首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impact of initial density of cowpea aphid Aphis craccivora Koch (Aphididae) at infestation on the growth and yield of aphid-susceptible cowpea cultivar ICV-1 and aphid-resistant cultivar ICV-12, was investigated. Plants at the seedling, flowering and podding stages of development were infested with five aphid densities consisting of 0, 2, 5, 10 and. 20 aphids per plant and maintained for 22 days. Extended leaf heights of plants and aphid counts were recorded at 7, 12, 17 and 22 days after infestation. Two crop growth parameters (biomass duration and leaf area duration), and two plant yield parameters (number of pods per plant and number of seeds per pod) were recorded. Due to the occurrence of parthenogenesis and changes in population dynamics during infestations, aphid densities were converted into cumulative cowpea aphid-days, to facilitate data analyses and interpretation. ANOVA indicated that there was significant (P=s 0.05) difference in aphid-day accumulations between the two cultivars when infested at the seedling stage. Accumulations on cv. ICV-1 were greater than on cv. ICV-12. However, no such differences between the cultivars were detected when plants were infested at flowering and podding stages. Therefore, the seedling stage was used for comparisons of the impact of cowpea aphid-days on the growth and yield parameters of the two cultivars. At the 95% confidence intervals, ICV-12 plants were consistently taller than ICV-1 plants. Infested ICV-1 seedlings showed stunting and other growth deformities which were not observed on ICV-12 plants. Regression analyses revealed substantial reductions in the growth and yield parameters of ICV-1 relative to ICV-12. Overall, cowpea aphid-days provided a convenient and reliable method for studying the aphid population dynamics and the subsequent impact on plant growth and yield performance.  相似文献   

2.
To date, it has been thought that endophytic fungi in forbs infect the leaves of their hosts most commonly by air‐borne spores (termed “horizontal transmission”). Here, we show that vertical transmission from mother plant to offspring, via seeds, occurs in six forb species (Centaurea cyanus, C. nigra, Papaver rhoeas, Plantago lanceolata, Rumex acetosa, and Senecio vulgaris), suggesting that this may be a widespread phenomenon. Mature seeds were collected from field‐grown plants and endophytes isolated from these, and from subsequent cotyledons and true leaves of seedlings, grown in sterile conditions. Most seeds contain one species of fungus, although the identity of the endophyte differs between plant species. Strong evidence for vertical transmission was found for two endophyte species, Alternaria alternata and Cladosporium sphaerospermum. These fungi were recovered from within seeds, cotyledons, and true leaves, although the plant species they were associated with differed. Vertical transmission appears to be an imperfect process, and germination seems to present a bottleneck for fungal growth. We also found that A. alternata and C. sphaerospermum occur on, and within pollen grains, showing that endophyte transmission can be both within and between plant generations. Fungal growth with the pollen tube is likely to be the way in which endophytes enter the developing seed. The fact that true vertical transmission seems common suggests a more mutualistic association between these fungi and their hosts than has previously been thought, and possession of endophytes by seedling plants could have far‐reaching ecological consequences. Seedlings may have different growth rates and be better protected against herbivores and pathogens, dependent on the fungi that were present in the mother plant. This would represent a novel case of trans‐generational resistance in plants.  相似文献   

3.
Cowpea (Vigna unguiculata) is a nutritious legume crop for both its grain and leaves and comprises an important component in both human and animal nutrition. In Brazil, the use of mulch, such as coconut fiber, and organic fertilizers to maximize cowpea production offers an alternative to conventional mineral fertilizer strategies. Farming practices affect the diversity and activity of soil microorganisms, including arbuscular mycorrhizal fungi (AMF), important plant growth promoters for legumes. Our objective was to determine the effect of mulching with coconut fiber and manure on AMF diversity in cowpea. Soil samples were collected from an Experimental Station in Petrolina, NE Brazil: one Caatinga (natural dry‐forest vegetation), one fallow, and one experimental site established in the fallow area and cultivated with cowpea receiving cattle manure and four doses (0, 12, 24, 48 t/ha) of coconut fiber. AMF species richness, abundance, and diversity were evaluated. Sixty‐four AMF species were recorded, with predominance of Glomeraceae and Acaulosporaceae. Highest species richness (47) was recovered from the Caatinga but AMF diversity was also high in the cultivated sites, demonstrating the importance of mycotrophic plants, such as cowpea, in crop production systems for the maintenance of AMF species richness. Although several species, such as Claroideoglomus etunicatum, Acaulospora scrobiculata, Glomus trufemii, and Paraglomus pernambucanum, revealed pronounced sporulation patterns, even high doses of coconut fiber did not affect AMF richness and diversity, compared to fallow. Consequently, cultivation of mycotrophic plants and use of organic manures are able to maintain high AMF species richness in tropical agroecosystems.  相似文献   

4.
K. Clay 《Oecologia》1987,73(3):358-362
Summary Many grasses are infected by endophytic fungi that grow intercellularly in leaves, stems, and flowers and are transmitted maternally by hyphal growth into ovules and seeds. The seed biology and seedling growth of endophyte-infected and uninfected perennial ryegrass (Lolium perenne) and tall fescue (Festuca arundinacea) were investigated under controlled environmental conditions. The percentage of filled seeds produced by infected tall fescue was over twice of uninfected tall fescue; infected and uninfected perennial reegrass had similar percentages. Weights of seeds from infected and uninfected plants were similar in both species. Seeds from infected plants of both species exhibited a higher rate of germination than seeds from uninfected plants. Shoot growth in the greenhouse was compared by making three sequential harvests of above-ground plant parts from infected and uninfected plants of both species. Infected perennial ryegrass plants produced significantly more biomass and tillers than uninfected plants after 6 and 10 weeks of growth and significantly more biomass after 14 weeks of growth. Infected tall fescue plants produced significantly more biomass and tillers than uninfected plants after 10 and 14 weeks of growth. The physiological mechanism of enhancement of growth is not known. The results of this study suggest that infected plants may have a selective advantage in populations with uninfected members.  相似文献   

5.
Summary Pythium aphanidermatum (Edson) Fitzpatrick has been associated with seed decay and severe stem rot of cowpea in Nigeria. The symptoms produced on both seedlings and established cowpea plants are described. Fungus-induced losses of 0.94 per cent as seed decay and 11.10 per cent damage to adult cowpea plants have been recorded.  相似文献   

6.
Pea is highly susceptible to pre-emergence damping off and foot rot after emergence caused by Mycosphaerella pinodes in western Algerian regions. Rhizosphere Actinomycetes which were antagonistic to the growth of this pathogen were isolated from chellif soils. An isolate of Streptomyces St7c5 provided superior seed protection. An increased in both germination and plant growth were recorded following treatment of seeds with Streptomyces formulated with inert or organic charge when compared to control. Application of the antagonist agent resulted in a significant reduction of Mycosphaerella foot rot to 5% compared with untreated seeds (25%). Hence, the talc formulation of Streptomyces agent can be recommended as one of the crop strategies for the management of foot rotting and blight caused by Mycosphaerella pinodes.  相似文献   

7.
Phospholipase D (PLD), which hydrolyses phospholipids to produce phosphatidic acid, has been implicated in plant response to macronutrient availability in Arabidopsis. This study investigated the effect of increased PLDε expression on nitrogen utilization in Brassica napus to explore the application of PLDε manipulation to crop improvement. In addition, changes in membrane lipid species in response to nitrogen availability were determined in the oil seed crop. Multiple PLDε over expression (PLDεOE) lines displayed enhanced biomass accumulation under nitrogen‐deficient and nitrogen‐replete conditions. PLDεOE plants in the field produced more seeds than wild‐type plants but have no impact on seed oil content. Compared with wild‐type plants, PLDε‐OE plants were enhanced in nitrate transporter expression, uptake and reduction, whereas the activity of nitrite reductase was higher under nitrogen‐depleted, but not at nitrogen‐replete conditions. The level of nitrogen altered membrane glycerolipid metabolism, with greater impacts on young than mature leaves. The data indicate increased expression of PLDε has the potential to improve crop plant growth and production under nitrogen‐depleted and nitrogen‐replete conditions.  相似文献   

8.
Phytotoxins are secondary microbial metabolites that play an essential role in the development of disease symptoms induced by fungi on host plants. Although phytotoxins can cause extensive—and in some cases devastating—damage to agricultural crops, they can also represent an important tool to develop natural herbicides when produced by fungi and plants to inhibit the growth and spread of weeds. An alternative strategy to biologically control parasitic plants is based on the use of plant and fungal metabolites, which stimulate seed germination in the absence of the host plant. Nontoxigenic fungi also produce bioactive metabolites with potential fungicide and insecticide activity, and could be applied for crop protection. All these metabolites represent important tools to develop eco‐friendly pesticides. This review deals with the relationships between the biological activity of some phytotoxins, seed germination stimulants, fungicides and insecticides, and their stereochemistry. Chirality 25:59–78, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.

During a three-year pot experiment on potato cv. Mila, an effect of Globodera rostochiensis, occurring alone and in conjunction with saprophytic soil fungi (Aspergillus versicolor, Penicillium frequentans, P. verrucosum var. cyclopium, Stachybotrys chartarum, and Trichocladium asperum), on the processes of gaseous exchange (i.e. transpiration and assimilation). Relationships between these parameters and potato crop yield were established as well. It was found that the symptoms of the nematosis had been alleviated as a result of G. rostochiensis interaction with the saprophytes. The effect is connected with a reduction in G. rostochiensis cysts density in the presence of antagonistic saprophytes, which directly contributes to crop increase. The studies demonstrated that soil infection by G. rostochiensis alone, and by this nematode together with fungi, modifies the course of physiological processes in potato plants, which is expressed by reduced assimilation and transpiration intensity, as compared with the control. In the plants that grew on infected soil, assimilation and transpiration ran independently from each other, while positive correlations between the intensities of these processes were demonstrated in the control plants.  相似文献   

10.
We report here the development of transgenic tobacco plants with thaumatin gene of Thaumatococcus daniellii under the control of a strong constitutive promoter-CaMV 35S. Both polymerase chain reaction and genomic Southern analysis confirmed the integration of transgene. Transgenic plants exhibited enhanced resistance with delayed disease symptoms against fungal diseases caused by Pythium aphanidermatum and Rhizoctonia solani. The leaf extract from transgenic plants effectively inhibited the mycelial growth of these pathogenic fungi in vitro. The transgenic seeds exhibited higher germination percentage and seedling survival under salinity and PEG-mediated drought stress as compared to the untransformed controls. These observations suggest that thaumatin gene can confer tolerance to both fungal pathogens and abiotic stresses.  相似文献   

11.
Effect of entomopathogenic fungi formulations, Beauveria bassiana, Verticillium lecanii, Metarhizium anisopliae and Paecilomyces fumosoroseus, in controlling Liriomyza trifolii (Burg.) (Diptera: Agromyzidae), compared with botanical insecticide, Nimbecidine against L. trifolii was studied. Investigated compounds were applied twice at 15?days interval between sprays. The percentage reduction in larvae population and crop yield was estimated. Results showed that M. anisopliae was the most efficient compound among the other entomopathogenic fungi. Also, there were no significant differences between Nimbecidine and Bio-Magic (M. anisopliae). However, Nimbecidine and Bio-Magic caused 69.9 and 68.9% reduction in live larvae population after two applications. Also, Nimbecidine and Bio-Magic plots achieved 14.7 and 10.0?kg dry weight seeds/100 plants, respectively, compared to 5.7?kg dry weight seeds/100 plants in control plots. Nimbecidine and Bio-Magic were considered promising compounds in controlling L. trifolii and it could be exploitation in the integrated pest management programme of faba bean crop.  相似文献   

12.
Treating oat seeds not contaminated with any known pathogen of this crop with an organo-mercury preparation (Ceresan) increased seedling vigour only when they were grown in natural or simulated winter conditions with periods of frost. This beneficial effect on vigour was largely confined to seedlings and young plants. The fungicide protected the mesocotyls from contamination or invasion by certain soil-borne fungi normally regarded as saprophytes. Cylindrocarpon radicicola and Fusarium sambucinum were closely associated with discoloured mesocotyls bearing lesions and reduced vigour of untreated plants. Protection from such fungi enabled mesocotyls to grow thicker, and, when seedlings were grown in unsterilised soil and exposed to frost, reduced the number with lesions or discolouration. Thus the ability of the saprophytic soil-borne fungi to cause damage seems to be influenced by environmental conditions.  相似文献   

13.
Experiments were performed under greenhouse conditions to control bacterial wilt of potato (potato brown rot), caused by Ralstonia solanacearum race 3 biovar 2, Phylotype II, sequevar 1 using various biocontrol strategies. These strategies involved the use of the bacterial biocontrol agent Stenotrophomonas maltophilia (PD4560), in clay or sandy soils, planted with cowpea, maize or tomato which was grown separately in different pots in the inoculated soils. After harvest, the soil derived from each cultivated crop was inoculated with a mixture of three virulent R. solanacearum strains (K3, K10 and K16) to achieve a final concentration of 5 × 10cfu/g dry soil and used in pots under greenhouse conditions to cultivate potato seed tubers. The highest survival of S. maltophilia in soil (more than 160 days) coincided with a remarkable suppressing effect on disease incidence caused by R. solanacearum that expressed by wilt severity (up to 100% reduction), area under disease progress curve (AUDPC) (up to 99% reduction) and counts of the pathogen in soil (up to 75% reduction), rhizosphere (up to 80% reduction) and plant tissue (up to 97% reduction) of potato plants. The amino acid analysis of root exudates of crops under investigation revealed high percentages of asparagines (15.5–21%), glutamine (16–20%) and sulphur‐containing methionine (7–9%) in both of the cowpea and maize, respectively. In tomato root exudates, high percentages of arginine (around 26%) and lysine (around 23%) were detected. Methionine is known to favour the growth of S. maltophilia suggesting that especially cowpea and maize are suitable for crop rotation with potato and will enhance the sustainability of the biocontrol agent S. maltophilia.  相似文献   

14.
The inhibitory activity of five plant extracts viz. Artemisia absinthium L., Rumex obtusifolius L., Taraxacum officinale Weber ex Wiggers, Plantago lanceolata L. and Malva sylvestris L. were evaluated against the mycelial growth of three fungi Alternaria alternata (Fr.) Keissler, Penicillium expansum Link ex Thom. and Mucor piriformis Fisher that cause rot diseases in fruits and vegetables resulting in low yield and quality of fruits and vegetables. Results revealed that all the concentrations of plant extracts brought about significant inhibition in the mycelial growth of these pathogenic fungi. However, the highest concentration caused maximum inhibition in the mycelial growth followed by lower concentrations of plant extracts. The extract of A. absinthium leaves at highest concentration (S) proved highly effective in inhibiting the mycelial growth of all these pathogenic fungi followed by other plant extracts. These plants thus may have potential as the new natural fungicide for management of fungal rot diseases.  相似文献   

15.
Traveset  Anna  Bermejo  Teresa  Willson  Mary 《Plant Ecology》2001,155(1):29-34
Theidea that fecal material accompanying vertebrate-dispersed seeds at depositionsites plays an important role in enhancing seed germination and seedlingsurvival has, surprisingly, little empirical support. The present studyattemptsto experimentally test this hypothesis. We examined the effect that manurecomposition from brown bears (Ursus arctos), importantseeddispersers of Rubus spectabilis and Vacciniumovalifolium/alaskaense in the temperate rainforests of SoutheastAlaska, has on seedling emergence and growth of these two fleshy-fruitedspeciesin their natural habitat. The seeds of Rubus spectabilisshowed a significantly higher germination rate in manure composed of animalmaterial (mainly deer hair and bones) than in manure consisting of either fruitpulp or vegetation fiber and than in controls (potting soil with no manureadded). The final number of germinated Rubus seeds wassimilar between the animal material and the fruit pulp treatments, perhaps dueto similar water retention capacities, but was significantly higher than in thevegetation fiber treatment and the control. The germination patterns ofVaccinium seeds, in contrast, appeared to be unaffected bythe composition of manure in which they were embedded. Seedlings of bothspeciesgrew faster, and in the case of Rubus produced moreleaves,when manure consisted of animal material. A principal constituent of bone iscalcium phosphate, which may provide important minerals to growing plants.Manure containing vegetation fiber also enhanced seedling growth compared tomanure with fruit pulp or the control. For Rubus, manurewith fruit pulp did not affect seedling length significantly, although thenumber of leaves per seedling was greater in this treatment than in thecontrol. We conclude that the influence of frugivores on the final fate of seedsof fleshy-fruited plants appears to depend not only upon commonly consideredfactors such as distance of dispersal, treatment in the digestive tract, andlocation of deposition, but also on what material the dispersed seeds areembedded in, i.e., on what other food frugivores have consumed along with thefruits.  相似文献   

16.
In order to study the species composition of endophytes from wheat healthy plants in Buenos Aires Province (Argentina) and to determine their infection frequencies from leaves, stems, glumes and grains, wheat plants were collected from five cultivars at five growth stages from crop emergence to harvest. A total of 1,750 plant segments (leaves, stems, glumes and grains) were processed from the five wheat cultivars at five growth stages, and 722 isolates of endophytic fungi recovered were identified as 30 fungal genera. Alternaria alternata, Cladosporium herbarum, Epicoccum nigrum, Cryptococcus sp., Rhodotorula rubra, Penicillium sp. and Fusarium graminearum were the fungi that showed the highest colonization frequency (CF%) in all the tissues and organs analysed. The number of taxa isolated was greater in the leaves than those in the other organs analysed.  相似文献   

17.
Transmission of Pseudomonas avenae from rice seed to seedling and from plant to seed was shown. Based on experiments with unhulled and hulled seeds and on histopathological studies the location of the pathogen in seeds and the possible pathway of the pathogen from seed to seedling is suggested. Infected seeds were harvested from plants on which no symptoms were observed after the seedling stage. The experimental conditions indicated that the bacterium can be transmitted internally from plantto seed in latently infected plants.  相似文献   

18.
Several studies were carried out to investigate the soil microbial components involved in suppressing strawberry black rot root which occurs throughout the Italian strawberry growing region. Quantitative and qualitative evaluation of fungi involved in black root rot were combined with several soil microbial parameters involved in soil suppressiveness towards black root rot agents. The first survey, carried out in an intensively cultivated area of northern Italy, identified Rhizoctonia spp. as the main root pathogen together with several typical weak pathogens belonging to the well‐known black rot root complex of strawberry crop: Cylindrocarpondestructans, Fusarium oxysporum, F. solani, Pestalotia longiseta and others. The root colonisation frequency of strawberry plants increased strongly from autumn to spring at harvesting stage. Rhizoctonia spp. were the only pathogens which followed the rising trend of root colonisation with relative frequency; all the weak pathogens of strawberry black root rot complex did not vary their frequency. Only non‐pathogenic fungi decreased from autumn to spring when at least 60% of colonising fungi were represented by Rhizoctonia. These data suggested that the late vegetative stage was the best time to record the soil inoculum of root rot agents in strawberry using root infection frequency as a parameter of soil health. A further study was performed in two fields, chosen for their common soil texture and pH, but with significant differences in previous soil management: one (ALSIA) had been subjected to strawberry monoculture without organic input for several years; the other (CIF) has been managed according to a 4‐year crop rotation and high organic input. In this study Pythium artificially inoculated was adopted as an indicator for the behaviour of saprophytically living pathogens in bulk soil. Pythium showed a sharp, different response after inoculation in bulk soil from the two soil systems evaluated. Pythium was suppressed only in the CIF field where the highest levels of total fungi and fluorescent bacteria and highest variability were observed. The suppressiveness conditions towards Pythium, observed in the CIF and absent in the ALSIA field, corresponded with the root infection frequency recorded at the late vegetative stage on strawberry plants grown in the two fields: strawberry plants from the CIF field showed lower root colonisation frequency and higher variability than that recorded on those coming from the ALSIA field.  相似文献   

19.
In the past 10 years, there has been a substantial increase in reports, from growers and extension personnel, on bulb and root rots in lily (Lilium longiflorum) in Israel. Rot in these plants, when grown as cut flowers, caused serious economic damage expressed in reduction in yield and quality. In lily, the fungal pathogens involved in the rot were characterized as binucleate Rhizoctonia AG‐A, Rhizoctonia solani, Pythium oligandrum, Fusarium proliferatum (white and purple isolates) and F. oxysporum, using morphological and molecular criteria. These fungi were the prevalent pathogens in diseased plants collected from commercial greenhouses. Pathogenicity trials were conducted on lily bulbs and onion seedlings under controlled conditions in a greenhouse to complete Koch's postulates. Disease symptoms on lily were most severe in treatments inoculated with binucleate Rhizoctonia AG‐A, P. oligandrum and F. proliferatum. Plant height was lower in the above treatments compared with the control plants. The least aggressive fungus was R. solani. In artificial inoculations of onion, seedling survival was significantly affected by all fungi. The most pathogenic fungus was F. proliferatum w and the least were isolates of F. oxysporum (II and III). All fungi were successfully re‐isolated from the inoculated plants.  相似文献   

20.
【目的】转Bt基因和Bar基因植物的微生态效应是环境安全评价的重要因素,但关于Bt基因和Bar基因转化引起的水稻基因型改变对水稻不同组织生态位微生物群落组成和潜在功能的影响还无系统研究。【方法】以转Bt基因和Bar基因水稻T1C-1及其亲本对照Minghui63为研究对象,基于细菌16S rRNA基因和真菌ITS高通量测序技术,分析抽穗期T1C-1和Minghui63根际土壤微生物以及根、茎、叶内生菌的群落结构和潜在功能。【结果】细菌和真菌群落多样性在水稻不同组织生态位之间发生显著变化,地下部分组织生态位(根际土壤和根系)微生物多样性显著高于地上部分(叶和茎)。T1C-1显著影响叶片内生真菌的香农指数和辛普森指数,而对茎和根的内生菌以及根际土壤微生物多样性无显著影响。叶片内生真菌曲霉菌属(Aspergillus)和篮状菌属(Talaromyces)相对丰度在T1C-1显著增加,推测其参与碳素代谢、能量代谢和转录作用酶合成等过程。T1C-1和Minghui63微生物群落关联网络分析表明,T1C-1的平均聚类系数和平均度显著高于Minghui63,因而T1C-1提高了相关微生物群落网络复杂程度。通过重建未观测状态对群落进行系统发育研究(phylogenetic investigation of communities by reconstruction of unobserved states, PICRUSt2),对叶片内生真菌功能酶基因进行功能预测,相对于Minghui63,T1C-1显著改变了碳素代谢、脂类代谢和能量代谢等途径。【结论】相较于根际土壤,叶片内生真菌的群落组成和潜在功能对T1C-1更敏感。尽管如此,T1C-1并未导致叶片内生真菌的多样性指数降低。为了更准确地评估转基因植物的微生态效应,我们需要加强对不同组织生态位内生菌多样性的关注。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号