonisation as well as arbuscule and vesicule abundance. Plants inoculated with the reference isolate also had significantly lower shoot P concentrations than plants inoculated with the isolate from polluted substrate. Nevertheless, inoculation with either indigenous or reference G. intraradices isolate resulted in higher shoot and root biomass and inoculated plants showed lower Pb concentrations in their shoots than uninoculated plants, regardless of differences in root colonisation. Root biomass of maize plants was divided according to AM-induced colouration into brightly yellow segments intensively colonised by AM fungus and non-colonised or only slightly colonised whitish ones. Intensively colonised segments of the isolate from polluted substrate contained significantly higher concentrations of phosphorus and lead than non-colonised ones, which suggest significant participation of fungal structures in element accumulation. Responsible Editor: Peter Christie.  相似文献   

13.
The effects of soil inoculation with arbuscular mycorrhizal (AM) fungi and a mycorrhiza helper bacterium (MHB) were investigated on mulberry and papaya plants already established in the field. Ten-year-old mulberry plants (var. M5) were inoculated with Glomus fasciculatum and 1.5-year-old papaya plants (var. Solo) were inoculated with a mixed culture of G. mosseae and G. caledonium with or without Bacillus coagulans at two levels of P fertilizer. Growth, P uptake, yield and AM colonization levels were monitored. Leaf yield in mulberry and fruit yield in papaya were minimal in uninoculated plants given 50% recommended P. However, crop yields of both mulberry and papaya inoculated with AM fungi alone or together with the bacterium and given 50% recommended P were statistically on a par with that of uninoculated plants given 100% recommended P. As inoculation of B. coagulans increased mycorrhiza levels in AM fungal-inoculated plants, this may be included in the class of MHB. Thus, mulberry and papaya already established in the field may respond to AM inoculation and MHB may increase symbiosis development by efficient AM fungi.  相似文献   

14.
Eucalyptus tereticornis was grown in a green house in a low phosphorus (0.67 ppm Olsen's P) soil (Typic Haplustalf) inoculated with mixed indigenous arbuscular mycorrhizal (AM) fungi. Soil was amended to achieve P levels of 10, 20, 25, 30 and 40 ppm to evaluate the growth response and dependence of E. tereticornis to inoculation with AM fungi. A positive response to mycorrhizal inoculation was evident at the first two levels of soil P, i.e., at 0.67 and 10 ppm but not at the higher levels of soil P. Dry matter yield of inoculated plants beyond 20 ppm soil P was similar or even less compared to their uninoculated counterparts. Inoculated plants produced maximum dry matter (root and shoot) at 10 ppm soil P, whereas uninoculated plants did not produce until the level reached 20 ppm. The percentage root length colonized by AM fungi decreased from 31% to 3% as the concentration of P increased beyond 10 ppm soil P. Higher levels of soil P depressed the AM colonization significantly. Inoculated plants had higher shoot P and N contents compared to their uninoculated counterparts at all levels of soil P. However, at the first two lower levels of soil P, inoculated plants showed significantly higher shoot P and N contents over their respective uninoculated counterparts. The increasing shoot P accumulation beyond 10 ppm did not enhance dry matter yields. Inoculated plants had lower values of phosphorus utilization efficiency (PUE) and nitrogen utilization efficiency (NUE) at all levels of soil P except at the unamended level (0.67 ppm) where the inoculated plants showed higher values of NUE compared to uninoculated control plants. Taking dry matter yield into consideration, Eucalyptus plants were found to be highly dependent on 10 ppm of soil P for maximum dry matter production. Any further amendment of P to soil was not beneficial neither for AM symbiosis nor plant growth.  相似文献   

15.
The effects on yield in courgette and marrow (Cucurbita pepo) crops resulting from inoculation with the mild strain of zucchini yellow mosaic virus (ZYMV:WK), have been determined in polythene-house trials and in three years of outdoor, commercial field trials. In polythene-house trials ZYMV:WK inoculated plants were up to 10 days later in flowering than uninoculated plants and their cumulative yields were between 5% and 26% less than uninoculated plants depending on the cultivar. In most field trials cumulative yields from inoculated plants were between 4% and 38% less than uninoculated plants depending on the site and cultivar, but in one trial the yield was 7% higher from inoculated plants. In all experiments, courgette and marrow fruits harvested from ZYMV:WK inoculated plants were symptomless and indistinguishable from fruit harvested from uninoculated plants. The mild leaf symptoms induced by ZYMV:WK infection did not intensify to severe leaf symptoms and where there were natural outbreaks of severe ZYMV infection, fruits from inoculated plants remained symptomless whilst those from uninoculated plants were severely affected and unmarketable.  相似文献   

16.
Salinity adversely affects plant growth and development. Halotolerant plant-growth-promoting rhizobacteria (PGPR) alleviate salt stress and help plants to maintain better growth. In the present study, six PGPR strains were analyzed for their involvement in salt-stress tolerance in Arachis hypogaea. Different growth parameters, electrolyte leakage, water content, biochemical properties, and ion content were analyzed in the PGPR-inoculated plants under 100 mM NaCl. Three bacterial strains, namely, Brachybacterium saurashtrense (JG-06), Brevibacterium casei (JG-08), and Haererohalobacter (JG-11), showed the best growth of A. hypogaea seedlings under salt stress. Plant length, shoot length, root length, shoot dry weight, root dry weight, and total biomass were significantly higher in inoculated plants compared to uninoculated plants. The PGPR-inoculated plants were quite healthy and hydrated, whereas the uninoculated plant leaves were desiccated in the presence of 100 mM NaCl. The percentage water content (PWC) in the shoots and roots was also significantly higher in inoculated plants compared to uninoculated plants. Proline content and soluble sugars were significantly low, whereas amino acids were higher than in uninoculated plants. The MDA content was higher in uninoculated plants than in inoculated plants at 100 mM NaCl. The inoculated plants also had a higher K+/Na+ ratio and higher Ca2+, phosphorus, and nitrogen content. The auxin concentration was higher in both shoot and root explants in the inoculated plants. Therefore, it could be predicted that all these parameters cumulatively improve plant growth under saline conditions in the presence of PGPR. This study shows that PGPR play an important role in inducing salinity tolerance in plants and can be used to grow salt-sensitive crops in saline areas.  相似文献   

17.
The objective of this study was to evaluate the survival of cowpea during bacterial colonization and evaluate the interrelationship of the Bradyrhizobium sp. and plant growth-promoting bacteria (PGPB) as a potential method for optimizing symbiotic performance and cowpea development. Two experiments using the model legume cowpea cv. “IPA 206” were conducted. In the first experiment, cowpea seeds were disinfected, germinated and transferred to sterilized Gibson tubes containing a nitrogen-free nutritive solution. The experimental design was randomized blocks with 24 treatments [Bradyrhizobium sp. (BR 3267); 22 PGPB; absolute control (AC)] with three replicates. In the second experiment, seeds were disinfected, inoculated according to their specific treatment and grown in Leonard jars containing washed and autoclaved sand. The experimental design was randomized blocks with 24 treatments [BR 3267; 22 BR 3267 + PGPB; AC] with three replicates. Scanning electron microscopy demonstrated satisfactory colonization of the roots of inoculated plants. Additionally, synergism between BR 3267 and PGPB in cowpeas was observed, particularly in the BR 3267 + Paenibacillus graminis (MC 04.21) and BR 3267 + P. durus (C 04.50), which showed greater symbiotic performance and promotion of cowpea development.  相似文献   

18.
Composting is one of the most appropriate methods to recycle sewage sludge. Sewage sludge compost is a suitable solution for improving the quality of barren soil at landfill. Therefore, it is important to investigate the effects of sewage sludge compost on plants. Different compost application methods (mixing and scattering over reclaimed soil) on sawtooth oak (Quercus acutissima) and Japanese red pine (Pinus densiflora) have been tested. The application of sewage sludge compost markedly increased soil moisture and nitrogen content. Compost treatments resulted in significant increases in both plant height and biomass as compared to controls. Compost treatments led to a significant increase in the N content of plant leaves. Compost treatments resulted in significant increases in the chlorophyll content and photosynthetic rates of the plants. The scattering of compost over reclaimed soil (compost 2) resulted in lower total antioxidant activity and superoxide dismutase activity than mixing the compost with the reclaimed soil (compost 1), or in the control treatment. Since the growth rates, N content, and photosynthetic rates in compost 2 treatment were not markedly different from compost 1 treatment, it (compost 2) would be a better application method from both an ecological and economic perspective.  相似文献   

19.
Greenhouse and field experiments were carried out in order to investigate the influence of mycorrhizal inoculation on total phenolic content (TPC) and antioxidant activity, expressed as antiradical power (ARP), of artichoke (Cynara cardunculus L. var. scolymus F.) leaves and flower heads extracts. The establishment of mycorrhizal symbiosis was monitored in pot and field grown plants, and the persistence of the inoculated AMF in roots after 2 years’ growth in the field was assessed by fungal ITS sequencing. Both in the greenhouse and in the field, marked increases in TPC and ARP were detected in leaves and flower heads of artichoke plants inoculated with the AM fungal species Glomus intraradices, either alone or in mixture with Glomus mosseae. In the field, plants inoculated with Glomus mix showed flower heads ARP content increases of 52.7 and 30.0% in the first and second year, respectively, compared with uninoculated plants. After 2 years’ growth in the field ITS rDNA sequences clustering with those of G. mosseae and G. intraradices were retrieved only from inoculated plant roots. Our data show that mycorrhizal inoculation may represent an efficient and sustainable strategy to improve productivity and enhance plant biosynthesis of secondary metabolites with health promoting activities.  相似文献   

20.
In field experiments in 1981 and 1982, uninoculated seed tubers (cv. Désirée) and those inoculated with Erwinia carotovora subsp. atroseptica at the rose (apical) or heel (stolon attachment) ends were planted at normal (35 cm) or double spacing; in additional plots, inoculated and uninoculated tubers were planted alternately. Inoculation, especially at the rose end, decreased plant height and sometimes resulted in blackleg symptoms. Individual plant yields were recorded at the end of the season. In plots of uniform seed type at normal spacing, inoculation decreased total yield compared with uninoculated by 12–13% (heel-end inoculation) or 26–40% (rose-end inoculation). At double spacing, yields increased compared with normal spacing by 44–58% (uninoculated or heel-end inoculation) or 30–39% (rose-end inoculation). When rose-end-inoculated and uninoculated seed tubers were planted alternately, inoculated plants yielded less and uninoculated plants more than in plots planted throughout with the same seed treatment. The abilities of inoculated and uninoculated plants to compensate for weak or missing neighbours were combined using equations to predict the yields of crops with different proportions of diseased or missing plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号