首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of the root-knot nematode (Meloidogyne incognita) on lentil (Lens culinaris) were studied under greenhouse conditions. The plants were inoculated with 250, 500, 1000, 2000 and 4000 J2 per plant. Plant growth, yield, nodulation, seed weight, chlorophyll, nitrogen, phosphorus and potassium, (NPK) contents, as compared to control, were found decreased in all the nematode infected plants. The extent of reduction increased with an increase in inoculum levels. The reductions were significant at 500 J2 and at higher inoculum levels, i.e. 1000, 2000 and 4000 J2 per pot over the control. An increase in inoculum level caused enhancement in galling, egg mass production and nematode population. At higher inoculum levels, the population of the nematode in the root as well as in the soil increased to a greater magnitude than at lower inoculum levels. On the contrary, reproduction factor (RF) and rate of population increase (RPI) decreased with increasing inoculum levels.  相似文献   

2.
The individual, concomitant and sequential inoculation of second stage juveniles (at 2000 J2/kg soil) of Meloidogyne incognita and Rhizoctonia solani (at 2 g mycelial mat/kg soil) showed significant reduction in plant growth parameters viz. plant length, fresh weight and dry weight as compared to control. The greatest reduction in plant growth parameters was recorded in the plants simultaneously inoculated with M. incognita and R. solani followed by sequential and individual inoculation. In sequential inoculation, plant inoculated with M. incognita 15 days prior to R. solani shows more reduction in comparison to plant inoculated with R. solani 15 days prior to M. incognita. Moreover, the multiplication of nematode and number of galls/root system were significantly reduced in concomitant and sequential inoculation as compared to individual inoculation, whereas the intensity of root-rot/root system caused by R. solani was increased in the presence of root-knot nematode M. incognita as compared to when R. solani was inoculated individually.  相似文献   

3.
Silicon (Si) has been reported to effectively manage some pests and diseases of plants. This study was conducted to determine the effect of Si concentration, mode, and frequency of application in managing Meloidogyne incognita in cucumber. A susceptible cultivar of cucumber (cv. Cyclone) was planted in pots containing heat-sterilized soil. Three weeks after planting, the plants were inoculated with 1,000 juveniles/ pot. Uninoculated plants were provided to serve as control. Three concentrations of Si in the form of sodium metasilicate was applied on the leaves and roots alone and also on both the leaves and roots. Application was done once during the growing period and weekly until seven days before harvest. Leaf and root application of Si was found to significantly increase (p = 0.0029) the fresh top weight of inoculated and uninoculated plants. On the other hand, inoculation of root-knot nematode significantly increased the fresh root weight of cucumber which could be due to enlargement of roots or formation of galls. Interestingly, the inoculated plants gave significantly higher marketable yield than uninoculated ones. Application of Si at the rate of 200 ppm significantly increased the marketable yield compared to the higher rate of Si (400 ppm). At 200 ppm, one application of Si both on the leaves and roots significantly reduced the number of galls in inoculated plants. This was comparable to the same concentration applied continuously on the roots and at higher concentration (400 ppm) applied continuously on the leaves and on the roots. On the other hand, single root application of Si at the rate of 400 ppm gave the lowest number of eggmasses, however, it was comparable to the same Si concentration applied singly on the leaves and applied continuously both on the leaves and roots. These treatments, however, were at par with continuous application of the lower rate of Si (200 ppm) on the leaves and both leaves and roots.  相似文献   

4.
5.
The efficacy of the phosphonate fertilizers, Calphos® (a.i. calcium phosphonate), Magphos® (a.i. magnesium phosphonate and potassium phosphonate) and Phosphoros® (a.i. potassium phosphonate) against two species of root knot nematodes (RKN), Meloidogyne javanica and M. incognita is evaluated. Laboratory experiments showed that Calphos®, Magphos® and their main components inhibited egg hatching and caused 100% mortality of the second stage juveniles (J2s) of the two RKN species; the hatching inhibition effects persisted after transferring the egg masses of both species to water. However, Phosphoros® (0.5%) did not suppress egg hatching or the survival of J2s of both RKN species. No hatching occurred when egg masses were treated for one week with the nematicide Vydate L® (2 ml/l), however, J2s hatched when the Vydate L® treated egg masses were moved to water. The glasshouse study indicated that Magphos®, Calphos® and Phosphoros® reduced root galling caused by M. javanica by 98, 66 and 47%, respectively, in comparison to the untreated controls. Magphos® resulted in the lowest number of root galls formed by M. incognita, the reduction was 84%. In contrast, Calphos® and Phosphoros® reduced galling by 47 and 39%, respectively. The Magphos® treatment resulted in the lowest numbers of egg masses and the lowest reproductive factor (RF) of both nematode species. However, plants treated with Phosphoros® resulted in higher foliage weights compared with the application of the other two fertilizers and the untreated plants.  相似文献   

6.
The effectiveness of soil fumigation with 50, 100 and 200 µL kg?1 soil of essential oils (EOs) from the plant species Eucalyptus citriodora, Eucalyptus globulus, Mentha piperita, Pelargonium asperum and Ruta graveolens was assessed against the root‐knot nematode Meloidogyne incognita on potted tomato. Plant growth parameters and number of galls, nematode eggs and juveniles on tomato roots were evaluated after two months of maintenance of the treated plants at 25°C in greenhouse. EOs of E. globulus and P. asperum significantly reduced nematode multiplication and gall formation on tomato roots at all the tested rates, whereas the EOs of E. citriodora, M. piperita and R. graveolens were more suppressive at levels greater than 50 µL kg?1 soil. Biofumigation with EOs of E. globulus and P. asperum resulted also in the largest increase of tomato plant top and root biomass. The five samples of EOs had a different chemical composition as determined by GC and GC‐MS. Structure–activity relationship based on the main constituents of the tested EOs and their nematicidal effect on M. incognita is discussed.  相似文献   

7.
MicroRNAs (miRNAs) are a large class of small regulatory RNA molecules, however no study has been performed to elucidate the role of miRNAs in cotton (Gossypium hirsutum) response to the root knot nematode (RKN, Meloidogyne incognita) infection. We selected 28 miRNAs and 8 miRNA target genes to investigate the miRNA-target gene response to M. incognita infection. Our results show that RKN infection significantly affected the expression of several miRNAs and their targeted genes. After 10 days of RKN infection, expression fold changes on miRNA expressions ranged from down-regulated by 33% to upregulated by 406%; meanwhile the expression levels of miRNA target genes were 45.8% to 231%. Three miRNA-target pairs, miR159-MYB, miR319-TCP4 and miR167-ARF8, showed inverse expression patterns between gene targets and their corresponded miRNAs, suggesting miRNA-mediated gene regulation in cotton roots in response to RKN infection.  相似文献   

8.
Under greenhouse conditions, three insect growth regulators, buprofezin, flufenoxuron and pyriproxyfen, at field concentrations and other two lower concentrations were evaluated for controlling of root knot nematode, Meloidogyne incognita, infecting eggplant (Solanum melongena L.) cv. Baladi. Generally, the tested pesticides reduced the number of galls, egg masses, females and developmental stages in roots and juveniles in soil compared to untreated check. The percentages of reduction were positively proportional with the respective concentrations. Flufenoxuron at its highest concentration was the most effective pesticide in reducing galls, egg masses, females and developmental stages compared with pyriproxyfen and buprofezin. The percentages of reduction caused by flufenoxuron were 67.80, 69.57, 70.75 and 95.23% for the, respective nematode criteria, while buprofezin at the highest concentration was the most effective in reducing number of hatched juveniles in soil followed by flufenoxuron and pyriproxyfen. Data showed that the length and fresh and dry weights of root and shoot of egg plant were increased with the lowest concentrations than the highest ones.  相似文献   

9.
The ban and restriction on the use of several synthetic chemicals for controlling plant parasitic nematodes, and concern about their side effects necessitate the availability of effective methods of control with low toxicity to humans and non‐target organisms. Therefore, efficacy and mode of action of iprodione, a dicarboximide fungicide, was evaluated against the root‐knot nematode Meloidogyne incognita, in vitro and in vivo conditions, in comparison with the nematicides fenamiphos, fosthiazate and oxamyl at 7.00, 1.66 and 1.66 mL/5 L water, respectively. In vitro, iprodione showed nematostatic rather than nematicidal activity against second‐stage juveniles of M. incognita in contrast to fenamiphos, fosthiazate and oxamyl which were nematicidal. In the in vivo experiment with tomato, iprodione controlled M. incognita less than fenamiphos, fosthiazate and oxamyl. No visual symptoms of phytotoxicity were observed. Therefore, iprodione can be a useful chemical for controlling nematode populations if included in an Integrated Pest Management program.  相似文献   

10.
11.
Damaging threshold levels of root-knot nematode Meloidogyne incognita and root-rot fungus Fusarium solani on plant growth parameters, viz., plant length, fresh and dry weight of chilli were determined by conducting their pathogenicity trials in pot experiments. The results revealed a significant reduction in the plant growth parameters at and above the inoculum level of about 1000?J2 per plant of M. incognita and the highest reduction was recorded at 8000?J2 per plant. Significant reduction in plant growth parameters was recorded at 1.00?g mycelial mat of F. solani per plant, while the highest reduction was observed at 8.00?g mycelial mat per plant. The damaging threshold level was 1000?J2 per plant of M. incognita and 1.00?g mycelial mat of F. solani.  相似文献   

12.
An integrated approach with the obligate bacterial parasite, Pasteuria penetrans and nematicides was assessed for the management of the root-knot nematode, Meloidogyne incognita infestation in tomato and grapevine. Seedlings of tomato cv. Co3 were transplanted into pots filled with sterilized soil and inoculated with nematodes (5000 juveniles/pot). The root powder of P. penetrans at 10 mg/pot was applied alone and in combination with carbofuran at 6 mg/pot. Application of P. penetrans along with carbofuran recorded lowest nematode infestation (107 nematodes/200 g soil) compared to control (325 nematodes/200 g soil). The rate of parasitization was 83.1% in the carbofuran and P. penetrans combination treatment as against 61.0% in the P. penetrans treatment only. The plant growth was also higher in the combination treatment compared to all other treatments. A field trial was carried out to assess the efficacy of P. penetrans and nematicides viz., carbofuran and phorate in the management of root-knot nematode, M. incognita infestation of grapevine cv. Muscat Hamburg. A nematode and P. penetrans infested grapevine field was selected and treatments either with carbofuran or phorate at 1 g a.i/vine was given. The observations were recorded at monthly interval. The results showed that the soil nematode population was reduced in nematicide treated plots. Suppression of nematodes was higher under phorate (117 nematodes/200 g soil) than under carbofuran (126.7 nematodes/200 g soil) treatment. The number of juveniles parasitized was also influenced by nematicides and spore load carried/juvenile with phorate being superior and the increase being 17.0 and 29.0% respectively over the control. The results of these experiment confirmed the compatibility of P. penetrans with nematicides and its biological control potential against the root-knot nematode.  相似文献   

13.
Four or five growth stages of 14 forest tree species were tested for susceptibility to Meloidogyne incognita at five inoculum levels. Responses ranged from the highly susceptible ''China fir'' to immune ''Taiwania''. Even highly susceptible species became increasingly tolerant at later growth stages, thus root-knot appears to be a greater problem in nurseries than in established forests. Heavily suberized cells which restricted nematode development was the predominant host response in Norway spruce, and in the jack, scotch, and Virginia pines. Adult females in jack and scotch pine, which elicited a minimum of suberized tissue, were found adjacent to infection sites showing maximum suberization which indicates that resistance can be highly localized and variable within an individual host. A few gravid females, but no giant cells, were observed in these two species.  相似文献   

14.
Investigations were carried out to evaluate the efficacy of biocontrol agents (Paecilomyces lilacinus and Cladosporium oxysporum) and/or oil cakes of castor, linseed, groundnut, mahua and neem in the management of root knot nematode, Meloidogyne javanica infecting eggplant under glasshouse conditions. All the treatments effectively suppressed the nematode population and kept the infection at significantly low level. Individual treatment of P. lilacinus was more effective than C. oxysporum in controlling M. javanica, whereas among oil cakes individual treatment of neem was more effective in the management of M. javanica followed by linseed cake, castor cake, groundnut cake and mahua cake. However, the efficacy of biocontrol agents increased in the presence of oil cakes. The highest improvement in plant growth and best protection against M. javanica was obtained by the integration of P. lilacinus with groundnut cake followed by neem cake, linseed cake, castor cake and mahua cake. On the other hand the integration of C. oxysporum with neem cake followed by groundnut cake, linseed cake, castor cake and mahua cake gave the best results in managing M. javanica on eggplant.  相似文献   

15.
In recent years, Brassica carinata defatted seed meals (DSMs) have been successfully applied as an amendment in the control of pests and soil pathogens in several countries with clear advantages for the environment and soil fertility. The effectiveness of this product is clearly linked to the release of bioactive compounds by the well‐known glucosinolate (GL)–myrosinase (MYR) system. Until now, this commercial know‐how has been limited to allyl‐isothiocyanate, the breakdown product of hydrolysis catalysed by MYR of the GL sinigrin. Brassicaceae germplasm is an extremely wide‐ranging family, considering that more than 3500 species have been classified in this family in nature, which contains around 200 different GLs. Therefore, there is a great potential for the availability of new still unexplored bioactive compounds. This study evaluated, in controlled glasshouse conditions, the effect of biofumigation on the nematode Meloidogyne incognita and that of biostimulation on tomato plants of 13 DSMs obtained from different Brassicaceae species at different levels of soil inoculation. Among the tested DSMs, the best results for all inoculations were achieved by Eruca sativa (rocket), Barbarea verna (land cress) and Brassica nigra (black mustard), whereas the other species gave either alternate results or results not different from untreated or sunflower DSM controls. All the DSMs, including sunflower, determined a clear positive effect on plant vigour. These first results open new perspectives for the application of biofumigation in plant protection and management.  相似文献   

16.
The usefulness of Trichoderma harzianum was tested along with farmyard manure, cow urine, neem oil seed cake, and vermicompost separately and in combination to manage Meloidogyne incognita in Withania somnifera. A treatment combination of nematode inhibitory vermicompost and T. harzianum was found to be most effective against M. incognita.  相似文献   

17.
The effects of initial populations of Hoplolaimus columbus and Meloidogyne incognita on growth and yield of Davis soybean were determined for 1980 and 1981 in microplots and H. columbus in field tests in 1981. M. incognita suppressed yield in microplots both years and H. columbus in 1980. Maximum suppression of dry pod weight by M. incognita was 45% and by H. columbus 35%. The relationship of yield vs. nematode population at planting time was described by a declining exponential model. Maximum reproductive rates for M. incognita and H. columbus were 67.0 and 4.7, respectively, and were inversely proportional to initial population level. Nematode reproductive rates, survival ability, and feeding habits suggest species specific life strategies in the ecological community.  相似文献   

18.
AIM: To examine the zinc (Zn) solubilization potential and nematicidal properties of Gluconacetobacter diazotrophicus. METHODS AND RESults: Atomic Absorption Spectrophotometer, Differential Pulse Polarography and Gas Chromatography Coupled Mass Spectrometry were used to estimate the total Zn and Zn(2+) ions and identify the organic acids present in the culture supernatants. The effect of culture filtrate of Zn-amended G. diazotrophicus PAl5 on Meloidogyne incognita in tomato was examined under gnotobiotic conditions. Gluconacetobacter diazotrophicus PAl5 effectively solubilized the Zn compounds tested and 5-ketogluconic acid was identified as the major organic acid aiding the solubilization of zinc oxide. The presence of Zn compounds in the culture filtrates of G. diazotrophicus enhanced the mortality and reduced the root penetration of M. incognita under in vitro conditions. CONCLUSIONS: 5-ketogluconic acid produced by G. diazotrophicus mediated the solubilization process and the available Zn(2+) ions enhanced the nematicidal activity of G. diazotrophicus against M. incognita. SIGNIFICANCE AND IMPACT OF THE STUDY: Zn solubilization and enhanced nematicidal activity of Zn-amended G. diazotrophicus provides the possibility of exploiting it as a plant growth promoting bacteria.  相似文献   

19.
A pathogenicity trial conducted against root-knot nematode, Meloidogyne javanica on broccoli indicated that a gradual increase in the nematode inoculum from 500 to 8000 juveniles/kg soil was associated with a progressive decline in all the plant growth parameters and reproduction factor of the nematode. Although 8000 juveniles/kg soil showed maximum plant growth reduction and root knot index, statistical analysis of the data revealed that the population of 1000 juveniles/kg soil was associated with a significant decline in plant growth. Hence, this level was indicative of being the pathogenic level. The significant reduction in seedling emergence was recorded at and above 2000 juveniles/kg soil and it decreased further with increasing inoculum levels. Meloidogyne javanica required 27 days to complete the life cycle on broccoli at a temperature range of 28–35°C.  相似文献   

20.
Plant-parasitic nematodes need to deliver effectors that suppress host immunity for successful parasitism. We have characterized a novel isochorismatase effector from the root-knot nematode Meloidogyne incognita, named Mi-ISC-1. The Mi-isc-1 gene is expressed in the subventral oesophageal glands and is up-regulated in parasitic-stage juveniles. Tobacco rattle virus-induced gene silencing targeting Mi-isc-1 attenuated M. incognita parasitism. Enzyme activity assays confirmed that Mi-ISC-1 can catalyse hydrolysis of isochorismate into 2,3-dihydro-2,3-dihydroxybenzoate in vitro. Although Mi-ISC-1 lacks a classical signal peptide for secretion at its N-terminus, a yeast invertase secretion assay showed that this protein can be secreted from eukaryotic cells. However, the subcellular localization and plasmolysis assay revealed that the unconventional secretory signal present on the Mi-ISC-1 is not recognized by the plant secretory pathway and that the effector was localized within the cytoplasm of plant cells, but not apoplast, when transiently expressed in Nicotiana benthamiana leaves by agroinfiltration. Ectopic expression of Mi-ISC-1 in Nbenthamiana reduced expression of the PR1 gene and levels of salicylic acid (SA), and promoted infection by Phytophthora capsici. The cytoplasmic localization of Mi-ISC-1 is required for its function. Moreover, Mi-ISC-1 suppresses the production of SA following the reconstitution of the de novo SA biosynthesis via the isochorismate pathway in the cytoplasm of N. benthamiana leaves. These results demonstrate that M. incognita deploys a functional isochorismatase that suppresses SA-mediated plant defences by disrupting the isochorismate synthase pathway for SA biosynthesis to promote parasitism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号