首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
White root rot is a serious soil‐borne disease of several woods and crops. Recently, white root rot of tea shrubs and ornamental trees has increasingly been observed in Taiwan. Thirty‐six isolates of white root rot pathogen, showing pear‐shape swellings adjacent to the hyphal septa, had been isolated from samples of white root rot collected from Taiwan for about 4 years. The pathogen isolates produced Dematophora anamorph. Conidia of the pathogen were one‐celled, hyaline, subglobal, with truncate base, 2.9–5.8 × 1.9–3.5 μm . Ascospore dimensions were in the range of 37.0–55.0 × 5.4–7.9 μm with a short, longitudinal and straight germ slit, which complied with Rosellinia necatrix. Based on molecular studies, the pathogen isolates collected from Taiwan except R701 were identified as R. nectarix. Isolate R701, which was relatively polymorphic in internal transcribed spacer DNA sequence than other isolates, was temporarily considered as R. necatrix‐related pathogenic Rosellinia spp. All the tea cuttings (Camellia sinensis) inoculated with isolates developed typical white root rot symptoms. Pathogenicity tests demonstrated the presence of variation in virulence among the Rosellina isolates. Most of the R. necatrix isolates originating from Acer morrisonense were less virulent than those that originated from other hosts. The pathogenic Rosellinia spp., isolate R701, was also highly virulent to both cultivars of tea cuttings.  相似文献   

2.
During 2013, a new root rot and leaf blight was detected on potted Pittosporum tenuifolium cv. ‘Silver Queen’ plants in a nursery located in the Catania province (eastern Sicily, Italy). On the basis of morphological and cultural features as well as internal transcribed spacer sequence data, the causal agent was identified as Pythium irregulare. Koch's postulates were fulfilled by pathogenicity tests carried out on potted P. tenuifolium cv. ‘Silver Queen’ plants. To our knowledge, this is the first detection of P. irregulare root rot and foliar blight disease on P. tenuifolium in Europe, and it is the first detection using molecular methods for this oomycete pathogen in Italy.  相似文献   

3.
Aim: To investigate the role of biofilm‐forming Paenibacillus polymyxa strains in controlling crown root rot disease. Methods and Results: Two plant growth‐promoting P. polymyxa strains were isolated from the peanut rhizosphere, from Aspergillus niger‐suppressive soils. The strains were tested, under greenhouse and field conditions for inhibition of the crown root rot pathogen of the peanut, as well as for biofilm formation in the peanut rhizosphere. The strains’ colonization and biofilm formation were further studied on roots of the model plant Arabidopsis thaliana and with solid surface assays. Their crown root rot inhibition performance was studied in field and pot experiments. The strains’ ability to form biofilms in gnotobiotic and soil systems was studied employing scanning electron microscope. Conclusion: Both strains were able to suppress the pathogen but the superior biofilm former offers significantly better protection against crown rot. Significance and Impact of the Study: The study highlights the importance of efficient rhizosphere colonization and biofilm formation in biocontrol.  相似文献   

4.
Pythium spiculum, a recently described new taxon, has been frequently isolated from declining Quercus rotundifolia and Q. suber roots and rhizosphere since 2003 in southern Iberia. In soils of declining Quercus forests this species was found as frequently as Phytophthora cinnamomi which, until now, was the only oomycete described as a Quercus root rot pathogen in the region. Inoculation tests conducted on young Q. rotundifolia plants showed that Py. spiculum is an aggressive root pathogen, although producing severities of symptoms significantly lower than those of P. cinnamomi. This new pathogen could play a role as decline factor in southern Iberia. Another new species, Py. sterilum, was also found to be pathogenic to Quercus roots but there are presently only few records of this organism isolated from rhizosphere of declining oaks in central Spain. More than an active decline factor, this species should be considered as a potential risk for Quercus forests.  相似文献   

5.
Microbial destabilization induced by pathogen infection has severely affected plant quality and output, such as Anoectochilus roxburghii, an economically important herb. Soft rot is the main disease that occurs during A. roxburghii culturing. However, the key members of pathogens and their interplay with non-detrimental microorganisms in diseased plants remain largely unsolved. Here, by utilizing a molecular ecological network approach, the interactions within bacterial communities in endophytic compartments and the surrounding soils during soft rot infection were investigated. Significant differences in bacterial diversity and community composition between healthy and diseased plants were observed, indicating that the endophytic communities were strongly influenced by pathogen invasion. Endophytic stem communities of the diseased plants were primarily derived from roots and the root endophytes were largely derived from rhizosphere soils, which depicts a possible pathogen migration image from soils to roots and finally the stems. Furthermore, interactions among microbial members indicated that pathogen invasion might be aided by positively correlated native microbial members, such as Enterobacter and Microbacterium, who may assist in colonization and multiplication through a mutualistic relationship in roots during the pathogen infection process. Our findings will help open new avenues for developing more accurate strategies for biological control of A. roxburghii bacterial soft rot disease.  相似文献   

6.
The ethanolic extracts of Cybopogon flexuosus and Ageratum conyzoides were tested at concentrations of 20, 40, 60, 80, 100 and 120?mg/ml for their in vitro fungicidal activities against five phytopathogenic fungi isolated from diseased watermelon fruits. The pathogens were Fusarium verticillioides, Aspergillus flavus, Botryodiplodia theobromae, Curvularia lunata and Alternaria cucumeria – Amans as confirmed by pathogenicity tests. All isolated pathogenic fungi were significantly (p?≥?0.05) highly pathogenic with the exception of A. cucumeria which had the least significant (p?≥?0.05) pathogenicity. The inhibitory effects of the extracts increased significantly (p?≥?0.05) with increase in concentrations. Some of the concentrations reduced the mycelial growth of the pathogens to a significant (p?≥?0.05) level. Very strong fungicidal activity was produced by extracts of A. conyzoides at 100?mg/ml against all the fungi. The inhibitory effects of C. flexuosus extracts at 20, 40 and 60?mg/ml were greater than those of C. flexuosus on A. flavus, F. verticillioides and A. cucumeria. The results of the investigation indicated that plant extracts possess antifungal activity that can be exploited as an ideal treatment for future plant disease management in the control of rot of water melon.  相似文献   

7.
Cochliophilin A (5-hydroxy-6,7-methylenedioxyflavone, 1), known as a host-specific attractant towards the zoospores of Aphanomyces cochlioides, a cause of root rot and damping-off diseases of Chenopodiaceae, was found in the Amaranthaceae plant, Celosia cristata, that is susceptible to the pathogen. The content of 1 in Celosia seedlings was quantified as 1.4 μg/g fresh weight. A new isoflavone, cristatein (5-hydroxy-6-hydroxymethyl-7,2′-dimethoxyisoflavone, 2), and five known flavonoids were also identified.  相似文献   

8.
A devastating disease of Abies procera grown as Christmas trees in a forest situation in Northern Germany is reported. Disease symptoms began as a root rot with disintegration of the cortex of lateral and main roots, followed by rapid chlorosis and necrosis of the foliage which had a striking copper colour on dead and dying trees. All disease symptoms were reproducible in pathogenicity tests with potted A. procera and Pseudotsuga menziesii plants infected with the isolated pathogen. The symptoms were indistinguishable from those reported for Phytophthora spp., but the pathogen was identified by microscopy and ITS sequence analysis as Pythium undulatum, which has not previously been described as a cause of root rot of coniferous trees in outdoor situations. This fungus was isolated also from roots of A. amabilis, A. grandis and P. menziesii showing similar below-and above-ground symptoms. Trees of varying ages (6–22 years) were affected. Abies nordmanniana appeared not to be susceptible to P. undulatum even when in direct root contact with diseased A. procera or A. amabilis. The establishment and spread of the disease between 1999 and 2002 appeared to be correlated with poor soil drainage following a series of unusually wet summers.  相似文献   

9.
Interactions between Glomus fasciculatum and Aphanomyces euteiches root rot of peas (Pisum sativum), were studied in pot experiments using irradiated soil. Infections with the pathogen were suppressed by VAM when plants were challenge inoculated after two weeks. No reduction of the pathogen was detected when the plants were inoculated with both fungi at the same time. The suppression of the pathogen, obtained by preinoculation with G. fasciculatum, was not reduced when the inoculum level of the pathogen was increased thirty times. The induced resistance to A. euteiches in VAM plants was partially a systemic effect. When root systems were split into two halves, one with mycorrhiza and one with A. euteiches, the oospore production was reduced in both root systems. The infection with the pathogen was only suppressed when both fungi were present in the same pot. The background for the induced resistance is discussed.  相似文献   

10.
Dry root rot caused by Rhizoctonia bataticola (Macrophomina phaseolina) of chickpea (Cicer arietinum L.) is gaining importance in the changed scenario of climate when growing crop is predisposed to high temperature and moisture stress. Being mainly a soil-inhabiting pathogen, many environmental and soil factors are responsible for the development of disease. No systematic research related to the biology, ecology and epidemiology of dry root rot in chickpea has been conducted so far. Research is needed to improve the identification and characterisation of variability within its epidemiological and pathological niches. Limited literature available on host plant resistance for dry root rot indicated lack of resistant sources for this disease. The present article discusses current status of the disease in the context of climate change and possible management options to alleviate the problem.  相似文献   

11.
Abstract The interaction between VA mycorrhiza Glomus mosseae (Gm), root rodulating symbiont Rhizobium leguminosarum (Rl), and root rot pathogen Fusarium solani (Fs) on the common bean (Phaseolus vulgaris) in relation to plant growth, nutrient uptake, disease severity, rhizosphere microbial biomass, and nutrient availability was investigated. Mycorrhizal plants yielded significantly greater plant biomass and mobilized more N and P uptake as compared to nonmycorrhizal plants or those infected with Fs. However, the mycorrhizal root colonizing ability, in presence of Fs, was reduced by 27%, whereas Rl enhanced it by 37%. The inoculation of Gm, besides decreasing propagule number of Fs in the rhizosphere, decreased pathogenic root rot by 34 to 77%. However, in the presence of Rl, Gm-inoculated plants were more tolerant of the fungal root pathogen. The Gm + Rl inoculated plants not only had maximum plant biomass and root nodulation, but also exhibited higher microbial biomass, alkaline phosphatase activity, and available phosphorus in their rhizosphere. Rl, alone or in association with Gm, caused the maximum increase in mineral nitrogen (NH4 + and NO3 ) content in soil. These results indicate that Gm has a vital role in inhibiting the root pathogen from invasion, more so in the presence of R. leguminosarum. Received: 26 February 1996; Revised: 12 July 1996  相似文献   

12.
[背景]根腐病在青稞生产中的危害日趋严重,阻碍了青稞根腐病的有效防控及青海省青稞产业的发展。然而人们对青稞根腐病的研究甚少且病原菌不详。[目的]明确青稞根腐病发生的危害、病原及致病性,为青稞根腐病的防控提供理论依据。[方法]采用常规的组织分离法分离青稞根腐病病原,通过形态鉴定与分子鉴定结合的方法对病原进行鉴定,并采用烧杯水琼脂法测定其致病性。[结果]共分离得到4株青稞根腐病病原菌,鉴定为Clonostachys rosea,有较强的致病性且致病性差异显著,经柯赫氏法则验证为青稞根腐病病原菌,并且是一种新的青稞根腐病病原,该类根腐病也是一种新的根腐类病害,在国内外属首次发现。[结论]Clonostachys rosea可引起青稞根腐病且致病性强。  相似文献   

13.
Several studies were carried out to investigate the soil microbial components involved in suppressing strawberry black rot root which occurs throughout the Italian strawberry growing region. Quantitative and qualitative evaluation of fungi involved in black root rot were combined with several soil microbial parameters involved in soil suppressiveness towards black root rot agents. The first survey, carried out in an intensively cultivated area of northern Italy, identified Rhizoctonia spp. as the main root pathogen together with several typical weak pathogens belonging to the well‐known black rot root complex of strawberry crop: Cylindrocarpondestructans, Fusarium oxysporum, F. solani, Pestalotia longiseta and others. The root colonisation frequency of strawberry plants increased strongly from autumn to spring at harvesting stage. Rhizoctonia spp. were the only pathogens which followed the rising trend of root colonisation with relative frequency; all the weak pathogens of strawberry black root rot complex did not vary their frequency. Only non‐pathogenic fungi decreased from autumn to spring when at least 60% of colonising fungi were represented by Rhizoctonia. These data suggested that the late vegetative stage was the best time to record the soil inoculum of root rot agents in strawberry using root infection frequency as a parameter of soil health. A further study was performed in two fields, chosen for their common soil texture and pH, but with significant differences in previous soil management: one (ALSIA) had been subjected to strawberry monoculture without organic input for several years; the other (CIF) has been managed according to a 4‐year crop rotation and high organic input. In this study Pythium artificially inoculated was adopted as an indicator for the behaviour of saprophytically living pathogens in bulk soil. Pythium showed a sharp, different response after inoculation in bulk soil from the two soil systems evaluated. Pythium was suppressed only in the CIF field where the highest levels of total fungi and fluorescent bacteria and highest variability were observed. The suppressiveness conditions towards Pythium, observed in the CIF and absent in the ALSIA field, corresponded with the root infection frequency recorded at the late vegetative stage on strawberry plants grown in the two fields: strawberry plants from the CIF field showed lower root colonisation frequency and higher variability than that recorded on those coming from the ALSIA field.  相似文献   

14.
The effect of seed‐borne pathogens of wheat and barley on crown and root rot diseases of seven barley cultivars (Jimah‐6, Jimah‐51, Jimah‐54, Jimah‐58, Omani, Beecher and Duraqi) and three wheat cultivars (Cooley, Maissani and Shawarir) was investigated. Bipolaris sorokiniana and Alternaria alternata were detected in seeds of at least eight cultivars, but Fusarium species in seeds of only two barley cultivars (Jimah‐54 and Jimah‐58). Crown rot and root rot symptoms developed on barley and wheat cultivars following germination of infected seeds in sterilized growing media. Bipolaris sorokiniana was the only pathogen consistently isolated from crowns and roots of the emerging seedlings. In addition, crown rot and root rot diseases of non‐inoculated barley cultivars correlated significantly with B. sorokiniana inoculum in seeds (P = 0.0019), but not with Fusarium or Alternaria (P > 0.05). These results indicate the role of seed‐borne inoculum of B. sorokiniana in development of crown rot and root rot diseases. Pathogenicity tests of B. sorokiniana isolates confirmed its role in inducing crown rot and root rot, with two wheat cultivars being more resistant to crown and root rots than most barley cultivars (P < 0.05). Barley cultivars also exhibited significant differences in resistance to crown rot (P < 0.05). In addition, black point disease symptoms were observed on seeds of three barley cultivars and were found to significantly affect seed germination and growth of some of these cultivars. This study confirms the role of seed‐borne inoculum of B. sorokiniana in crown and root rots of wheat and barley and is the first report in Oman of the association of B. sorokiniana with black point disease of barley.  相似文献   

15.
The soil-borne fungus, Fusarium solani f. sp. phaseoli, attacks roots and hypocotyls of bean (Phaseolus vulgaris) plants causing a devastating disease called root and foot rot. In a study of the host-pathogen relationship it was found that young bean roots, with the radicle just emerging, were highly tolerant to the pathogen, whereas older bean seedlings, with a fully developed root system, were completely susceptible. Investigations by low-temperature scanning electron microscopy demonstrated that significantly fewer spores and hyphae were present on the root surface of young bean seedlings as compared to older ones. A similar pattern of attachment was found when bean roots were inoculated with spores of F. solani f. sp. pisi, a related pathogen causing disease on peas but not on beans. Light microscopic studies showed that F. solani f. sp. pisi did not penetrate the root but rapidly formed thick-walled resting spores on the root surface. F. solani f. sp. phaseoli on the other hand quickly penetrated the root and formed an extensive network of fungal hyphae. These results demonstrate that the ability of fungal propagules to adhere to and to penetrate host tissues are two distinct processes. Furthermore, the data indicate that young bean roots lack a surface component necessary for attachment of fungal spores which may help explain their tolerance to Fusarium root rot.  相似文献   

16.
Plants can be infected by multiple pathogens concurrently in natural systems. However,pathogen–pathogen interactions have rarely been studied. In addition to the oomycete Phytophthora sojae, fungi such as Fusarium spp. also cause soybean root rot. In a 3-year field investigation, we discovered that P. sojae and Fusarium spp. frequently coexisted in diseased soybean roots. Out of 336 P. sojae–soybean–Fusarium combinations,more than 80% aggravated disease. Different Fusarium species all enhanced P...  相似文献   

17.
The study was undertaken to identify and characterize Pythium isolates associated with root rot disease of tobacco seedlings as a first step towards developing management strategies for the pathogen. A total of 85 Pythium isolates were collected from diseased tobacco seedlings during 2015–2016 tobacco growing season. The isolates were identified to species level using sequencing of the internal transcribed spacer region. Thereafter, a subset of the isolates was tested for sensitivity to the commonly used fungicides, metalaxyl, azoxystrobin and a combination of fenamidone/propamocarbby growing isolates on Potato Dextrose Agar plates amended with the fungicides. The sequence analysis of the ITS‐rDNA identified Pythium myriotylum as the dominant Pythium species associated with the root rot of tobacco seedlings in Zimbabwe. Pythium aphanidermatum and P. insidiosum were also identified albeit at lower frequencies. Phylogenetic analyses of the ITS region of the P. myriotylum isolates showed little sequence diversity giving rise to one distinct clade. The fungicide sensitivity tests showed that metalaxyl provided the best control of P. myriotylum in vitro, as compared to other fungicides. To the best of our knowledge, this is the first comprehensive study to determine and characterize Pythium species associated with root rot of tobacco in the float seedling production system in Zimbabwe.  相似文献   

18.
Since 2002 a severe root and stem disease of Dendrobium has occurred periodically each year in the plantations of Simao City, Yunnan Province, China. Symptoms included water‐soaked and brown lesions, and rot of tissues. Based on the morphological characteristics and the internal transcribed spacer‐1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2 and β‐tubulin gene sequences, the pathogen was identified as Pythium vexans de Bary. The pathogenicity of the fungus was confirmed by satisfying Koch’s postulates. This is the first world record of stem rot of Dendrobium caused by P. vexans.  相似文献   

19.
Abstract

The effect of endophytic Pseudomonas fluorescens isolates Endo2 and Endo35 on induced systemic disease protection against dry root rot of black gram (Vigna mungo L. Hepper) caused by Macrophomina phaseolina was investigated under glasshouse conditions. When the bacterized black gram plants were inoculated with dry root rot pathogen, the activities of peroxidase (PO), polyphenol oxidase (PPO), phenylalanine ammonia-lyase (PAL) were stimulated in addition to accumulation of phenolics and lignin. Activity of phenylalanine ammonia-lyase (PAL) reached the maximum 24 h after pathogen challenge inoculation, whereas the activities of PO and PPO reached the maximum at 72 h and 48 h, respectively. Isoform analysis revealed that a unique PPO3 isozyme was induced in bacterized black gram tissues inoculated with the pathogen. Phenolics were found to accumulate in bacterized black gram tissues challenged with M. phaseolina one day after pathogen challenge. The accumulation of phenolics reached maximum at the third day after pathogen inoculation. Similar observation was found in the lignin content of black gram plants. In untreated control plants, the accumulation of defence enzymes and chemicals started at the first day and drastically decreased 3 days after pathogen inoculation. These results suggest that induction of defense enzymes involved in phenylpropanoid pathway and accumulation of phenolics and PR-proteins might have contributed to restricting invasion of Macrophomina phaseolina in black gram roots.  相似文献   

20.
Incidence of root rot and foliar yellowing, rhizome rot, panicle wilt and stem rot diseases of small cardamom (Elettaria cardamomum Maton) are caused by Fusarium oxysporum Schlecht., and were surveyed in the high ranges of Idukki district, Kerala during 2010–2011. The diseases were noticed in different areas to varying degrees. Root rot was found to be most severe, followed by pseudostem rot, rhizome rot and panicle wilt. The Fusarium infections were prevalent throughout the year (January–December) and varied from 1.5 to 10.6%. Even though the pathogen was isolated from different plant parts, during pathogenicity studies, all the isolates could cross-infect other plant parts too. Twenty different isolates of F. oxysporum were obtained from diseased samples, and five morphologically distinct isolates were analysed with Randomly Amplified Polymorphic DNA (RAPD) markers to study the genetic variability, if any, among them. PCR amplification of total genomic DNA with random oligonucleotide primers generated unique banding patterns, depending upon primers and isolates. Nine oligunucleotide primers were selected for the RAPD assays, which resulted in 221 bands for the five isolates of F. oxysporum. The number of bands obtained was entered into an NTSYS, and the results showed moderate genetic variability among F. oxysporum isolates causing root rot, rhizome rot, panicle wilt and pseudostem rot, collected from different locations. The dendrogram of different isolates into groups resulted in one major cluster at 0.61 similarity index comprising of four isolates (CRT 3, CRR 3, CPW 2 and CSR 1) and one isolate (CRT 5) formed in a separate cluster. Among the five isolates of F. oxysporum, CRT 5 was entirely different from the other four isolates. The isolates also differ according to the geographical area, as revealed from the genetic variability observed in different root rot isolates (CRT 3 and CRT 5). It is inferred that despite moderate variability, F. oxysporum, infecting small cardamom in Idukki district of Kerala, consists of a single clonal lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号