首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects on development, longevity, fecundity and predation of the predatory phytoseiid mite Typhlodromus mangiferus Zaher and El-Brolossy were studied in the laboratory at different temperatures and relative humidities using four prey mite species: the motile stages of the eriophyid mango bud mite Aceria mangiferae Sayed, the eriophyid leaf coating and webbing mite Cisaberoptus kenyae Keifer, the eriophyid mango rust mite Metaculus mangiferae (Attiah) and nymphs of the tetranychid mango red mite Oligonychus mangiferus (Rahman and Sabra). The increase of different temperatures and decrease of relative humidities from 25°C and 60% to 30°C and 55% and 35°C and 50% shortened development and increased reproduction and prey consumption. The developmental durations were almost similar when the predator was fed on eriophyids compared to that on tetranychid. The maximum reproduction (2.70, 2.08, 1.97 and 1.66 eggs/ ♀ /day) was recorded at the highest temperature and the lowest relative humidity, while the minimum reproduction (1.7, 1.54, 1.53, and 1.06 eggs/ ♀ /day) was noted at the lowest temperature and highest relative humidity with all mango prey species. Life table parameters indicated that feeding of T. mangiferus on A. mangiferae led to the highest reproduction rate (rm = 0.204 and 0.139 females/female/day), while feeding on O. mangiferus gave the lowest reproduction rate (rm = 0.137 and 0.116) at 35°C and 50% relative humidity and 25°C and 60% relative humidity, respectively. T. mangiferus seems to be a voracious predator of both mango eriophyid and tetranychid mites. The adult female daily consumed about 127 A. mangiferae, 97 C. kenyae, 86 M. mangiferae, and 18 O. mangiferus at 35°C and 50% relative humidity, while it devoured only 99.81, 86, 81, and 15 individuals, respectively at 25°C and 60% relative humidity. The present study revealed that each injurious mite is thought to be profitable prey species to T. mangiferus as a facultative predator.  相似文献   

2.
Abstract

Studies on the life history and life table parameters of Neoseiulus cucumeris Oudemans (Acari: Phytoseiidae) were carried out under laboratory conditions of 25?±?1?°C and 65?±?5% RH; 30?±?1?°C and 60?±?5% RH; 35?±?1?°C and 55?±?5% RH. As prey, immature stages of tetranychid spider mite T. urticae Koch (Acari: Tetranychidae) and the moving stages of the Tomato Russet Mite A. lycopersici (Massee) (Acari: Eriophyideae) were selected. The predatory phytoseiid mite, Neoseiulus cucumeris (Oudemans) was able to develop successfully from egg to adult stage through the entire life history on both preys. The higher of different temperatures and relative humidities shortened the development and increased reproduction and prey consumption and vice versa. The maximum reproduction (3.91, and 3.09 eggs/♀/day) was recorded at 35?°C and 65% RH, while the minimum (2.12, and 1.90 eggs/♀/day) was at 25?±?1?°C and 55?±?5% RH. when N. cucumeris fed on A. lycopersici and T. urticae, respectively. The reproductive rate on eriophyid was significantly higher than previously recorded on tetranychid. Life table parameters indicated that feeding of phytoseiid mite N. cucumeris on tomato russet mite A. lycopersici led to the highest reproduction rate (rm?=?0.268, 0.232 and 0.211 females/female/day), while feeding on T.urticae gave the lowest reproduction rate (rm?=?0.159, 0.143 and 0.131) at 35?°C and 55% RH, 30?°C and 60% RH and 25?°C and 65% RH, respectively. The population of N. cucumeris multiplied (36.81, 28.71 and 20.47) and (24.60, 19.58 and 14.62 times) in a generation time of (20.10, 23.20 and 25.14) and (22.35, 25.36 and 27.79 days) when a predator fed on A. lycopersici and T. urticae at the same temperature above mentioned, respectively. These results suggest that the two mites, particularly A. lycopersici, proved to be suitable prey for N.cucumeris, as a facultative predator.  相似文献   

3.
The predacious mites, Typhlodromus mangiferus Zaher and El-Borolossy and Typhlodromips swirskii (Athias-Henriot), reproduced successfully on mango powdery mildew Oidium mangiferae Berthet in absence or presence of spider mite prey Oligonichus mangiferus (Rahman and Sapra) under laboratory conditions of 25 ± 1°C and 60–65% R.H. Adult female of both predators consumed protonymphs of O. mangiferus at different experimental densities. The consumption rate increased with increasing prey densities up to 25 protonymphs/female/day and decreased significantly at 35 and 50 protonymphs/female/day for the two predatory mites. Addition of powdery mildew conidia to each prey density significantly reduced consumption of spider mites at 35 and 50 protonymphs/female/day. Mean eggs/female/day by T. swirskii and T. mangiferus was 0.30 and 0.72 when reared on powdery mildew conidia compared with 1.64 and 1.57 when fed on powdery mildew and tetranychid prey, respectively. This increase in reproduction would have compensated the reduction in protonymph prey consumption due to the presence of mildew conidia. Mite–mildew interactions are discussed.  相似文献   

4.
The olive fruit fly Bactrocera (Dacus) oleae Gmelin is a major olive pest in Greece and other Mediterranean countries. Its population density and respective olive infestation is usually low in many areas of northern Greece during summer months. To some extent, this may be due to the prevailing high temperature and low relative humidity conditions. In the present work the effects of short term exposure to high temperatures on the survival and egg production of B. oleae pre‐imaginal stages and adults were studied under laboratory conditions. Different larval instars within infested green olive fruits, adults and pupae and were exposed for 2 h to a series of different high constant temperatures ranging from 34 to 42°C. Subsequently, survival percentages of pre‐imaginal stages and adults as well as the number of eggs laid by females previously exposed to high temperatures were determined. At temperatures up to 38°C high survival percentages of larvae and adults were observed, whereas pupae displayed a relatively increased heat tolerance up to 40°C. Female longevity and egg production were substantially reduced after heat stress. Prior acclimation at 33°C for 1 and 3 days resulted in increased adult survival following heat stress. We discuss the results with respect to the ability of the fly to survive and reproduce under high summer temperatures.  相似文献   

5.
The broad mite Polyphagotarsonemus latus (Banks) was studied for one season (2009/2010) on three pepper cultivars (Travita, Top star and Habeba) in the nethouses in Egypt. The tarsonemid mite was fed upon by the predatory phytoseiid mite Amblyseius swirskii (Athias–Henriot). Population abundance of the tarsonemid pepper prey was affected by climatic conditions and predation. A control measure of one preventive treatment in nursery and two successive curative treatments, applied mid-September, in nethouses seemed to be the most successful management of the harmful mite. The effect of constant different temperatures on P. latus development, reproduction and population growth was investigated. At 11?°C, all activity ceased and by 36?°C the adult began to slow down. Life table parameters varied greatly, especially at 21?°C and 75%?R.H.  相似文献   

6.
Life table and predation of the predatory mite Neoseiulus longispinosus (Evans) on the red spider mite (RSM), Oligonychus coffeae (Nietner), a major pest of tea in India, were studied in the laboratory. Developmental time from egg to adult varied from 4 to 14 days at 30 to 15 °C, respectively; at 35 °C no larva survived. Survival of immature stages was more than 94 % at all temperatures. Threshold temperature for development of immature stages of females and males was 10 and 9.9 °C, respectively, and thermal constant was 84.03 degree-days for females and 80 for males. Sex ratio was female biased and temperature (20–30 °C) had no clear effect on sex determination. Egg hatchability was 73 % at 35 °C and >97 % at lower temperatures. Average number of eggs laid per female/day was higher at 30 °C than at 20 or 25 °C. The highest net reproductive rate (R 0) was 40.7, at 20 °C. Mean generation time (T) decreased from 28 to 13 days with temperature increasing from 20 to 30 °C. Weekly multiplication (6.5) and intrinsic rate of natural increase (r m ) (0.268) were highest at 30 °C. Males lived longer than females at every temperature tested. Longevity was highest at 20 °C (50 days for females and 55 for males). Survival and longevity were adversely affected by temperature above 30 °C. Daily consumption of prey increased with the advancement of predator’s life stages; adult females consumed the highest numbers of prey items, preferably larvae and nymphs.  相似文献   

7.
Zhang  Na  Smith  Cecil L.  Yin  Zhan  Yan  Yi  Xie  Lixia 《Experimental & applied acarology》2022,86(4):499-515

The predatory mite Lasioseius japonicus Ehara is a newly recorded species in China that has been shown to have great potential as a biological control agent. The species is a soil-dwelling mite that is known to prey on various pests including economically important mites, fungus gnats and other terricolous arthropods. Considering that temperature is one of the most important factors affecting the population dynamics of arthropods, the development, survival and reproduction of L. japonicus were evaluated under indoor conditions at seven temperatures: 19, 22, 25, 28, 31, 34 and 37 °C, at 75% relative humidity and L0:D24 h photoperiod. The mites were fed on the cereal mite Tyrophagus putrescentiae (Schrank) and the data were analyzed using the two-sex life table. The results demonstrated that L. japonicus could complete their development and reproduce at temperatures between 19 and 34 °C, but were unsuccessful at 37 °C. Increasing temperature shortened the development time of the pre-adult stage and the average generation time (T). The life table parameters indicated that at temperatures from 22 to 31 °C the development rate and reproduction of L. japonicus were highest: at 22, 25, 28 and 31 °C the net reproduction rate (R0) was 55.5, 61.6, 61.2 and 59.0, respectively, and the average fecundity rate (F) was 81.7, 88.0, 102.0 and 86.8, respectively. The maximum values of intrinsic population growth rate (r) (0.341) and finite rate of increase (λ) (1.407) occurred at 31 °C.

  相似文献   

8.
The consumption rate of an ectothermic predator is highly temperature-dependent and is a key driver of pest-predator population interactions. Not only average daily temperature, but also diurnal temperature variations may affect prey consumption and life history traits of ectotherms. In the present study, we evaluated the impact of temperature alternations on body size, predation capacity and oviposition rate of the predatory mites Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus McGregor (Acari: Phytoseiidae) when presented with eggs of their natural prey, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). For both predators, mean daily temperature as well as temperature alternation had a substantial impact on the number of prey consumed. At lower average temperatures, more eggs were killed under an alternating temperature regime (20 °C/5 °C and 25 °C/10 °C) than at the corresponding mean constant temperatures (15 and 20 °C). At higher average temperatures (>25 °C), however, the opposite was observed with higher numbers of prey killed at constant temperatures than at alternating temperatures. At 25 °C, temperature variation had no effect on the predation capacity. A similar trend as for the predation rates was observed for the oviposition rates of the phytoseiids. Body size of N. californicus was affected both by average daily temperature and temperature variation, with smaller adult females emerging at alternating temperatures than at constant temperatures, whereas for P. persimilis, temperature variation had no impact on its body size. Our results demonstrate that temperature variations are likely to affect biological control of T. urticae by the studied phytoseiid predators.  相似文献   

9.
To assess differences in temperature sensitivity during development, life tables for two lines derived from the species Trichogramma oleae Voegelé and Pointel and a strain of Trichogramma cacoeciae Marchal (Hymenoptera: Trichogrammatidae) were elaborated at 15, 20, 25, 30, 35, 36, and 37°C in the laboratory. Eggs of Ephestia kuehniella Zeller together with a fresh drop of honey were supplied every 2 days until the death of the test females, and the removed host egg batches were placed in the equivalent rearing cabinet. The line ‘2F’ of T. oleae was found to be the most efficient at any range of temperatures except at 20 and 37°C, in comparison to the other tested strains. For all species, no progeny emerged from eggs incubated at 36°C and none of the parasitized eggs turned black at 37°C. The better performance at a broader range of temperatures by T. oleae (line 2 F) might be caused by a shorter history in artificial rearing in comparison to the other strains. Fewer generations at laboratory conditions and frequent multiplication on eggs of its natural host (the olive moth Prays oleae) may have prevented a deterioration in the rearing population of this strain, maintaining its genetic diversity at a higher scale. Applying varying temperature regimes on the rearing stock at regular intervals during the mass production process may help to maintain the essential quality of the biological control agents for field performance at higher temperatures.  相似文献   

10.
Temperature had various effects on the predacious efficacy of immature and mature stages of the coccinellid predator, Stethorus punctillum on the two-spotted spider mite, Tetranychus urticae. In the case of immature stages, food consumption at the lowest tested temperature (15°C) was significantly higher than that at higher temperatures (25 and 35°C). On the contrary, positive correlation between food consumption and temperature was evaluated in the case of adult predator. Regarding predator responses to different prey density, a high positive correlation between food consumption and prey density was evaluated among 4th instar larvae of the predator, followed by adult predator, while younger instars did not show reasonable increases with increasing prey densities. These results confirm that larval and adult stages of S. punctillum exhibit “Type II” functional response. In conclusion, the 4th instar larvae and adult predator are the most preferable stages in winter and summer crops to control T. urticae, respectively.  相似文献   

11.
The predatory mite Typhlodromips swirskii (Athias–Henriot) is commonly used to suppress pest populations of thrips and whitefly in commercial greenhouses. Many generalist phytoseiid mites can be reared on astigmatid factitious prey. This study investigated the life table parameters of T. swirskii to the astigmatid mite Suidasia medanensis (Oudemans) and the capture success ratio of T. swirskii to different life stages of the prey. Juvenile development time and survival was 5.01 ± 0.10 days and 93 %, respectively. The intrinsic (r m ) and finite (λ) rates of increase were 0.222 and 1.249, respectively, with average oviposition rate of 1.71 ± 0.07 eggs/female/day. The capture success ratio of T. swirskii to S. medanensis was: eggs > freeze killed adults > nymphs > live adults. Typhlodromips swirskii was concluded to exhibit good population growth rates with S. medanensis as prey and, a prey population with predominance of eggs and nymphs to be advantageous to the predator due to an unidentified defence mechanism of adult prey.  相似文献   

12.
The tomato red spider mite, Tetranychus evansi, is reported as a severe pest of tomato and other solanaceous crops from Africa, from Atlantic and Mediterranean Islands, and more recently from the south of Europe (Portugal, Spain and France). A population of the predaceous mite Phytoseiulus longipes has been recently found in Brazil in association with T. evansi. The objective of this paper was to assess the development and reproduction abilities of this strain on T. evansi under laboratory conditions at four temperatures: 15, 20, 25 and 30°C. The duration of the immature phase ranged from 3.1 to 15.4 days, at 30 and 15°C, respectively. Global immature lower thermal threshold was 12.0°C. Immature survival was high at all temperatures tested (minimum of 88% at 30°C). The intrinsic rate of increase (r m) of P. longipes ranged from 0.091 to 0.416 female/female/day, at 15 and 30°C, respectively. P. longipes would be able to develop at a wide range of temperatures feeding on T. evansi and has the potential to control T. evansi populations.  相似文献   

13.
The predatory phytoseiid mite Amblyseius swirskii (Athias-Henriot) completed its lifespan when fed on females of the broad mite, Polyphagotarsonemus latus (Banks). The development was the quickest and the number of prey consumed was highest when individuals were reared at 28?°C compared with 19?°C. The average number of eggs/female/day was 2.36 and 1.69, respectively. Life table parameters showed that the population of A. swirskii multiplied 16 and 20 times in a generation time of 22 and 18?days at 19 and 28?°C, respectively. Under these conditions, the intrinsic rate of increase (rm) was 0.139 and 0.170 individuals/female/day, respectively.  相似文献   

14.
Development time, reproduction, survival and sex ratio were determined for the omnivorous mite Amblyseius swirskii at nine constant temperatures (13, 15, 18, 20, 25, 30, 32, 34 and 36°C) on pepper leaf disks with cattail, Typha latifolia, pollen for food. These data were used to derive life table parameters at these constant temperatures. No development was observed at 13°C. The lower development threshold, based on the fit to the linear portion of the development curve, was 11.3°C. The upper development threshold was 37.4 ± 1.12°C, and the optimum temperature was calculated to be 31.5°C. Average lifetime fecundity ranged from a low of 1.3 ± 0.24 eggs/female at 15°C to a high of 16.1 ± 0.34 eggs/female at 25°C, and r m was greatest at 32°C. Non-linear regression of the relationship between temperature and r m produced an estimate of 15.49 ± 0.905°C for the lower threshold for population growth and 36.99 ± 0.816°C for the upper threshold for population growth, and an optimum temperature of 30.1°C. These values suggest that A. swiskii populations should grow quickly in response to food availability (pollen or prey) between 20 and 32°C, but that, especially below 20°C, population growth could be slow and impacts on prey populations should be monitored carefully.  相似文献   

15.
Sancassania (Caloglyphus) berlesei (Michael) is a cosmopolitan and free-living mite that inhabits soil as well as laboratory colonies of insects and fungi and may have a role as a biocontrol agent of nematodes. In this study, we investigated the effects of temperature on the development, reproduction, and food consumption of S. berlesei fed egg masses of root-knot nematodes, Meloidogyne spp., an important group of agricultural pests. Mites were reared at 20, 25 or 30 °C in the dark. The mites could feed on the nematode egg masses, and their developmental time decreased at higher temperatures. Time from the egg to adult was similar in females and males reared at the same temperature. Adult females lived longer than males at 25 °C, but not at 20 or 30 °C. Generally, females showed a higher rate of food consumption than males. Females laid the largest number of eggs at 20 and 25 °C (199.7 and 189.8 eggs/female, respectively), but the intrinsic rate of natural increase was highest at 30 °C (r m = 0.29). In comparing our data with previous reports, we noted that S. berlesei that fed on egg masses of root-knot nematodes showed a longer developmental time and a lower reproductive rate than Sancassania mites that fed on other diets. Nonetheless, the relatively high value of r m (e.g., at 25 and 30 °C) suggests that this mite may have certain advantages as a biocontrol agent of root-knot nematodes.  相似文献   

16.
The predatory miteTyphlodromus talbii Athias-Henriot occurs in European vineyards and is often associated with economically important species. Neither its role in vineyards nor the factors affecting its population dynamics and relationships with other phytoseiid species are well known. The development and the reproduction ofT. talbii were studied in the laboratory by rearing the predator on different kinds of food (Panonychus ulmi, Eotetranychus carpini, Colomerus vitis, Tydeus caudatus, Mesembryanthemum criniflorum pollen). Overwintered females reared on tydeids survived for long periods and laid eggs, but they died after a few days when spider mites or pollen were provided. Development occurred on all mite species but not on pollen. Developmental times on tydeids were shorter than on the other prey. Oviposition was recorded on tydeids and, to a lesser extent, on eriophyids but not on spider mites or pollen. Experiments on tydeids, which resulted as being the best food, were conducted at two temperatures (20° and 27°C). The highest temperature affected the duration of development and oviposition rates positively, but total fecundity was similar. Predators reared at 27°C consumed more prey than those reared at 20°C. The life table parameters of the species were evaluated onT. caudatus (at 20° and 27°C) and onC. vitis. The highest rm ofT. talbii was found for individuals reared onT. caudatus at 27°C (0.165). Lower values were obtained on the same prey at 20°C (0.089) or onC. vitis (0.030). The feeding habits ofT. talbii may explain why the species coexists with the generalistAmblyseius aberrans orTyphlodromus pyri.  相似文献   

17.
Mononychellus mcgregori is a pest mite of cassava. Since its invasion into China in 2008 it has spread rapidly. In order to determine the potential distribution and to analyze its invasion, diffusion and ecological adaptation mechanisms, we investigated the effect of high-temperature stress (30, 33, 36, 39 and 42 °C) on its development and reproduction, and the activity of protective enzymes in the mite. The results indicated significant influences: (1) adults could not lay eggs after they had been exposed to 42 °C for 4 h or longer; (2) egg development was slower and egg hatchability decreased after exposure of adults to 33–42 °C for 1 h; (3) offspring development (all stages) was slower after exposure of adults to 33–42 °C for 2 h or more; and (4) polyphenol oxidase (PPO), peroxidase (POD), ascorbate peroxidase (APX) and catalase (CAT) activities in the adults increased to high levels after exposure to 33–42 °C for 1 h, and superoxide dismutase activity increased only after exposure to 42 °C for 1 h. In conclusion, exposure to high temperatures for only 1 h probably has an important impact on the mite’s population growth. The significant increase of PPO, POD, APX, and CAT activities in adults may partially explain how M. mcgregori survive exposure to a relatively high temperature.  相似文献   

18.
One of the most important diseases of coffee plants is the coffee leaf rust fungus Hemileia vastatrix Berkeley and Broome (Uredinales). It can cause 30 % yield loss in some varieties of Coffea arabica (L.). Besides fungus, the coffee plants are attacked by phytophagous mites. The most common species is the coffee red mite, Oligonychus ilicis McGregor (Acari: Tetranychidae). Predatory mites of the Phytoseiidae family are well-known for their potential to control herbivorous mites and insects, but they can also develop and reproduce on various other food sources, such as plant pathogenic fungi. In a field survey, we found Ricoseius loxocheles (De Leon) (Acari: Phytoseiidae) on the necrotic areas caused by the coffee leaf rust fungus during the reproductive phase of the pathogen. We therefore assessed the development, survivorship and reproduction of R. loxocheles feeding on coffee leaf rust fungus and measured predation and oviposition of this phytoseiid having coffee red mite as prey under laboratory conditions. The mite fed, survived, developed and reproduced successfully on this pathogen but it was not able to prey on O. ilicis. Survival and oviposition with only prey were the same as without food. This phytoseiid mite does not really use O. ilicis as food. It is suggested that R. loxocheles is one phytoseiid that uses fungi as a main food source.  相似文献   

19.
Chelonus elaeaphilus Silvestri (Hymenoptera: Braconidae) is a host-specific parasitoid of the olive moth, Prays oleae (Bernard), that can cause parasitism rates of up to 80% in Mediterranean olive groves. A laboratory study was carried out to assess the potential of sugars provided by wild plant species in olive grove agroecosystem to enhance the fitness of C. elaeaphilus. Insects were reared in a climate-controlled chamber at 25?±?2°C, 60?±?5% relative humidity (RH) with a photoperiod of 16:8 (L:D) h. Five naturally occurring wild plant nectar sugars (sucrose, fructose, glucose, maltose and mannose) were tested for their effect on insect longevity. The nectar sugar content of sucrose, fructose and glucose in 12 selected olive grove agroecosystem plant species was analysed and categorised on the basis of sugar ratios. Female insect longevity was increased when they were fed on both sucrose and glucose compared to either maltose or fructose, suggesting that sucrose-dominant nectars would bene?t this parasitoid. Sucrose was predominant in the nectar of five of the studied plant species (Silene gallica, Borago officinalis, Echium plantagineum, Lavandula stoechas and Lonicera hispânica). The results are discussed in terms of potential enhancement of the biological control of P. oleae.  相似文献   

20.
Effects of cold storage temperatures and storage duration were evaluated for Psyttalia humilis (Silvestri) from Namibia and Psyttalia ponerophaga (Silvestri) from Pakistan, braconid parasitoids of Bactrocera oleae (Rossi) imported to California, USA. Immature stages of P. humilis were exposed to 4, 6, 8, 10, or 12 °C for 1, 2 or 4 months (pupa only at 4 and 12 °C) and then held at 24 °C for adult emergence. Less than 5 % of parasitoids in the 4–8 °C treatments survived, regardless of storage duration. At the 10 °C treatment, adult survival decreased with increased storage duration, but increased with advancing developmental stages. Survival was not affected at the 12 °C treatment. Adult P. humilis were exposed to 6, 8, 10 °C for short periods (1, 2, 4, or 6 weeks) or ambient winter conditions in Parlier, California, USA (about 9 °C). Regardless of storage temperature, P. humilis reproduction was reduced after storage of four and six weeks. Similarly, after 4 months at ambient winter temperatures, P. humilis reproduction was reduced. Psyttalia ponerophaga pupae stored at 6 °C for 41–97 days had decreased survival and increased developmental time. Survival of P. ponerophaga pupae ranged from 13.9–52.1 %, whereas under similar storage conditions survival of P. humilis was <0.7 %, suggesting P. ponerophaga is more cold tolerant than P. humilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号