首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P1 peptidase--a mysterious protein of family Potyviridae   总被引:1,自引:0,他引:1  
The Potyviridae family, named after its type member, Potato virus Y (PVY), is the largest of the 65 plant virus groups and families currently recognized. The coding region for P1 peptidase is located at the very beginning of the viral genome of the family Potyviridae. Until recently P1 was thought of as serine peptidase with RNA-binding activity and with possible influence in cell-to-cell viral spreading. This N-terminal protein, among all of the potyviruses, is the most divergent protein: varying in length and in its amino acid sequence. Nevertheless, P1 peptidase in many ways is still a mysterious viral protein. In this review, we would like to offer a comprehensive overview, discussing the proteomic, biochemical and phylogenetic views of the P1 protein.  相似文献   

2.
A virus survey was conducted during the spring and autumn of 2001 and 2002 to determine the presence, prevalence and distribution in Spain of the viruses that are most commonly found infecting lettuce and Brassica worldwide. Crop plants showing virus symptoms from the principal lettuce and Brassica-growing regions of Spain, and some samples of the annual and perennial flora nearby, were tested by enzyme-linked immunosorbent assays using specific commercial antibodies against the following viruses: Alfalfa mosaic virus (AMV), Broad bean wilt virus 1 (BBWV-1), Beet western yellows virus (BWYV), Cauliflower mosaic virus (CaMV), Cucumber mosaic virus (CMV), Lettuce mosaic virus (LMV), Pea seed-borne mosaic virus (PSbMV), Turnip mosaic virus (TuMV) and Tomato spotted wilt virus (TSWV). Samples were also tested with a Potyvirus genus antibody. Virus incidence was much lower in spring than in autumn, especially in 2001. In spring 2002, CMV and LMV were the most prevalent viruses in lettuce, while CaMV was the most important virus present in Brassica crops grown in Navarra, followed by CMV and BWYV. In the autumn, the spectrum of viruses was different; potyviruses were widespread in lettuce grown in Madrid, but TSWV and BWYV were predominant in the Murcia region. The prevalent Potyvirus detected in lettuce fields was LMV, but none of the samples collected were positive for PSbMV or TuMV. In Brassica crops, TSWV was the most abundant in autumn-sown crops, especially in the Navarra region. All of the viruses present in lettuce and Brassica were also frequently detected in their associated natural vegetation at the same time, suggesting that they probably play an important role as virus reservoirs. Sonchus spp. were particularly common and were frequently infected with CMV, LMV and BWYV. Another common species, Chenopodium album, was often infected with TSWV and BWYV. Multiple infections were common, especially in non-crop plants, and the most common combination was BWYV and TSWV. The role of weeds in the epidemiology of viruses that infect lettuce and Brassica crops in Spain is discussed.  相似文献   

3.
The multifunctional protein translationally controlled tumour protein (TCTP) was previously identified as necessary for infection by the potyvirus pepper yellow mosaic virus. Using turnip mosaic virus (TuMV) as a model to study potyvirus biology, we confirmed that TCTP has a positive effect on virus infection. Living cell confocal microscopy demonstrated that TCTP colocalises with 6K2-tagged replication vesicles and with a perinuclear globular structure typically observed during potyvirus infection. Also, TCTP silenced protoplasts showed reduced virus accumulation, quantified by qRT-PCR, which suggests an effect on virus replication, translation or other intracellular process. Finally, TCTP silencing in plants reduced the accumulation of two species belonging to Orthotospovirus and a Begomovirus genus, which are not closely related to potyviruses. The results suggest that TCTP is a general susceptibility factor to several unrelated viruses.  相似文献   

4.
As previously reported, narcissus latent virus (NLV) has flexuous filamentous particles measuring c. 650 nm × 13 nm, is manually transmissible to Nicotiana clevelandii and Tetragonia expansa, and is transmitted by the aphid Myzus persicae following brief acquisition access periods. In contrast to previous reports the virus particle protein has an apparent mol. wt of c. 45 kD. Moreover, infected cells in N. clevelandii leaves contain cytoplasmic inclusion bodies resembling those of potyviruses. In vitro translation of NLV RNA produced only one major product (mol. wt c. 25 kD) which was not precipitated by antisera to virus particle protein or to cytoplasmic inclusion protein. Antisera to 12 potyviruses and nine carlaviruses failed to react with sap containing NLV particles. Similarly antiserum to NLV particles did not react with particles of seven potyviruses or four carlaviruses. A weak reaction was detected between NLV particles and antiserum to particles of maclura mosaic virus (MMV), a virus which resembles NLV in particle morphology and particle-protein size, and in inducing pinwheel inclusions. The cytoplasmic inclusion proteins (CIPs) of NLV, MMV and from narcissus plants with yellow stripe symptoms were serologically inter-related. These proteins were also serologically related to, and had mol. wt similar to, the CIP of members of the potyvirus group. Particles with the size and antigenic specificity of those of NLV were found consistently in narcissus plants with yellow stripe disease. Narcissus latent and narcissus yellow stripe viruses therefore seem to be synonymous and, together with MMV, have properties distinct from those of any previously described virus group.  相似文献   

5.
Potyvirus属于马铃薯Y病毒科Potyviridae,是最大的植物病毒属,给农业生产造成严重的经济损失。P3是Potyvirus属病毒中变异很大、功能较复杂的编码蛋白,涉及到病毒复制、侵染、抗性及细胞间运动;P3-PiPo是P3编码框内新近发现的Potyvirus重要编码蛋白,已证实它在病毒的细胞间运动中起着决定性的作用。对病毒蛋白功能的研究为该属病毒的研究发展提供重要的理论基础,对Potyvirus侵染机制及抗病机理研究具有指导价值。  相似文献   

6.
7.
Potyviridae is the largest family in plant viruses, in which a group of potyviruses constitutes a very important role in causing diseases in plants. The organisation of the viral genome is positive-sense RNA, ranging in size from 9000 to 12000?bp. The viral genome encodes a large polyprotein that is processed by three virus-encoded proteinases (two proteinases and helper component proteinase) to yield the mature products. This review concentrates on the interaction between viral proteins with the transmission of Potyvirus. Transmission and long-distance movement of Potyvirus is only possible through vector and that time interaction between two viral proteins takes place, named as helper component-proteinase and coat protein. Interaction between NIb, NIa, 6K2 as well as with CI (helicase activity) also involved in the replication of potyviruses. Some researchers developed a yeast two-hybrid system and biomolecular fluorescence complementation system technology which proved the interaction among the viral protein. At last all proteins are correlated with each other and play a very significant role in the transmission of Potyvirus.  相似文献   

8.
Seed potato crops are currently sprayed weekly with mineral oil to prevent transmission of the Potato virus Y (PVY; Potyviridae: Potyvirus), one of the most prevalent and important non‐persistent viruses affecting potato production. In spite of its wide usage as inhibitor of virus transmission, the mode of action for mineral oil is poorly known. The objective of this study was to quantify the effect of dosage and time from application of mineral oil on the inhibition of PVY acquisition. The bird cherry‐oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae), known as vector of PVY, was used in all the experiments. The results indicated that mineral oil efficiently decreased PVY acquisition by 75 and 70% 1 day after application of 5 and 10 l ha?1, respectively. The inhibition effect decreased with time from application; mineral oil inhibits acquisition for less than 4 days at 5 l ha?1 and between 8 and 12 days at 10 l ha?1. As mineral oil was detected in the body of fewer aphids when they fed on plants 1 day after oil application, a change in the aphid probing behaviour on mineral oil‐treated plants was deduced. These results support the hypothesis that mineral oil physically inhibits the binding of the virus at the tip of the stylets.  相似文献   

9.
10.
The modification of avirulence factors of plant viruses by one or more amino acid substitutions converts avirulence to virulence on hosts containing resistance genes. Limited experimental studies have been conducted on avirulence/virulence factors of plant viruses, in particular those of potyviruses, to determine whether avirulence/virulence sites are conserved among strains. In this study, the Soybean mosaic virus (SMV)–Rsv4 pathosystem was exploited to determine whether: (i) avirulence/virulence determinants of SMV reside exclusively on P3 regardless of virus strain; and (ii) the sites residing on P3 and crucial for avirulence/virulence of isolates belonging to strain G2 are also involved in virulence of avirulent isolates belonging to strain G7. The results confirm that avirulence/virulence determinants of SMV on Rsv4‐genotype soybean reside exclusively on P3. Furthermore, the data show that sites involved in the virulence of SMV on Rsv4‐genotype soybean vary among strains, with the genetic composition of P3 playing a crucial role.  相似文献   

11.
To infect plants, viruses rely heavily on their host's machinery. Plant genetic resistances based on host factor modifications can be found among existing natural variability and are widely used for some but not all crops. While biotechnology can supply for the lack of natural resistance alleles, new strategies need to be developed to increase resistance spectra and durability without impairing plant development. Here, we assess how the targeted allele modification of the Arabidopsis thaliana translation initiation factor eIF4E1 can lead to broad and efficient resistance to the major group of potyviruses. A synthetic Arabidopsis thaliana eIF4E1 allele was designed by introducing multiple amino acid changes associated with resistance to potyvirus in naturally occurring Pisum sativum alleles. This new allele encodes a functional protein while maintaining plant resistance to a potyvirus isolate that usually hijacks eIF4E1. Due to its biological functionality, this synthetic allele allows, at no developmental cost, the pyramiding of resistances to potyviruses that selectively use the two major translation initiation factors, eIF4E1 or its isoform eIFiso4E. Moreover, this combination extends the resistance spectrum to potyvirus isolates for which no efficient resistance has so far been found, including resistance‐breaking isolates and an unrelated virus belonging to the Luteoviridae family. This study is a proof‐of‐concept for the efficiency of gene engineering combined with knowledge of natural variation to generate trans‐species virus resistance at no developmental cost to the plant. This has implications for breeding of crops with broad‐spectrum and high durability resistance using recent genome editing techniques.  相似文献   

12.
Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMV protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac‐RETVRFQSD) at 1.7‐Å resolution. As observed in several crystal structures of TEV protease, the C‐terminus (~20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by ~10‐fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1′ position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters kcat and Km for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease.  相似文献   

13.
Getah virus (GETV) is a mosquito-borne virus of the genus Alphavirus in the family Togaviridae and, in recent years, it has caused several outbreaks in animals. The molecular basis for GETV pathogenicity is not well understood. Therefore, a reverse genetic system of GETV is needed to produce genetically modified viruses for the study of the viral replication and its pathogenic mechanism. Here, we generated a CMV-driven infectious cDNA clone based on a previously isolated GETV strain, GX201808 (pGETV-GX). Transfection of pGETV-GX into BHK- 21 cells resulted in the recovery of a recombinant virus (rGETV-GX) which showed similar growth characteristics to its parental virus. Then three-day-old mice were experimentally infected with either the parental or recombinant virus. The recombinant virus showed milder pathogenicity than the parental virus in the mice. Based on the established CMV-driven cDNA clone, subgenomic promoter and two restriction enzyme sites (BamHI and EcoRI) were introduced into the region between E1 protein and 30UTR. Then the green fluorescent protein (GFP), red fluorescent protein (RFP) and improved light-oxygen-voltage (iLOV) genes were inserted into the restriction enzyme sites. Transfection of the constructs carrying the reporter genes into BHK-21 cells proved the rescue of the recombinant reporter viruses. Taken together, the establishment of a reverse genetic system for GETV provides a valuable tool for the study of the virus life cycle, and to aid the development of genetically engineered GETVs as vectors for foreign gene expression.  相似文献   

14.
The translation initiation factors 4E are a small family of major susceptibility factors to potyviruses. It has been suggested that knocking out these genes could provide genetic resistance in crops when natural resistance alleles, which encode functional eIF4E proteins, are not available. Here, using the well-characterized Arabidopsis thaliana–potyvirus pathosystem, we evaluate the resistance spectrum of plants knocked out for eIF4E1, the susceptibility factor to clover yellow vein virus (ClYVV). We show that besides resistance to ClYVV, the eIF4E1 loss of function is associated with hypersusceptibility to turnip mosaic virus (TuMV), a potyvirus known to rely on the paralog host factor eIFiso4E. On TuMV infection, plants knocked out for eIF4E1 display striking developmental defects such as early senescence and primordia development stoppage. This phenotype is coupled with a strong TuMV overaccumulation throughout the plant, while remarkably the levels of the viral target eIFiso4E remain uninfluenced. Our data suggest that this hypersusceptibility cannot be explained by virus evolution leading to a gain of TuMV aggressiveness. Furthermore, we report that a functional eIF4E1 resistance allele engineered by CRISPR/Cas9 base-editing technology successfully circumvents the increase of TuMV susceptibility conditioned by eIF4E1 disruption. These findings in Arabidopsis add to several previous findings in crops suggesting that resistance based on knocking out eIF4E factors should be avoided in plant breeding, as it could also expose the plant to the severe threat of potyviruses able to recruit alternative eIF4E copies. At the same time, it provides a simple model that can help understanding of the homeostasis among eIF4E proteins in the plant cell and what makes them available to potyviruses.  相似文献   

15.
Garlic (cv. Shani) was tested using single step RT‐PCR and digoxygenin (DIG) labelled dot‐blot for a number of viruses. Following sequence analysis it was shown that at least three different polymorphs of the potyvirus Onion yellow dwarf virus (OYDV) infect the same plant simultaneously, together with the potyvirus Leek yellow stripe virus (LYSV), the carlavirus Garlic common latent virus (GCLV) and a multitude of allexiviruses (Shallot virus X (ShVX) related viruses]. Several garlic plants free of all the viruses tested were obtained through meristem‐tip culture. Plants infected with single viruses or with different combinations of viruses were similarly obtained. Meristem‐tip culture was confirmed as a satisfactory method of virus eradication, while thermotherapy treatment given to mother plantlets before meristem excision was found to specifically antagonise OYDV eradication. This work uses molecular methods for the first time to examine the effectiveness of meristem‐tip culture for the eradication of multiple viruses from garlic.  相似文献   

16.
The single‐stranded, positive‐sense RNA genome of viruses in the genus Potyvirus encodes a large polyprotein that is cleaved to yield 10 mature proteins. The first three cleavage products are P1, HCpro and P3. An additional short open reading frame (ORF), called pipo, overlaps the P3 region of the polyprotein ORF. Four related potyviruses infecting sweet potato (Ipomoea batatas) are predicted to contain a third ORF, called pispo, which overlaps the 3′ third of the P1 region. Recently, pipo has been shown to be expressed via polymerase slippage at a conserved GA6 sequence. Here, we show that pispo is also expressed via polymerase slippage at a GA6 sequence, with higher slippage efficiency (~5%) than at the pipo site (~1%). Transient expression of recombinant P1 or the ‘transframe’ product, P1N‐PISPO, in Nicotiana benthamiana suppressed local RNA silencing (RNAi), but only P1N‐PISPO inhibited short‐distance movement of the silencing signal. These results reveal that polymerase slippage in potyviruses is not limited to pipo expression, but can be co‐opted for the evolution and expression of further novel gene products.  相似文献   

17.
18.
Colombian datura virus was detected in the terrestrial orchid Spiranthes cernua using a combination of enzyme‐linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). The PCR strategy that we used to detect and confirm the identity of this virus has subsequently been used as a generalized procedure to confirm the identity of other potyviruses in ornamental species. This is the first report of this virus in an orchid and only the second report of a virus in this species.  相似文献   

19.
Recent metagenomic studies have provided an unprecedented wealth of data, which are revolutionizing our understanding of virus diversity. A redrawn landscape highlights viruses as active players in the phytobiome, and surveys have uncovered their positive roles in environmental stress tolerance of plants. Viral infectious clones are key tools for functional characterization of known and newly identified viruses. Knowledge of viruses and their components has been instrumental for the development of modern plant molecular biology and biotechnology. In this review, we provide extensive guidelines built on current synthetic biology advances that streamline infectious clone assembly, thus lessening a major technical constraint of plant virology. The focus is on generation of infectious clones in binary T‐DNA vectors, which are delivered efficiently to plants by Agrobacterium. We then summarize recent applications of plant viruses and explore emerging trends in microbiology, bacterial and human virology that, once translated to plant virology, could lead to the development of virus‐based gene therapies for ad hoc engineering of plant traits. The systematic characterization of plant virus roles in the phytobiome and next‐generation virus‐based tools will be indispensable landmarks in the synthetic biology roadmap to better crops.  相似文献   

20.
The isolation and characterization of a virus (designated EhV) that infects the marine coccolithophorid Emiliania huxleyi (Lohmann) Hay & Mohler are described. Three independent clones of EhV were isolated from Norwegian coastal waters in years 1999 and 2000. EhV is a double‐stranded DNA‐containing virus with a genome size of ~415 kilo‐base pairs. The viral particle is an icosahedron with a diameter of 160–180 nm. The virus particle contains at least nine proteins ranging from 10 to 140 kDa; the major capsid protein weighs ~54 kDa. EhV has a latent period of 12–14 h and a burst size of 400–1000 (mean, 620) viral particles per cell. A phylogenetic tree based on DNA polymerase amino acid sequences indicates EhV should be assigned to the Phycodnaviridae virus family and that the virus is most closely related to viruses that infect Micromonas pusilla and certain Chlorella species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号