首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escudero V  Mendoza R 《Mycorrhiza》2005,15(4):291-299
We studied seasonal variation in population attributes of arbuscular mycorrhizal (AM) fungi over 2 years in four sites of temperate grasslands of the Argentinean Flooding Pampas. The sites represent a wide range of soil conditions, hydrologic gradients, and floristic composition. Lotus glaber, a perennial herbaceous legume naturalised in the Flooding Pampas, was dominant at the four plant community sites. Its roots were highly colonised by AM fungi. Temporal variations in spore density, spore type, AM root colonisation, floristic composition and soil chemical characteristics occurred in each site and were different among sites. The duration of flooding had no effect on spore density but depressed AM root colonisation. Eleven different types of spores were recognized and four were identified. Two species dominated at the four sites: Glomus fasciculatum and Glomus intraradices. Spore density was highest in summer (dry season) and lowest in winter (wet season) with intermediate values in autumn and spring. Colonisation of L. glaber roots was highest in summer or spring and lowest in winter or autumn. The relative density of G. fasciculatum and G. intraradices versus Glomus sp. and Acaulospora sp. had distinctive seasonal peaks. These seasonal peaks occurred at all four sites, suggesting differences among AM fungus species with respect to the seasonality of sporulation. Spore density and AM root colonisation when measured at any one time were poorly related to each other. However, spore density was significantly correlated with root colonisation 3 months before, suggesting that high colonisation in one season precedes high sporulation in the next season.  相似文献   

2.
Abstract

Members of the Australian native perennial Fabaceae have been little explored with regard to their root biology and the role played by arbuscular mycorrhizal (AM) fungi in their establishment, nutrition and long-term health. The ultimate goal of our research is to determine the dependency of native perennial legumes on their co-evolved AM fungi and conversely, the impact of AM fungal species in agricultural fields on the productivity of sown native perennial legume pastures. In this paper we investigate the colonisation morphology in roots and the AMF, identified by spores extracted from rhizosphere soil, from three replicate plots of each of the native legumes, Cullen australasicum, C. tenax and Lotus australis and the exotic legumes L. pedunculatus and Medicago sativa. The plants were grown in an agricultural field. The level and density of colonisation by AM fungi, and the frequency of intraradical and extraradical hyphae, arbuscules, intraradical spores and hyphal coils all differed between host plants and did not consistently differ between native and exotic species. However, there were strong similarities between species in the same genus. The three dominant species of AM fungi in rhizosphere soil also differed with host plant, but one fungus (Glomus mosseae) was always the most dominant. Sub-dominant AM species were the same between species in the same genus. No consistent differences in dominant spores were observed between the exotic and native Fabaceae species. Our results suggest that plant host influences the mycorrhizal community in the rhizosphere soil and that structural and functional differences in the symbiosis may occur at the plant genus level, not the species level or due to provenance.  相似文献   

3.
The association of Arbuscular Mycorrhizal Fungi (AMF) with three medicinally important plants viz., Eclipta prostrata, Indigofera aspalathoides, I. tinctoria collected from three different localities of Kanyakumari District, South India was examined. The study reports the colonization percentage, diversity and species richness of different AM fungi in the rhizosphere of the three medicinal plants and discusses the impact of soil physicochemical characteristics such as soil texture, pH and available macro- and micro nutrient content on AM fungal communities. A total 21 AM fungal species were identified in field conditions of the three plants from three sites. AM fungal species richness, colorization percentage and Shannon index were found to be high in the two Indigofera sp. growing in the hilly areas of Kanyakumari District and were low in E. prostrata collected from the damp regions in the foothills of the three study sites. Five species registered 100% frequency in all the study sites of the three medicinally important plants with Glomus as the dominant genera. The study states that the mean colonization and diversity patterns were dependant on edaphic factors and type of vegetation.  相似文献   

4.
泰山丛枝菌根真菌群落结构特征   总被引:12,自引:1,他引:12  
2007年对泰山植被根围内丛枝菌根(arbuscular mycorrhiza,AM)真菌群落组成、数量、分布及其与植物多样性的关系进行了研究。从泰山傲徕峰、黑龙潭库区等样地共分离出4属16种AM真菌:球囊霉属Glomus 9种、无梗囊霉属Acaulospora 4种、巨孢囊霉属Gigaspora 2种和盾巨孢囊霉属Scutellospora1种。其中,球囊霉属Glomus及聚球囊霉Glomus fasciculatum的孢子密度、相对多度、分布频度和重要值均最高,分别为泰山植被区根围内AM真菌优势属和优势种。各样地之间Sorenson相似系数在0.60和0.85之间。植被数量与孢子密度(r=0.80,p0.01)、植物种的丰富度与AM真菌种的丰富度(r=0.77,p0.01)以及与孢子密度(r=0.59,p0.01)均呈极显著正相关关系。研究结果表明植物多样性对于提高AM真菌多样性发挥极为重要的作用。  相似文献   

5.
Shi ZY  Chen YL  Feng G  Liu RJ  Christie P  Li XL 《Mycorrhiza》2006,16(2):81-87
Species richness, spore density, frequency of occurrence, and relative abundance of AM fungi were determined in rhizosphere soil samples from nine tropical rainforest sites on Hainan island, south China, and the arbuscular mycorrhizal (AM) status of members of the Meliaceae was examined. All 28 plant taxa investigated (25 species including two varieties of 1 species and three varieties of another) were colonized by AM fungi. The mean proportion of root length colonized was 56% (range 10–95%). Vesicles were observed in 27 and hyphal coils in 26 of the 28 plant taxa. Mycorrhizas were of the Paris-type or intermediate-type, with no Arum-type mycorrhizas observed. Species richness of AM fungi varied from 3 to 15 and spore density from 46 to 1,499 per 100 g rhizosphere soil. Of 33 AM fungal taxa in five genera isolated and identified, 18 belonged to Glomus, 9 to Acaulospora, 1 to Entrophospora, 2 to Gigaspora, and 3 to Scutellospora. Acaulospora and Glomus were the dominant genera identified. Glomus claroideum was the taxon most commonly isolated, with a frequency of occurrence of 56.5% and relative abundance of 10.4%. A positive correlation was found between percentage of root length colonization and species richness. However, there was no correlation between spore density and percentage of root length colonized by AM fungi.  相似文献   

6.
我国洛阳与菏泽牡丹主栽园区AM真菌多样性研究   总被引:4,自引:1,他引:3  
为探明我国特有花卉牡丹 (Paeonia suffruticosa) 根围内的丛枝菌根(AM)真菌资源状况, 作者对河南省洛阳市与山东省菏泽市牡丹主产区土壤中的AM真菌进行了调查。共分离到AM真菌5属35 种, 其中球囊霉属(Glomus)在各采样点相对多度最高, 其次是无梗囊霉属(Acaulospora)。两地土壤中AM真菌种的丰度、孢子密度和物种多样性指数等存在差异: 菏泽赵楼牡丹园AM真菌种的孢子密度最高,而其种的丰度最低; 洛阳矬里牡丹种苗基地的孢子密度最低; 菏泽种苗基地的Shannon-Wiener指数显著高于其他样地。地球囊霉(Glomus geosporum)是洛阳王城公园和菏泽赵楼牡丹园的优势种; 缩球囊霉(Glomus constrictum)为洛阳土桥花木基地、洛阳牡丹园、菏泽牡丹种苗基地和菏泽赵楼牡丹园的优势种。本研究结果表明我国牡丹主栽园区AM真菌具有丰富的多样性。  相似文献   

7.
Zhang Y  Guo LD  Liu RJ 《Mycorrhiza》2004,14(1):25-30
The colonization and diversity of arbuscular mycorrhizal (AM) fungi associated with common pteridophytes were investigated in Dujiangyan, southwest China. Of the 34 species of ferns from 16 families collected, 31 were colonized by AM fungi. The mean percentage root length colonized was 15%, ranging from 0 to 47%. Nineteen species formed Paris-type and 10 intermediate-type AM. In two ferns, only rare intercellular non-septate hyphae or vesicles were observed in the roots and AM type could not be determined. Of the 40 AM fungal taxa belonging to five genera isolated from rooting-zone soils, 32 belonged to Glomus, five to Acaulospora, one to Archaeospora, one to Entrophospora, and one to Gigaspora. Acaulospora and Glomus were the dominant genera and Glomus versiforme was the most common species. The average AM spore density was 213 per 100 g air-dried soil and the average species richness was 3.7 AM species per soil sample. There was no correlation between spore density and percentage root length colonized by AM fungi.  相似文献   

8.
This study sought to investigate the effect of sulfur levels on changes in the fungal community composition of arbuscular mycorrhizae (AM) at the pod-setting stage and the relationship between the amount of applied sulfur and AM fungal diversity in different soybean cultivars. The objective of the research was to determine the optimal sulfur application level for different soybean cultivars and to improve soybean yield and quality from the perspective of AM fungal diversity. Three soybean cultivars, Heinong 44, Heinong 48, and Heinong 37, were selected as study materials. In addition to 0.033?g each of N, P2O5 and K2O per kg of soil, 0, 0.02, 0.04, or 0.06?g of elemental sulfur was applied to each kg of soil for the four treatment groups, S1, S2, S3, and S4, respectively. The AM fungal community structure was analyzed in the soil and root of different soybean cultivars using the PCR-DGGE technology. The results indicated a significant effect of sulfur on the AM fungal community structure in the roots and rhizospheric soil of different soybean cultivars. The three soybean cultivars in group S2 exhibited the highest diversity in AM fungus. Significant changes in the dominant fungal species were observed in the DGGE fingerprints of each sample, and Glomus, Funneliformis, Rhizophagus, and Claroideoglomus fungi were the dominant species of AM fungus in the roots and soil of soybean. The application of an appropriate amount of sulfur improved the diversity of AM fungi in roots and rhizospheric soil of different soybean cultivars.  相似文献   

9.
西双版纳地区龙脑香科植物AM真菌的初步研究   总被引:6,自引:0,他引:6       下载免费PDF全文
 对云南省西双版纳地区17种龙脑香科树种根系丛枝菌根(Arbuscular mycorrhiza, AM)真菌的定居情况进行了调查,并对根围土壤中AM真菌进行了分离和鉴定。结果表明,调查根样均有不同程度的菌根感染,感染率最高可达40%,调查揭示了西双版纳地区龙脑香科植物在自然条件下可形成丛枝菌根。初步从龙脑香科植物根际土壤中分离、鉴定出32种AM真菌,隶属于无梗囊霉属(Acaulospora)、球囊霉属(Glomus)、原囊霉属(Achaeospora)、拟球囊霉属(Paraglomus)和盾巨孢囊霉属(Scutellospora),其中,无梗囊霉属和球囊霉属真菌为西双版纳地区龙脑香科植物AM真菌优势类群。  相似文献   

10.
Male and female plants of dioecious species often differ in their resource demands and this has been linked to secondary sexual dimorphism, including sex‐specific interactions with other organisms such as herbivores and pollinators. However, little is known about the interaction between dioecious plants and fungal root endophytes. Plants may be simultaneously colonised by arbuscular mycorrhizal (AM) and dark septate (DS) fungi. While it is well established that AM mutualism involves reciprocal transfer of photosynthates and mineral nutrients between roots of host plants and these fungi, the role of DS fungi remains controversial. Here, we report the temporal and spatial variation in AM and DS fungi in female, male and non‐reproductive Antennaria dioica plants in three natural populations in Finland during flowering and after seed production. Females had higher colonisation by AM fungi, but lower colonisation by DS fungi than male and non‐reproductive plants. The higher AM colonisation was observed during flowering, and this difference varied among populations. Our results suggest that females and males of A. dioica interact with AM and DS fungi differently and that this relationship is dependent on soil fertility.  相似文献   

11.
 Ectomycorrhizas (EcM) and arbuscular mycorrhizas (AM) were screened for in saplings of 14 EcM tree species from the N'Dupé and Korup National Park rainforests, SW Cameroon, belonging to Caesalpiniaceae and Uapacaceae. The pattern of EcM and AM colonisation of a dual mycorrhizal species from this rainforest (Uapaca staudtii, Uapacaceae) was compared with dual EcM/AM colonisation of Leptospermum scoparium (Myrtaceae) from New Zealand. Both species were collected in a range of habitats. EcM and AM colonisation differed among species in the Korup National Park rainforest: 12 species belonging to the Caesalpiniaceae (Amherstieae) were consistently EcM, and AM structures occurred occasionally in six of them; two other species belonging to Caesalpiniaceae (Afzelia bipindensis) and Uapacaceae (U. staudtii) were dual mycorrhizal with variable levels of colonisation by both EcM and AM fungi. EcM and AM dual colonisation varied with both habitat and identity of the partners. The presence of EcM fungi in most of the root samples of U. staudtii and a negative relationship between AM and EcM colonisation within the same root system suggested a greater EcM affinity of this species. In contrast, most root samples of L. scoparium were colonised by AM, but only a few by EcM. Genuine dual EcM/AM associations in root samples of U. staudtii where the two mycorrhizal types co-occurred could be attributed to an AM-EcM succession. However, differences between predicted and observed frequencies of genuine dual EcM/AM associations in several samples of both U. staudtii and L. scoparium indicated that other factors influenced dual EcM/AM associations. The results of this study showed the importance of the identity of the host species in determining the pattern of dual EcM and AM colonisation. Accepted: 18 September 1998  相似文献   

12.
龙脑香科植物对丛枝菌根真菌的影响   总被引:2,自引:0,他引:2  
在天然林地和温室盆栽条件下,比较研究了龙脑香科植物对丛枝菌根(Arbuscular mycorrhizas,AM)真菌孢子密度、相对多度、频度、属的组成、丰度和侵染状况等方面的影响.结果表明,用坡垒作盆栽寄主加富培养后,菌根侵染率、泡囊、丛枝和侵入点都低于原采样植物,以原坡垒土壤中栽植苗木的侵染率为最高,可达20.3%;而以望天树根围土壤栽植的苗木为最低,仅为10.6%;坡垒还不同程度地改变了原采样植物根围土壤中AM真菌孢子的密度、相对多度、频度、属的组成、丰度等.在4种土壤中,栽植坡垒苗木后,AM真菌的孢子密度都有不同程度的增长.采用与原采样相同种类的植物作为AM真菌加富培养的寄主更有利于促进AM真菌的生长发育、保持AM的多样性.  相似文献   

13.
在对西藏高原北部针茅草地根围土壤中的丛枝菌根(AM)真菌种类分离鉴定基础上,研究了藏北针茅草地的土壤质地、pH、有机质和有效磷含量对AM真菌孢子密度、分离频度、相对多度、重要值、物种多样性指数和均匀度的影响.结果表明: 针茅草地根围土壤中共分离鉴定出AM真菌3属15种,其中,球囊霉属9种、无梗囊霉属6种、盾巨孢囊霉属1种.球囊霉属和无梗囊霉属为藏北针茅草地AM真菌的优势属;近明球囊霉和光壁无梗囊霉为藏北高寒草原针茅属植物根围AM真菌的优势种.不同质地土壤中AM真菌孢子密度、分离频度、相对多度和重要值均表现出球囊霉属>无梗囊霉属>盾巨孢囊霉属的趋势;土壤pH值对AM真菌种群组成无明显影响,球囊霉属和无梗囊霉属真菌分离频度、相对多度和重要值随土壤pH升高而增加,盾巨孢囊霉属则呈现相反趋势;不同土壤有机质含量范围内,AM真菌孢子密度等各项指标均呈球囊霉属>无梗囊霉属>盾巨孢囊霉属,而AM真菌属的分布没有明显规律;土壤有效磷含量对AM真菌种丰度和孢子密度影响较小.研究区域内AM真菌物种多样性指数和均匀度随着土壤有效磷含量升高而增加.  相似文献   

14.
林火对植物根围丛枝菌根真菌多样性的影响   总被引:1,自引:0,他引:1  
孙龙燕  李士美  李伟  郭绍霞 《生态学报》2016,36(10):2833-2841
林火是森林生态系统的一种主要干扰因子,以青岛市三标山林火迹地为研究对象,采集荆条(Vitex negundo)、胡枝子(Lespedeza bicolor)、花木蓝(Indigofera kirilowii)、青花椒(Zanthoxylum schinifolium)和野青茅(Deyeuxia arundinacea)5种优势植物根围土壤,研究不同林火强度对丛枝菌根(AM)真菌多样性的影响。结果表明,AM真菌侵染率和孢子密度随火灾强度的加强而降低;非过火区植物根围土壤中,分离鉴定出AM真菌3属11种,轻度过火区分离鉴定出AM真菌3属10种,中度过火区分离鉴定出AM真菌3属9种,重度过火区分离鉴定出AM真菌3属8种。过火区AM真菌种丰度低于非过火区。过火区和非过火区AM真菌的重要值和优势种不同,非过火区植物根围的优势种是地球囊霉(Glomus geosporum)、台湾球囊霉(G.taiwanensis)、分支巨孢囊霉(Gigaspora ramisporophora)、极大巨孢囊霉(Gi.gigantean)、福摩萨球囊霉(G.formosanum)、悬钩子球囊霉(G.rubiforme)、柯氏无梗囊霉(Acaulospora koskei)和松蜜无梗囊霉(A.thomii);轻度过火区植物根围的优势种是地球囊霉和台湾球囊霉;中度过火区的是台湾球囊霉和地球囊霉(野青茅除外);重度过火区植物根围的优势种是地球囊霉。不同强度的过火区对AM真菌群落组成有不同程度的影响。认为林火降低植物根围土壤中AM真菌多样性。  相似文献   

15.
Arbuscular mycorrhizal (AM) fungi naturally colonize grapevines in California vineyards. Weed control and cover cropping may affect AM fungi directly, through destruction of extraradical hyphae by soil disruption, or indirectly, through effects on populations of mycorrhizal weeds and cover crops. We examined the effects of weed control (cultivation, post-emergence herbicides, pre-emergence herbicides) and cover crops (Secale cereale cv. Merced rye, × Triticosecale cv.Trios 102) on AM fungi in a Central Coast vineyard. Seasonal changes in grapevine mycorrhizal colonization differed among weed control treatments, but did not correspond with seasonal changes in total weed frequency. Differences in grapevine colonization among weed control treatments may be due to differences in mycorrhizal status and/or AM fungal species composition among dominant weed species. Cover crops had no effect on grapevine mycorrhizal colonization, despite higher spring spore populations in cover cropped middles compared to bare middles. Cover crops were mycorrhizal and shared four AM fungal species (Glomus aggregatum, G. etunicatum, G. mosseae, G. scintillans) in common with grapevines. Lack of contact between grapevine roots and cover crop roots may have prevented grapevines from accessing higher spore populations in the middles.  相似文献   

16.
A study was conducted to establish whether the wild thyme [Thymus polytrichus A. Kerner ex Borbás ssp. britannicus (Ronn.) Kerguelen (Lamiaceae)] growing in the metal-contaminated soils along the River South Tyne, United Kingdom, is colonised by arbuscular mycorrhizal (AM) fungi, and whether the degree of colonisation increases (perhaps suggesting increasing mycorrhizal dependence) or decreases (indicating possible inhibition of AM growth) with increasing degree of soil contamination. Seasonal changes in AM colonisation were also assessed. The AM fungal communities colonising T. polytrichus were also investigated, using the polymerase chain reaction with restriction fragment length polymorphism and sequencing of fungal DNA to establish whether AM species richness varied between sites, and whether fungal ecotypes specific to sites with different amounts of metal contamination could be identified. All plants examined were heavily colonised by AM fungi, and mean percentage root length colonised did not increase significantly with increasing soil metal contamination. However, AM vesicle abundance (percentage of mycorrhizal root length containing vesicles) at the most contaminated site was significantly greater than at the other sites. No significant seasonal variation in degree of colonisation or vesicle abundance was found. Glomus was the predominant AM genus detected at all sites. The number of AM genotypes colonising T. polytrichus roots was similar at all sites but, although some were common to all sites, certain strains appeared to be specific to either the most- or the least-contaminated site. This variation in species may account for the difference in vesicle abundance between sites. The consistently heavy AM colonisation of T. polytrichus found suggests that these fungi are not inhibited by soil heavy metals at these sites, and that the host derives some benefit from its AM symbiont.  相似文献   

17.
蒙古沙冬青伴生植物AM真菌的空间分布   总被引:1,自引:0,他引:1  
进一步探究荒漠植物与AM(arbuscular mycorrhiza)真菌共生关系及其生态适应性,为以蒙古沙冬青为建群种适生区的植被恢复与生态改良提供依据。于2013年6月在内蒙古荒漠带选取以蒙古沙冬青为建群种的3个样地乌海、磴口和阿拉善,从每个样地选择2种主要伴生植物,按0—10、10—20、20—30、30—40、40—50 cm共5个土层采集土样和根样,研究了蒙古沙冬青伴生植物AM真菌空间分布及其与土壤因子的关系。从梭梭(Haloxylon ammodendron)、油蒿(Artemisia ordosica)、柠条锦鸡儿(Caragana korshinskii)和蒙古扁桃(Amygdalus mongolica)4种伴生植物根围土壤共分离鉴定4属25种AM真菌,其中球囊霉属(Glomus)14种,无梗囊霉属(Acaulospora)7种,管柄囊霉属(Funneliformis)3种,盾巨孢囊霉属(Scutellospora)1种,优势菌种为网状球囊霉(Glomus reticulatum),AM真菌属种分布具有不均衡性和地域性。4种伴生植物根系均能与AM真菌形成I-型(intermediate type)丛枝菌根,其共生程度和定殖规律具有明显空间异质性。AM真菌种数随土层深度增加而下降。AM真菌最大定殖率在10—30 cm土层,最大孢子密度在10—20 cm土层。相关性分析表明,AM真菌菌丝与土壤有机C极显著正相关(P0.01),与易提取球囊霉素(EEG)显著负相关(P0.05);孢子密度与有机C、碱性磷酸酶极显著负相关(P0.01),与碱解N极显著正相关(P0.01)。主成分分析表明,土壤有效P、酸性磷酸酶、碱性磷酸酶和总球囊霉素(TEG)等土壤因子能综合反映内蒙古荒漠带营养状况。TEG和EEG平均含量分别为4.76 mg/g和1.62 mg/g,占土壤有机C平均含量为61.26%和20.8%,说明在贫瘠荒漠环境中球囊霉素是土壤有机碳库重要来源和组成部分。  相似文献   

18.
Arbuscular mycorrhizal fungi (AMF) colonisation of plant root facilitates the absorption of nutrients such as phosphorus (P) and enhances plant biotic and abiotic resistance generally. However, arbuscular mycorrhiza (AM) colonisation decreases with application of chemical fertiliser. Here, we investigated whether AMF inoculation in nurseries would facilitate AM colonisation and take physiological and ecological functions in watermelon (Citrullus lanatus) in the field. Pot experiments were carried out to study the change of AMF colonised seedling on physiology and gene expression in nursery site. Field experiments were performed to investigate the effect of nursery AMF inoculation on yield, quality and disease resistance of watermelon in the field. The results showed that nursery‐inoculated seedlings produced more dry matter and root surface area than non‐inoculated seedlings. Expression of the secretory purple acid phosphatase (PAP) genes ClaPAP10 and ClaPAP26 was up‐regulated following AMF colonisation. Accordingly, acid phosphatase activities at the root surface and P concentrations in seedling were enhanced. After transplantation to the field, the shoot dry matter and P concentration in old stem were higher in the nursery AMF inoculated seedlings than that in non‐AMF inoculated seedling. AMF inoculation also induced increase of yields and decrease of wilt disease indexes and soluble sugar content. In addition, acid phosphatase activities and AMF spore densities were increased by nursery‐inoculation in watermelon rhizosphere soil in the field. In conclusion, nursery colonisation AMF seedling enhanced watermelon growth and yield by improving the root growth and P acquisition in nursery cultivating stage, as well as optimised soil properties in the field. Nursery cultivation of watermelon seedling with AMF was an effective technique to reduce wilt disease in continuous cropped management in watermelon.  相似文献   

19.
The arbuscular mycorrhizal (AM) status and root phosphatase activities were studied in four vegetative Carica papaya L. varieties viz., CO-1, CO-2, Honey Dew and Washington. Standard techniques were used to ascertain information on spore density and species diversity of AM fungi. Although in case of estimation of root colonization and root phosphatase activities, the existing methods were slightly modified. Root colonization and spore density of AM fungi along with root phosphatase (acid and alkaline) activities varied significantly in four papaya varieties. The present study recorded higher acid root phosphatase activity when compared with alkaline root phosphatase activity under P-deficient, acidic soil conditions. The present study revealed that the root colonization of AM fungi influenced acid root phosphatase activity positively and significantly under P-deficient, acidic soil conditions. A total of 11 species of AM fungi belonging to five genera viz., Acaulospora, Dentiscutata, Gigaspora, Glomus and Racocetra were recovered from the rhizosphere of four papaya varieties.  相似文献   

20.
We examined arbuscular mycorrhizal (AM) and dark septate endophyte (DSE) fungal association in 50 south Indian grasses from four different sites. AM fungal diversity was also compared among the different sites. Forty-four of the 50 grasses examined had AM association and dual association with DSE fungi occurred in 25 grasses. We report for the first time AM and DSE fungal status in 23 and 27 grasses respectively. Arum-type AM morphology was the dominant occurring in 21 grasses with typical Paris-type colonization occurring in 6 grasses. AM morphology is reported for the first time in 35 grasses. Over the different sites, spore density in the soil ranged from 5–22 per 100 g air-dried soil. Spores of 11 AM fungal taxa were isolated from the soil samples of grasses of which nine belonged to Glomus, one to Acaulospora and one to Scutellospora. No significant relationship existed between AM fungal colonization and spore numbers. Species richness was high in site II and Glomus aggregatum, Glomus viscosum and Glomus mosseae were most frequent species at different sites. Overall species diversity indices (Simpson index, Shannon-Weaver index, species equitability index) differed significantly between sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号