首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
A two-year study was conducted to evaluate the efficacy of three formulations of nontoxigenic strains of Aspergillus flavus and Aspergillus parasiticus to reduce preharvest aflatoxin contamination of peanuts. Formulations included: (1) solid-state fermented rice; (2) fungal conidia encapsulated in an extrusion product termed Pesta; (3) conidia encapsulated in pregelatinized corn flour granules. Formulations were applied to peanut plots in 1996 and reapplied to the same plots in 1997 in a randomized design with four replications, including untreated controls. Analysis of soils for A. flavus and A. parasiticus showed that a large soil population of the nontoxigenic strains resulted from all formulations. In the first year, the percentage of kernels infected by wild-type A. flavus and A. parasiticus was significantly reduced in plots treated with rice and corn flour granules, but it was reduced only in the rice-treated plots in year two. There were no significant differences in total infection of kernels by all strains of A. flavus and A. parasiticus in either year. Aflatoxin concentrations in peanuts were significantly reduced in year two by all formulation treatments with an average reduction of 92%. Reductions were also noted for all formulation treatments in year one (average 86%), but they were not statistically significant because of wide variation in the aflatoxin concentrations in the untreated controls. Each of the formulations tested, therefore, was effective in delivering competitive levels of nontoxigenic strains of A. flavus and A. parasiticus to soil and in reducing subsequent aflatoxin contamination of peanuts.  相似文献   

3.
Peanuts and other seed and grain crops are commonly contaminated with carcinogenic aflatoxins, secondary metabolites produced by Aspergillus flavus and A. parasiticus. Aflatoxin contamination of peanuts in the field can be reduced by 77–98% with biological control through the application of nontoxigenic strains of these species, which competitively exclude native aflatoxin-producing strains from developing peanuts. In this study, viable peanut seeds were artificially wounded and inoculated with field soil containing natural fungal populations that were supplemented with conidia of nontoxigenic A. flavus NRRL 21882 (niaD nitrate-nonutilizing mutant) and A. parasiticus NRRL 21369 (conidial color mutant). Increasing soil densities of applied nontoxigenic strains generally resulted in an increase in the incidence of seed colonization by applied nontoxigenic strains, a decrease in seed colonization by native A. flavus and A. parasiticus, and a decrease in aflatoxin concentration in seeds. Reduction of aflatoxins in peanut seeds depended on both the density and the aflatoxin-producing potential of native populations and on the fungal strain used for biological control. Wild-type strain A. flavus NRRL 21882 and its niaD mutant were equally effective in reducing aflatoxins in peanuts, indicating that nitrate-nonutilizing mutants, which are easily monitored in the field, can be used for evaluating the efficacy of biocontrol strains.  相似文献   

4.
Plants evolve a strategy to survive the attacks of potential pathogens by inducing the microbial signal molecules. In this study, plant defence responses were induced in four different varieties of Arachis hypogaea (J‐11, GG‐20, TG‐26 and TPG41) using the fungal components of Sclerotium rolfsii in the form of fungal culture filtrate (FCF) and mycelial cell wall (MCW), and the levels of defence‐related signal molecule salicylic acid (SA), marker enzymes such as peroxidase (POX), phenylalanine ammonia lyase (PAL), β‐1,3‐glucanase and lignin were determined. There was a substantial fold increase in POX, PAL, SA, β‐1,3‐glucanase and lignin content in FCF‐ and MCW‐treated plants of all varieties of groundnut when compared to that of control plants. The enzyme activities were much higher in FCF‐treated plants than in MCW‐treated plants. The increase in fold activity of enzymes and signal molecule varied between different varieties. These results indicate that the use of fungal components (FCF and MCW) had successfully induced systemic resistance in the four different varieties of groundnut plants against Sclerotium rolfsii.  相似文献   

5.
Sclerotia, the survival stage of Aspergillus flavus, are compact masses of mycelia capable of with-standing harsh climatic conditions. Six strains of Paecilomyces lilacinus, originally isolated from sclerotia of A. flavus var. flavus or A. flavus var. parasiticus, were also able to colonize the sclerotia from four different strains of A. flavus under laboratory conditions. P. lilacinus strains did not differ significantly in their colonization ability, but host susceptibility appeared to be an important factor. P. lilacinus strains were cultured in vitro for 96 h on a basal salt medium containing either ground sclerotia of A. flavus or glucose plus asparagine. Activities of hydrolytic enzymes such as polysaccharidases, proteases, and chitinases were determined in the culture supernatants. Supernatants from fungal cultures grown in the basal medium containing glucose plus aspargine medium showed very little or no enzyme activity, whereas fungi grown on ground sclerotia produced a variety of enzymes. Specifically, all strains produced chitinases (endochitinase and N-acetyl glucosaminidase), -1,3-glucanase, chymoelastase and chymotrypsin, suggesting that these enzymes may be required for colonization of sclerotia. Production of -1,4-glucanase, dextranase, cellulase, and trypsin was strain variable, suggesting that these enzymes may not be required.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned Correspondence to: S. C. Gupta  相似文献   

6.
Three different bio-elicitors viz. BE 1, BE 2 and BE 3 were formulated from Fusarium oxysporum f. sp. lycopersici. All three elicitors were screened for defence regulating capacity in an ex vivo system where Lycopersicum esculentum was used as a model host plant. Application of bio-elicitors on detached leaves showed varied degrees of defence induction and antioxidative enzymes and total phenol accumulation after 24 h incubation. Among all, BE 3 (2%) was found to be the most effective. Furthermore, production of nitric oxide (NO) was measured in treated leaves, and concurrently, the extent of oxidative damage was evaluated by measuring reactive oxygen species (ROS), malondialdehyde (MDA), proline and total chlorophyll content. All bio-elicitors except BE 3, which was effective at concentrations as low as 2%, showed enhanced production of MDA and proline and reduction in total chlorophyll at higher concentrations. These results suggest that among three elicitors tested, BE 3 (2%) can be used as a potential bio-elicitor in organic tomato farming.  相似文献   

7.
AflatoxigenicAspergillus flavus andAspergillus parasiticus were subjected to solid substrate fermentation process for 6 days to determine the formation of aflatoxins and production of extracellular enzymes (amyloglucosidase, cellulase, invertase and proteinase). Both organisms produced enzymes which generally increased with fermentation.Aspergillus flavus produced four enzymes whereasA. parasiticus produced three with no proteinase activity.Aspergillus parasiticus produced aflatoxins B1, B2 and G1 but no G2 andA. flavus produced aflatoxins B1 and B2. Invertase showed the highest activity withA. parasiticus and that corresponded with the highest total toxin produced. The enzyme activities were higher withA. parasiticus thanA. flavus although total toxins produced byA. parasiticus were lower than total toxins produced byA. flavus under the same environmental conditions.  相似文献   

8.
In agricultural areas, Aspergillus flavus, Aspergillus fumigatus and Aspergillus parasiticus are commonly identified in various feedstuffs and bioaerosols originated from feed handling. Some isolates belonging to these fungal species could produce mycotoxins and constitute a risk factor for human and animal health. In this study, Fourier-transform infrared spectroscopy was used for a rapid detection and characterization of 99 isolates collected from agricultural areas. The results showed a first cluster corresponding to strains previously attributed to the A. fumigatus group according to current taxonomic concepts, and a second cluster divided in 2 groups around reference strains of A. flavus and A. parasiticus species. The toxigenic capacity of isolates was evaluated by high performance liquid chromatography coupled to mass spectrometry. In the A. flavus group, only 6 strains of A. parasiticus and 4 strains of A. flavus were able to produce aflatoxins on culture media. FT-IR spectroscopy, respectively, allowed the differentiation of non-toxigenic and toxigenic A. flavus and A. parasiticus isolates at 75 and 100%. Discrimination between toxigenic and non-toxigenic A. fumigatus was not possible because all of the isolates produced at least one mycotoxin.  相似文献   

9.
Plants activate direct and indirect defences in response to insect egg deposition. However, whether eggs can manipulate plant defence is unknown. In Arabidopsis thaliana, oviposition by the butterfly Pieris brassicae triggers cellular and molecular changes that are similar to the changes caused by biotrophic pathogens. In the present study, we found that the plant defence signal salicylic acid (SA) accumulates at the site of oviposition. This is unexpected, as the SA pathway controls defence against fungal and bacterial pathogens and negatively interacts with the jasmonic acid (JA) pathway, which is crucial for the defence against herbivores. Application of P. brassicae or Spodoptera littoralis egg extract onto leaves reduced the induction of insect‐responsive genes after challenge with caterpillars, suggesting that egg‐derived elicitors suppress plant defence. Consequently, larval growth of the generalist herbivore S. littoralis, but not of the specialist P. brassicae, was significantly higher on plants treated with egg extract than on control plants. In contrast, suppression of gene induction and enhanced S. littoralis performance were not seen in the SA‐deficient mutant sid2‐1, indicating that it is SA that mediates this phenomenon. These data reveal an intriguing facet of the cross‐talk between SA and JA signalling pathways, and suggest that insects have evolved a way to suppress the induction of defence genes by laying eggs that release elicitors. We show here that egg‐induced SA accumulation negatively interferes with the JA pathway, and provides an advantage for generalist herbivores.  相似文献   

10.
Dorner JW  Horn BW 《Mycopathologia》2007,163(4):215-223
A 2-year study was carried out to determine the effect of applying nontoxigenic strains of Aspergillus flavus and A. parasiticus to soil separately and in combination on preharvest aflatoxin contamination of peanuts. A naturally occurring, nontoxigenic strain of A. flavus and a UV-induced mutant of A. parasiticus were applied to peanut soils during the middle of each of two growing seasons using a formulation of conidia-coated hulled barley. In addition to an untreated control, treatments included soil inoculated with nontoxigenic A. flavus only, soil inoculated with nontoxigenic A. parasiticus only, and soil inoculated with a mixture of the two nontoxigenic strains. Plants were exposed to late-season drought conditions that were optimal for aflatoxin contamination. Results from year one showed that significant displacement (70%) of toxigenic A. flavus occurred only in peanuts from plots treated with nontoxigenic A. flavus alone; however, displacement did not result in a statistically significant reduction in the mean aflatoxin concentration in peanuts. In year two, soils were re-inoculated as in year one and all treatments resulted in significant reductions in aflatoxin, averaging 91.6%. Regression analyses showed strong correlations between the presence of nontoxigenic strains in peanuts and aflatoxin reduction. It is concluded that treatment with the nontoxigenic A. flavus strain alone is more effective than the A. parasiticus strain alone and equally as effective as the mixture. The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

11.
The colony reverse of aflatoxin (AF)-producing strains ofAspergillus flavus andA. parasiticus turned pink when their cultures were exposed to ammonia vapor. The color change was visible for colonies grown on media suitable for AF production such as potato dextrose, coconut, and yeast extract sucrose agars after 2 d incubation at 25°C. Of the 120 strains ofA. flavus, A. parasiticus, and two related species inA. flavus group:A. oryzae andA. sojae tested in this study, only the AF-producing strains ofA. flavus andA. parasiticus showed the pink pigmentation. The color change occurred immediately after the colony was contacted with ammonia vapor. This method was useful for rapid screening the AF-producing strains ofA. flavus andA. parasiticus.  相似文献   

12.
A culture filtrate of Bacillus circulans KA-304 grown on a cell-wall preparation of Schizophyllum commune has an activity to form protoplasts from S. commune mycelia, and a combination of α-1,3-glucanase and chitinase I, which were isolated from the filtrate, brings about the protoplast-forming activity.

The gene of α-1,3-glucanase was cloned from B. circulans KA-304. It consists of 3,879 nucleotides, which encodes 1,293 amino acids including a putative signal peptide (31 amino acid residues), and the molecular weight of α-1,3-glucanase without the putative signal peptide was calculated to be 132,184. The deduced amino acid sequence of α-1,3-glucanase of B. circulans KA-304 showed approximately 80% similarity to that of mutanase (α-1,3-glucanase) of Bacillus sp. RM1, but no significant similarity to those of fungal mutanases.

The recombinant α-1,3-glucanase was expressed in Escherichia coli Rosetta-gami B (DE 3), and significant α-1,3-glucanase activity was detected in the cell-free extract of the organism treated with isopropyl-β-D-thiogalactopyranoside. The recombinant α-1,3-glucanase showed protoplast-forming activity when the enzyme was combined with chitinase I.  相似文献   

13.
Current investigation has for the first time utilized Trichocomaceae fungi i.e. Aspergillus niger, Aspergillus terreus, Aspergillus flavus and Pencillium i.e. Penicillium chrysogenum for augmenting the phytoremediation potential of bioenergy crops wheat (Zea mays) and ? sunflower (Helianthus annuus). Phytoremediation was done for mitigation of heavy metals i.e. Chromium (Cr), Copper (Cu), Lead (Pb) and Cadmium (Cd) from contaminated soils of agricultural significance. Phytoremediant crops were inoculated with fungal cultures by three methods i.e. mixing method, seed inoculation method and layering spreading method. Maize and sunflower plants after fungal inoculation were harvested after 60 days of germination. The estimation of % biomass and bioenergy of maize and sunflower plants was done. Results were indicative of the good phytoremediation potential of roots and shoots for uptake of heavy metals i.e. CrAspergillus niger, Aspergillus terreus and Aspergillus flavus by fungal inoculation methods. Sunflower and fungal inoculum of Aspergillus flavus and Penicillium chrysogenum extracted significant quantity of metals from the soil. By three fungal inoculation methods, range of % production of biomass was 84?87% and sunflower plants dry biomass 9.6 g yielded 0.16% of oil. Obtained results are have favored the use of fungal inoculation as an effective mode for phytoremediation augmentation of maize and sunflower. Furthermore, current work also signifies the sustainable conversion of bioenergy crops to biofuel production in a cost effective mode.  相似文献   

14.
15.
Five separate monoclonal antibodies were produced against whole cell extracts ofAspergillus flavus and ELISA procedures used to characterise the reactivity of the antibodies to various fungal extracts. All five antibodies were specific to the aflatoxin producing fungi,A, flavus andA. parasiticus, and indicated no cross reactivity with otherAspergillus species, genera of several fungi or with other components which may be found in food samples whereA. flavus may be found.  相似文献   

16.
Plant cell walls play a major role in the outcome of host-parasite interactions. Wall fragments released from the plant, and/or the fungal pathogen, can act respectively as endogenous and exogenous elicitors of the defence response, and other wall components, such as callose, lignin, or hydroxyproline-rich glycoproteins, can inhibit pathogen penetration and/or spreading. We have previously demonstrated that calli from tomato cultivars resistant in vivo to Fusarium oxysporum f.sp. lycopersici show a high amount of polysaccharides in vitro. The aim of the present work was to assess the possible role of polysaccharide content and/or synthetic capacity in determining the competence of plant cells for active defence. For this purpose, tomato cell clones with increased and decreased polysaccharide (FL+, FL-) and callose (A+, A-) content have been selected by means of specific stains as visual markers and tested for the effect of these changes on the extent of response to Fusarium. The analysis of several parameters known to be indicative of active defence (cell browning after elicitor treatment, peroxidase and -glucanase induction and inhibition of fungal growth in dual culture) clearly shows that FL+ and A+ clones have acquired an increased competence for the activation of defence response. The results are thoroughly discussed in terms of an evaluation of the relative importance of constitutive and/or inducible polysaccharide synthetic capacity for plant response to pathogens, and their possible regulation by plant physiological backgrounds.  相似文献   

17.
Abstract

Tobacco necrosis virus (TNV) was tested to induce systemic acquired resistance (SAR) in Phaseolus vulgaris cv. Lima against three important soil-borne fungal pathogens viz: Rhizoctonia solani, Macrophomina phaseolina and Fusarium oxysporum. Application of TNV as a local infection of seven-day old primary leaves of Phaseolus vulgaris cv. Lima resulted in reduction of the mean disease rating of root-rot and damping-off caused by the tested fungal pathogens. The pre-inoculated plants with TNV showed a significant enhancement in their content of photosynthetic pigments (chlorophyll a, b and carotenoids) compared to those inoculated with fungal pathogens only. The percentage of cell membrane stability and ion leakage of viral-treated plants were significantly increased confirming the healthy cytological status of the treated plants. Results demonstrated that inoculation of the primary leaves of beans with TNV before infection with the fungal pathogens leads to changes in protein patterns and showed differences compared with control and caused the appearance of at least one new protein band compared with only fungal-infected plants. Also, an increase in peroxidase activity emerged in the thickness of the isozymic pattern in addition to the synthesis of new bands which was observed as a result of TNV application before infection with the three fungal pathogens. Induction of the synthesis of a new protein and increasing peroxidase activity in the inoculated plants enhanced the defense system against the target pathogen. The results greatly supported the successful application of TNV in the induction of systemic acquired resistance in P. vulgaris cv. Lima against the fungal pathogens.  相似文献   

18.
Aspergillus flavus Link ex Fries and A. parasiticus Speare can invade peanut kernels and under certain environmental conditions produce unacceptable levels of the mycotoxin aflatoxin. A concerted effort is underway to reduce aflatoxin contamination in peanut and peanut products. A potentially effective method of control in peanut is the discovery and use of genes for resistance to either fungal invasion or aflatoxin formation. The objective of the present experimental study was to develop an effective and efficient procedure for screening individual plants or pods of single plants for resistance to invasion by the aflatoxigenic fungi and subsequent aflatoxin production. Methods of obtaining adequate drought-stress and fungal infection were developed through this series of experiments. By completely isolating the pods from the root zone and imposing drought-stress only on pegs and pods, high levels of fungal infection were observed. High amounts of preharvest aflatoxin accumulation were also produced by completely isolating the pods from the root zone. Mid-bloom inoculation with A. parasiticus-contaminated cracked corn and drought-stress periods of 40 to 60 days were the most effective procedures. This technique was used to assess peanut genotypes previously identified as being partially resistant to A. parasiticus infection or aflatoxin contamination, and segregating populations from four crosses. Variability in aflatoxin contamination was found among the 11 genotypes evaluated, however, none were significantly lower than the standard cultivars. Broad-sense heritability of four crosses was estimated through evaluation of seed from individual plants in the F2 generation. The heritability estimates of crosses GFA-2 × NC-V11 and Tifton-8 × NC-V11 were 0.46 and 0.29, respectively, but mean aflatoxin contamination levels were high (73,295 and 27,305 ppb). This greenhouse screening method could be an effective tool when genes for superior aflatoxin resistance are identified.Cooperative investigation of the USDA-ARS and the University of Georgia, College of Agriculture.  相似文献   

19.
Four agar media used to isolate aflatoxin producing fungi were compared for utility in isolating fungi in theAspergillus flavus group from agricultural soils collected in 15 fields and four states in the southern United States. The four media wereAspergillus flavus andparasiticus Agar (AFPA, 14), the rose bengal agar described by Bell and Crawford (BCRB; 3), a modified rose bengal agar (M-RB), and Czapek's-Dox Agar supplemented with the antibiotics in BC-RB (CZ-RB). M-RB was the most useful for studying the population biology of this group because it permitted both identification of the greatest number ofA. flavus group strains and growth of the fewest competing fungi. M-RB supported an average of 12% moreA. flavus group colonies than the original rose bengal medium while reducing the number of mucorales colonies and the number of total fungi by 99% and 70%, respectively. M-RB was successfully employed to isolate all three aflatoxin producing species,A. flavus, A. parasiticus andA. nomius, and both the S and L strains ofA. flavus. M-RB is a defined medium without complex nitrogen and carbon sources (e.g. peptone and yeast extract) present in BC-RB. M-RB should be useful for studies on the population biology of theA. flavus group.Abbreviations M-RB Modified Rose Bengal Agar - CZ-RB Czapeks Rose Bengal Agar - BC-RB Bell and Crawford's Rose Bengal Agar - AFPA Aspergillus flavus andparasiticus agar  相似文献   

20.
Aflatoxins are toxic and carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. To better understand the molecular mechanisms that regulate aflatoxin production, the biosynthesis of the toxin in A. flavus and A. parasticus grown in yeast extract sucrose media supplemented with 50 mM tryptophan (Trp) were examined. Aspergillus flavus grown in the presence of 50 mM tryptophan was found to have significantly reduced aflatoxin B1 and B2 biosynthesis, while A. parasiticus cultures had significantly increased B1 and G1 biosynthesis. Microarray analysis of RNA extracted from fungi grown under these conditions revealed 77 genes that are expressed significantly different between A. flavus and A. parasiticus, including the aflatoxin biosynthetic genes aflD (nor-1), aflE (norA), and aflO (omtB). It is clear that the regulatory mechanisms of aflatoxin biosynthesis in response to Trp in A. flavus and A. parasiticus are different. These candidate genes may serve as regulatory factors of aflatoxin biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号