首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequence analysis of plant disease resistance genes shows similarity among themselves, with the presence of conserved motifs common to the nucleotide‐binding site (NBS). Oligonucleotide degenerate primers designed from the conserved NBS motifs encoded by several plant disease resistance genes were used to amplify resistance gene analogues (RGAs) corresponding to the NBS sequences from the genomic DNA of various plant species. Using specific primers designed from the conserved NBS regions, 22 RGAs were cloned and sequenced from pearl millet (Pennisetum glaucum L. Br.). Phylogenetic analysis of the predicted amino acid sequences grouped the RGAs into nine distinct classes. GenBank database searches with the consensus protein sequences of each of the nine classes revealed their conserved NBS domains and similarity to other known R genes of various crop species. One RGA 213 was mapped onto LG1 and LG7 in the pearl millet linkage map. This is the first report of the isolation and characterization of RGAs from pearl millet, which will facilitate the improvement of marker‐assisted breeding strategies.  相似文献   

2.
Western white pine (Pinus monticola Dougl. ex. D. Don., WWP) shows genetic variation in disease resistance to white pine blister rust (Cronartium ribicola). Most plant disease resistance (R) genes encode proteins that belong to a superfamily with nucleotide-binding site domains (NBS) and C-terminal leucine-rich repeats (LRR). In this work a PCR strategy was used to clone R gene analogs (RGAs) from WWP using oligonucleotide primers based on the conserved sequence motifs in the NBS domain of angiosperm NBS-LRR genes. Sixty-seven NBS sequences were cloned from disease-resistant trees. BLAST searches in GenBank revealed that they shared significant identity to well-characterized R genes from angiosperms, including L and M genes from flax, the tobacco N gene and the soybean gene LM6. Sequence alignments revealed that the RGAs from WWP contained the conserved motifs identified in angiosperm NBS domains, especially those motifs specific for TIR-NBS-LRR proteins. Phylogenic analysis of plant R genes and RGAs indicated that all cloned WWP RGAs can be grouped into one major branch together with well-known R proteins carrying a TIR domain, suggesting they belong to the subfamily of TIR-NBS-LRR genes. In one phylogenic tree, WWP RGAs were further subdivided into fourteen clusters with an amino acid sequence identity threshold of 75%. cDNA cloning and RT-PCR analysis with gene-specific primers demonstrated that members of 10 of the 14 RGA classes were expressed in foliage tissues, suggesting that a large and diverse NBS-LRR gene family may be functional in conifers. These results provide evidence for the hypothesis that conifer RGAs share a common origin with R genes from angiosperms, and some of them may play important roles in defense mechanisms that confer disease resistance in western white pine. Ratios of non-synonymous to synonymous nucleotide substitutions (Ka/Ks) in the WWP NBS domains were greater than 1 or close to 1, indicating that diversifying selection and/or neutral selection operate on the NBS domains of the WWP RGA family.Communicated by R. Hagemann  相似文献   

3.
Most known plant disease-resistance genes (R genes) include in their encoded products domains such as a nucleotide-binding site (NBS) or leucine-rich repeats (LRRs). Sequences with unknown function, but encoding these conserved domains, have been defined as resistance gene analogues (RGAs). The conserved motifs within plant NBS domains make it possible to use degenerate primers and PCR to isolate RGAs. We used degenerate primers deduced from conserved motifs in the NBS domain of NBS-LRR resistance proteins to amplify genomic sequences from Lens species. Fragments from approximately 500-850 bp were obtained. The nucleotide sequence analysis of these fragments revealed 32 different RGA sequences in Lens species with a high similarity (up to 91%) to RGAs from other plants. The predicted amino acid sequences showed that lentil sequences contain all the conserved motifs (P-loop, kinase-2, kinase-3a, GLPL, and MHD) present in the majority of other known plant NBS-LRR resistance genes. Phylogenetic analyses grouped the Lens NBS sequences with the Toll and interleukin-1 receptor (TIR) subclass of NBS-LRR genes, as well as with RGA sequences isolated from other legume species. Using inverse PCR on one putative RGA of lentil, we were able to amplify the flanking regions of this sequence, which contained features found in R proteins.  相似文献   

4.
One of the important approaches for disease control in sugarcane is to develop a disease‐resistant variety; this may be accomplished through identification of resistance genes in sugarcane. In this study, PCR primers targeting the conserved motifs of the nucleotide‐binding site (NBS) class and kinase class of the resistance gene analogues (RGAs) were used to amplify the RGAs from a red rot‐resistant sugarcane cultivar (Saccharum spp. hybrid) HSF 240. Upon subcloning and sequencing, fifteen putative RGAs were identified. These RGAs shared 63–98% identity to the reported disease‐resistant genes in the NCBI GenBank database. Deduced amino acid sequences also showed the presence of expected conserved domains characteristic of RGAs. Phylogenetic analysis indicated that these RGAs clustered with R genes from other plant species. The findings will be useful for studying disease‐resistant genes in sugarcane.  相似文献   

5.
Recently, a number of disease-resistance genes related to a diverse range of pathogens were isolated from a wide variety of plant species. The majority of plant disease-resistance genes encoded a nucleotide-binding site (NBS) domain. According to the comparisons of the NBS domain of cloned R -genes, it has shown highly conserved amino acid motifs in this structure, which made it possible to isolate resistance gene analogs (RGAs) by PCR using degenerate primers. We have designed three pairs of degenerate primers based on two conserved motifs in the NBS domain of resistance proteins encoded by R -genes to amplify genomic sequences from ryegrass ( Lolium sp.). Sixteen NBS-like RGAs were isolated from turf and forage type grasses. The sequence analysis of these RGAs revealed that there existed a high similarity (up to 85%) between RGA sequences among ryegrass species and other plants. The alignment of the predicted amino acid sequences of RGAs showed that ryegrass RGAs contained four conserved motifs (P-Loop, kinase-2, kinase-3a, GLPL) present in other known plant NBS-leucine rich repeat resistance genes. These ryegrass RGAs all belonged to non-toll and interleukin-1 receptor subclass. Phylogenetic analysis of ryegrass RGAs and other cloned R -genes indicated that gene mutation was the predominant source of gene variations, and the sequence polymorphism was due to purifying selection rather than diversifying selection. We further analyzed the source of gene variation in other monocots, rice, barley, wheat, and maize based on the data published before. Our analysis indicated that the source of RGA diversity in these monocots was the same as in ryegrass. Thus, monocots were probably the same as dicots in the source of RGA diversity. Ryegrass RGAs in the present paper represented a large group of resistance gene homologs in monocots. We discussed the origin and the evolution of R -genes in grass species.  相似文献   

6.
为研究云南野生蔷薇属中的NBS类抗病基因,根据已知抗病基因NBS LRR序列中的保守区域设计简并引物,利用RT PCR技术从云南悬钩子蔷薇中进行体外扩增,获得了对应区域的cDNA片段,回收、克隆这些特异片段,测序分析,共得到4个含有NBS LRR保守结构域的抗病基因同源序列(RGAs),分别命名为AC9、AC39、AC50和AC68。它们与已报道的11个NBS类抗病基因相应区段的氨基酸序列相似性为5.4%~79.2%,其中这4个RGAs片段与Mi、RPS2、Pib和RPM1基因聚为一类。表明这4条RGAs序列可进一步用作悬钩子蔷薇抗病候选基因的分子筛选及遗传图谱的构建。  相似文献   

7.
Disease resistance and defence gene analog (RGA/DGA) sequences were isolated in cocoa using a PCR approach with degenerate primers designed from conserved domains of plant resistance and defence genes: the NBS (nucleotide binding site) motif present in a number of resistance genes such as the tobacco N, sub-domains of plant serine/threonine kinases such as the Pto tomato gene, and conserved domains of two defence gene families: pathogenesis-related proteins (PR) of classes 2 and 5. Nucleotide identity between thirty six sequences isolated from cocoa and known resistance or defence genes varied from 58 to 80%. Amino acid sequences translated from corresponding coding sequences produced sequences without stop codons, except for one NBS –like sequence. Most of the RGAs could be mapped on the cocoa genome and three clusters of genes could be observed : NBS-like sequences clustered in two regions located on chromosomes 7 and 10, Pto-like sequences mapped in five genome regions of which one, located on chromosome 4, corresponded to a cluster of five different sequences. PR2-like sequences mapped in two regions located on chromosome 5 and 9 respectively. An enrichment of the genetic map with microsatellite markers allowed us to identify several co-localisations of RGAs, DGAs and QTL for resistance to Phytophthora detected in several progenies, particularly on chromosome 4 where a cluster of Pto-like sequences and 4 QTL for resistance to Phytophthora were observed. Many other serious diseases affect cocoa and the candidate genes, isolated in this study, could be of broader interest in cocoa disease management.  相似文献   

8.
Using degenerate primers based on the conserved nucleotide binding site (NBS) and protein kinase domain (PKD), 100 resistance gene analogs (RGAs) were isolated from tobacco variety Nicotiana repanda. BLASTx search against the GenBank database revealed that 27 belong to the NBS class and 73 belong to the protein kinase (PK) class. Cluster analysis and multiple sequence alignment of the deduced protein sequences indicate that RGAs of the NBS class can be divided into two groups: toll/interleukin receptor (TIR) and non-TIR types. Both types possess 6 conserved motifs (P-loop, RNBS-A, Kinase-2, RNBS-B, RNBS-C, GLPL). Based on their sequence similarity, the tobacco RGAs of the PK class were assigned to 8 subclasses. We examined their expression after infection with either Tobacco mosaic virus (TMV) or the tobacco black shank pathogen (Phytophthora parasitica var. nicotianae). The expression levels of 4 RGAs of the PK class were significantly elevated by TMV and 1 RGA of the PK class and 3 RGAs of the NBS class were up-regulated by P. parasitica var. nicotianae. The expression of two RGAs of the PK class was induced by P. parasitica var. nicotianae. Infection by either TMV or P. parasitica var. nicotianae enhanced the expression of NtRGA2, a RGA of the PK class. The present study shows that RGAs are abundant in the tobacco genome and the identification of tobacco RGAs induced by pathogens should provide valuable information for cloning related resistance genes in tobacco.  相似文献   

9.
Plant disease resistance gene (R gene) and defense response gene encode some conserved motifs. In the present work, a PCR strategy was used to clone resistance gene analogs (RGAs) and defense gene analogs (DGAs) from Sea-island cotton variety Hai7124 using oligonucleotide primers based on the nucleotide-binding site (NBS) and serine/threonine kinase (STK) in the R-gene and pathogenesis-related proteins of class 2 (PR2) of defense response gene. 79 NBS sequences, 21 STK sequences and 11 DGAs were cloned from disease-resistance cotton. Phylogenic analysis of 79 NBS-RGAs and NBS-RGAs nucleotide sequences of cotton already deposited in GenBank identified one new sub-cluster. The deduced amino acid sequences of NBS-RGAs and STK-RGAs were divided into two distinct groups respectively: Toll/Interleukin-1 receptor (TIR) group and non-TIR group, A group and B group. The expression of RGAs and DGAs having consecutive open reading frame (ORF) was also investigated and it was found that 6 NBS-RGAs and 1 STK-RGA were induced, and 1 DGA was up-regulated by infection of Verticillium dahliae strain VD8. 4 TIR-NBS-RGAs and 4 non-TIR-NBS-RGAs were arbitrarily used as probes for Southern-blotting. There existed 2–10 blotted bands. In addition, since three non-TIR-NBS-RGAs have the same hybridization pattern, we conjecture that these three RGAs form a cluster distribution in the genome.  相似文献   

10.
The genes encoding the nucleotide-binding site (NBS) and leucine-rich repeat (LRR) motifs constitute a large gene family in plants and have attracted much interest, because most of the plant disease-resistance genes that have been cloned are from this gene family. In this study, degenerate oligonucleotide primers, designed on the basis of conserved regions of the NBS domains from known plant resistance genes, were used to isolate resistance gene analogs (RGAs) from cultivated and wild eggplants, i.e., S. melongena, S. aethiopicum gr. Gilo, S. linnaeanum, S. integrifolium, S. sisymbriifolium, and S. khasianum. Sequence analysis indicated that the cloned eggplant RGAs belong to the non-TIR–NBS–LRR type, which are very similar to the R genes or the RGAs identified in other plant species, especially Solanaceae plants, suggesting the existence of common ancestors. Wide genetic diversity of eggplant RGAs was observed both in interspecific and intraspecific sequences, and eight distinct families of eggplant RGAs were identified. Further studies revealed a high average ratio of synonymous to non-synonymous substitution and a low level of recombination. These results suggest that NBS-encoding sequences of RGAs in cultivated and wild eggplants are subject to gradual accumulation of mutations leading to purifying selection. This is the first report of NBS–LRR class RGAs in eggplants.  相似文献   

11.
Plant disease resistance gene (R gene) and defense response gene encode some conserved motifs. In the present work, a PCR strategy was used to clone resistance gene analogs (RGAs) and defense gene analogs (DGAs) from Sea-island cotton variety Hai7124 using oligonucleotide primers based on the nucleotide-binding site (NBS) and serine/threonine kinase (STK) in the R-gene and pathogenesis-related proteins of class 2 (PR2) of defense response gene. 79 NBS sequences, 21 STK sequences and 11 DGAs were cloned from disease-resistance cotton. Phylogenic analysis of 79 NBS-RGAs and NBS-RGAs nucleotide sequences of cotton already deposited in GenBank identified one new sub-cluster. The deduced amino acid sequences of NBS-RGAs and STK-RGAs were divided into two distinct groups respectively: Toll/Interleukin-1 receptor (TIR) group and non-TIR group, A group and B group. The expression of RGAs and DGAs having consecutive open reading frame (ORF) was also investigated and it was found that 6 NBS-RGAs and 1 STK-RGA were induced, and 1 DGA was up-regulated by infection of Verticillium dahliae strain VD8. 4 TIR-NBS-RGAs and 4 non-TIR-NBS-RGAs were arbitrarily used as probes for Southern-blotting. There existed 2–10 blotted bands. In addition, since three non-TIR-NBS-RGAs have the same hybridization pattern, we conjecture that these three RGAs form a cluster distribution in the genome.  相似文献   

12.
Western white pine ( Pinus monticola Dougl. ex. D. Don., WWP) shows genetic variation in disease resistance to white pine blister rust ( Cronartium ribicola). Most plant disease resistance (R) genes encode proteins that belong to a superfamily with nucleotide-binding site domains (NBS) and C-terminal leucine-rich repeats (LRR). In this work a PCR strategy was used to clone R gene analogs (RGAs) from WWP using oligonucleotide primers based on the conserved sequence motifs in the NBS domain of angiosperm NBS-LRR genes. Sixty-seven NBS sequences were cloned from disease-resistant trees. BLAST searches in GenBank revealed that they shared significant identity to well-characterized R genes from angiosperms, including L and M genes from flax, the tobacco N gene and the soybean gene LM6. Sequence alignments revealed that the RGAs from WWP contained the conserved motifs identified in angiosperm NBS domains, especially those motifs specific for TIR-NBS-LRR proteins. Phylogenic analysis of plant R genes and RGAs indicated that all cloned WWP RGAs can be grouped into one major branch together with well-known R proteins carrying a TIR domain, suggesting they belong to the subfamily of TIR-NBS-LRR genes. In one phylogenic tree, WWP RGAs were further subdivided into fourteen clusters with an amino acid sequence identity threshold of 75%. cDNA cloning and RT-PCR analysis with gene-specific primers demonstrated that members of 10 of the 14 RGA classes were expressed in foliage tissues, suggesting that a large and diverse NBS-LRR gene family may be functional in conifers. These results provide evidence for the hypothesis that conifer RGAs share a common origin with R genes from angiosperms, and some of them may play important roles in defense mechanisms that confer disease resistance in western white pine. Ratios of non-synonymous to synonymous nucleotide substitutions (Ka/Ks) in the WWP NBS domains were greater than 1 or close to 1, indicating that diversifying selection and/or neutral selection operate on the NBS domains of the WWP RGA family.  相似文献   

13.
NBS类植物抗病基因保守结构域的克隆为利用简并引物扩增抗病基因同源序列提供了可能.根据抗病基因Gro1-4、Gpa2、N等的P-loop和GLPL保守结构域设计简并引物,分离甘薯近缘野生种三浅裂野牵牛NBS类型抗病基因同源序列,共获得6条相关序列,核苷酸序列的相似性为48%~97%,推测氨基酸序列的相似性在25.2%~95.1%之间.系统进化分析表明,6条三浅裂野牵牛RGA序列可分为2个不同的类群:TIR-NBS和non-TIR-NBS.三浅裂野牵牛RGA序列与源自甘薯的RGA序列有很高的相似性,这在一定程度上反映了三浅裂野牵牛与甘薯之间的亲缘关系.分离的6条RGA序列分别命名为ItRGA1~ItRGA6,GenBank登录号分别为DQ849027~DQ849032.  相似文献   

14.
Chen G  Pan D  Zhou Y  Lin S  Ke X 《Journal of biosciences》2007,32(4):713-721
Most plant disease-resistance genes (R-genes) isolated so far encode proteins with a nucleotide binding site (NBS) domain and belong to a superfamily. NBS domains related to R-genes show a highly conserved backbone of an amino acid motif, which makes it possible to isolate resistance gene analogues (RGAs) by degenerate primers. Degenerate primers based on the conserved motif (P-loop and GLPL) of the NBS domain from R -genes were used to isolate RGAs from the genomic DNA of sweet potato cultivar Qingnong no.2. Five distinct clusters of RGAs (22 sequences) with the characteristic NBS representing a highly diverse sample were identified in sweet potato genomic DNA. Sequence identity among the 22 RGA nucleotide sequences ranged from 41.2% to 99.4%, while the deduced amino acid sequence identity from the 22 RGAs ranged from 20.6%to 100%. The analysis of sweet potato RGA sequences suggested mutation as the primary source of diversity. The phylogenetic analyses for RGA nucleotide sequences and deduced amino acids showed that RGAs from sweet potato were classified into two distinct groups--toll and interleukin receptor-1 (TIR)-NBS-LRR and non-TIR-NBS-LRR. The high degree of similarity between sweet potato RGAs and NBS sequences derived from R-genes cloned from tomato, tobacco, flax and potato suggest an ancestral relationship. Further studies showed that the ratio of non-synonymous to synonymous substitution within families was low. These data obtained from sweet potato suggest that the evolution of NBS-encoding sequences in sweet potato occur by the gradual accumulation of mutations leading to purifying selection and slow rates of divergence within distinct R-gene families.  相似文献   

15.
Molecular characterization of NBS-LRR-RGAs in the rose genome   总被引:2,自引:0,他引:2  
To isolate resistance gene analogues (RGAs) from roses we used various degenerate oligonucleotide primers targeting conserved motifs within the NBS region of nucleotide binding site (NBS)-leucine-rich repeat (LRR) resistance genes. A large RGA sublibrary consisting of 7000 clones was constructed. This sublibrary contains at least 40 unique RGA families of the TIR (toll-/interleukin-1 receptor) and the LZ (leucine zipper) type, which were further analysed. Phylogenetic studies revealed close relationships of some rose RGAs to R genes and RGAs from other plants and gave rise to the assumption that rose R genes evolved from different starting points, prior to and subsequent to speciation. Southern blot analyses showed that the RGAs were organized as single, low and multicopy loci in the rose genome. None of the analysed sequences detected any hybridization signal in Prunus cérasus indicating that the analysed RGAs are not conserved across genera. The efficiency and selectivity of the different degenerate primers used for the RGA isolation is discussed in detail.  相似文献   

16.
为研究云南野生蔷薇属中的NBS类抗病基因,根据已知抗病基因NBSLRR序列中的保守区域设计简并引物,利用RTPCR技术从云南悬钩子蔷薇中进行体外扩增,获得了对应区域的cDNA片段,回收、克隆这些特异片段,测序分析,共得到4个含有NBSLRR保守结构域的抗病基因同源序列(RGAs),分别命名为AC9、AC39、AC50和AC68。它们与已报道的11个NBS类抗病基因相应区段的氨基酸序列相似性为5.4%~79.2%,其中这4个RGAs片段与Mi、RPS2、Pib和RPM1基因聚为一类。表明这4条RGAs序列可进一步用作悬钩子蔷薇抗病候选基因的分子筛选及遗传图谱的构建。  相似文献   

17.
甘薯NBS类抗病基因类似物的分离与序列分析   总被引:12,自引:0,他引:12  
利用已克隆植物抗病基因NBS(Nucleotide binding site)序列中的保守模体(motif)“P-loop”和“GLPL”合成简并引物,以甘薯(Ipomoea batatas)栽培品种青农2号基因组DNA为模板进行PCR扩增,通过T/A克隆、测序和序列分析,共得到15条具有连续ORF的抗病基因类似物(Resistance gene analogues,RGAs)序列,它们之间核苷酸序列间的相似性系数在41.2%-99.4%之间,而相应推测的氨基酸序列间的相似性系数在20.6%-100%之间,同时对分离的RGAs的核苷酸和氨基酸序列进行系统发育树分析,表明甘薯RGAs可分为TIR(Drosophila Toll or human interleukin receptor-like)和nonTIR两类.对甘薯RGAs和5个已克隆植物NBS的氨基酸序列进行结构分析表明,它们包括“P-loop”、“Kinase-2”、“Kinase-3a”、“GLPL”4个抗病基因所共有的保守模体.这些表明甘薯与其它物种的NBS类RGAs可能具有同样的起源和进化机制.  相似文献   

18.
Genomic DNA sequences sharing homology with the NBS-LRR (nucleotide binding site-leucine-rich repeat) resistance genes were isolated and cloned from apricot (Prunus armeniaca L.) using a PCR approach with degenerate primers designed from conserved regions of the NBS domain. Restriction digestion and sequence analyses of the amplified fragments led to the identification of 43 unique amino acid sequences grouped into six families of resistance gene analogs (RGAs). All of the RGAs identified belong to the Toll-Interleukin receptor (TIR) group of the plant disease resistance genes (R-genes). RGA-specific primers based on non-conserved regions of the NBS domain were developed from the consensus sequences of each RGA family. These primers were used to develop amplified fragment length polymorphism (AFLP)-RGA markers by means of an AFLP-modified procedure where one standard primer is substituted by an RGA-specific primer. Using this method, 27 polymorphic markers, six of which shared homology with the TIR class of the NBS-LRR R-genes, were obtained from 17 different primer combinations. Of these 27 markers, 16 mapped in an apricot genetic map previously constructed from the self-pollination of the cultivar Lito. The development of AFLP-RGA markers may prove to be useful for marker-assisted selection and map-based cloning of R-genes in apricot.  相似文献   

19.
Most cloned plant disease resistance genes (R-genes) code for proteins belonging to the nucleotide binding site (NBS) leucine-rich repeat (LRR) superfamily. NBS-LRRs can be divided into two classes based on the presence of a TIR domain (Toll and interleukin receptor-like sequence) or a coiled coil motif (nonTIR) in their N-terminus. We used conserved motifs specific to nonTIR-NBS-LRR sequences in a targeted PCR approach to generate nearly 50 genomic soybean sequences with strong homology to known resistance gene analogs (RGAs) of the nonTIR class. Phylogenetic analysis classified these sequences into four main subclasses. A representative clone from each subclass was used for genetic mapping, bacterial artificial chromosome (BAC) library screening, and construction of RGA-containing BAC contigs. Of the 14 RGAs that could be mapped genetically, 12 localized to a 25-cM region of soybean linkage group F already known to contain several classical disease resistance loci. A majority of the genomic region encompassing the RGAs was physically isolated in eight BAC contigs, together spanning more than 1 Mb of genomic sequence with at least 12 RGA copies. Phylogenetic and sequence analysis, together with genetic and physical mapping, provided insights into the genome organization and evolution of this large cluster of soybean RGAs. Received: 8 May 2001 / Accepted: 30 June 2001  相似文献   

20.
Resistance gene analogues (RGAs) of Cicer were isolated by different PCR approaches and mapped in an inter-specific cross segregating for fusarium wilt by RFLP and CAPS analysis. Initially, two pairs of degenerate primers targeting sequences encoded at nucleotide-binding sites (NBS), which are conserved in plant disease resistance genes such as RPS2, L6 and N, were selected for amplification. Cloning and sequence analysis of amplified products from C. arietinum DNA revealed eight different RGAs. Additionally, five RGAs were identified after characterisation of the presumptive RGA alleles from C. reticulatum. Therefore, a total of 13 different RGAs were isolated from Cicer and classified through pair-wise comparison into nine distinct classes with sequence similarities below a 68% amino acid identity threshold. Sequence comparison of seven RGA alleles of C. arietinum and C. reticulatum revealed polymorphisms in four RGAs with identical numbers of synonymous and non-synonymous substitutions. An NlaIII site, unique in the RGA-A allele of C. arietinum, was exploited for CAPS analysis. Genomic organisation and map position of the NBS-LRR candidate resistance genes was probed by RFLP analysis. Both single-copy as well as multi-copy sequence families were present for the selected RGAs, which represented eight different classes. Five RGAs were mapped in an inter-specific population segregating for three race-specific Fusarium resistances. All RGAs mapped to four of the previously established eight linkage groups for chickpea. Two NBS-LRR clusters were identified that could not be resolved in our mapping population. One of these clusters, which is characterised by RFLP probe CaRGA-D, mapped to the linkage group harbouring two of three Fusarium resistance genes characterised in the inter-specific population. Our study provides a starting point for the characterisation and genetic mapping of candidate resistance genes in Cicer that is useful for marker-assisted selection and as a pool for resistance genes of Cicer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号