首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Three antagonists: Pseudomonas fluorescens (Pf1), Bacillus subtilis and Trichoderma viride, were tested alone and in combination for suppression of onion leaf blight (Alternaria palandui) disease under glasshouse and field conditions. The average mean of disease reduction was 24.81% for single strains and 42.44% for mixtures. In addition to disease suppression, treatment with a mixture of antagonists promoted plant growth in terms of increased plant height and ultimately bulb yield. Though seed treatment of either single strain or strain mixtures alone could reduce the disease, subsequent application to root, leaves or soil further reduced the disease and enhanced the plant growth. The mixture consisting of Pseudomonas fluorescens Pf1 plus Bacillus subtilis plus Trichoderma viride was the most effective in reducing the disease and in promoting plant growth and bulb yield in greenhouse and field tests.  相似文献   

2.
Potato golden cyst nematode is an important causal agent of potato disease. Nematode cysts were isolated and identified by phenotypic and genotypic characteristics. Biocontrol activity of 120 isolated bacteria from rhizosphere towards Globodera rostochiensis, were evaluated. Nematode cysts were exposed to root extracts and released juveniles (J2) subjected to cultural filtrate of isolated bacteria and their mortality were recorded after 24 and 48 h. In total, 33 strains showed inhibitory activities which they caused mortality ranged from 61.10% to 78.74%. Five representatives of inhibitory strains were applied on potato cultivar Marfona under greenhouse conditions using tuber coating and soil drenching in a complete randomised block design with three replicates. The active bacterial strains were identified as Bacillus subtilis, Bacillus megaterium, Pseudomonas fluorescens bv. I, P. fluorescens bv. II and P. putida bv. B. In the greenhouse, significant differences were observed among the tested strains, where the highest disease severity reduction was 42.31%.  相似文献   

3.
AIMS: To determine the mechanism of action of inhibitors of the germination of spores of Bacillus species, and where these inhibitors act in the germination process. METHODS AND RESULTS: Spores of various Bacillus species are significant agents of food spoilage and food-borne disease, and inhibition of spore germination is a potential means of reducing such problems. Germination of the following spores was studied: (i) wild-type B. subtilis spores; (ii) B. subtilis spores with a nutrient receptor variant allowing recognition of a novel germinant; (iii) B. subtilis spores with elevated levels of either the variant nutrient receptor or its wild-type allele; (iv) B. subtilis spores lacking all nutrient receptors and (v) wild-type B. megaterium spores. Spores were germinated with a variety of nutrient germinants, Ca2+-dipicolinic acid (DPA) and dodecylamine for B. subtilis spores, and KBr for B. megaterium spores. Compounds tested as inhibitors of germination included alkyl alcohols, a phenol derivative, a fatty acid, ion channel blockers, enzyme inhibitors and several other compounds. Assays used to assess rates of spore germination monitored: (i) the fall in optical density at 600 nm of spore suspensions; (ii) the release of the dormant spore's large depot of DPA; (iii) hydrolysis of the dormant spore's peptidoglycan cortex and (iv) generation of CFU from spores that lacked all nutrient receptors. The results with B. subtilis spores allowed the assignment of inhibitory compounds into two general groups: (i) those that inhibited the action of, or response to, one nutrient receptor and (ii) those that blocked the action of, or response to, several or all of the nutrient receptors. Some of the compounds in groups 1 and 2 also blocked action of at least one cortex lytic enzyme, however, this does not appear to be the primary site of their action in inhibiting spore germination. The inhibitors had rather different effects on germination of B. subtilis spores with nutrients or non-nutrients, consistent with previous work indicating that germination of B. subtilis spores by non-nutrients does not involve the spore's nutrient receptors. In particular, none of the compounds tested inhibited spore germination with dodecylamine, and only three compounds inhibited Ca2+-DPA germination. In contrast, all compounds had very similar effects on the germination of B. megaterium spores with either glucose or KBr. The effects of the inhibitors tested on spores of both Bacillus species were largely reversible. CONCLUSIONS: This work indicates that inhibitors of B. subtilis spore germination fall into two classes: (i) compounds (most alkyl alcohols, N-ethylmaleimide, nifedipine, phenols, potassium sorbate) that inhibit the action of, or response to, primarily one nutrient receptor and (ii) compounds [amiloride, HgCl2, octanoic acid, octanol, phenylmethylsulphonylfluoride (PMSF), quinine, tetracaine, tosyl-l-arginine methyl ester, trifluoperazine] that inhibit the action of, or response to, several nutrient receptors. Action of these inhibitors, is reversible. The similar effects of inhibitors on B. megaterium spore germination by glucose or KBr indicate that inorganic salts likely trigger germination by activating one or more nutrient receptors. The lack of effect of all inhibitors on dodecylamine germination suggests that this compound stimulates germination by creating channels in the spore's inner membrane allowing DPA release. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the steps in spore germination that are inhibited by various chemicals, and the mechanism of action of these inhibitors. The work also provides new insights into the process of spore germination itself.  相似文献   

4.
5.
以带有与不带有Neotyphodium属内生真菌的醉马草Achnatherum inebrians、披碱草Elymus dahuricus和野大麦Hordeum brevisubulatum的草粉浸提液对细交链孢Alternaria alternata、根腐离蠕孢Bipolaris sorokiniana、燕麦镰孢Fusarium avenaceum和绿色木霉Trichoderma viride进行了抑菌活性研究。结果表明:披碱草、醉马草和野大麦草粉浸提液对细交链孢、根腐离蠕孢、燕麦镰孢和绿色木霉的菌落生长、孢子萌发率和芽管长度均有一定的抑制作用。而披碱草中的Neotyphodium可显著增强披碱草草粉浸提液对细交链孢、燕麦镰孢、绿色木霉菌落生长及对细交链孢和根腐离蠕孢孢子萌发及燕麦镰孢芽管长度的抑制作用;醉马草中的Neotyphodium显著增强了醉马草草粉浸提液对燕麦镰孢、绿色木霉菌落生长和芽管长度,以及细交链孢、根腐离蠕孢和燕麦镰孢孢子萌发的抑制作用;野大麦中的Neotyphodium显著增强了野大麦草粉浸提液对绿色木霉菌落生长、孢子萌发和芽管长度的抑制作用。  相似文献   

6.
This study examined (1) the effect of the accelerated seed ageing on cucumber germination with treatments: Bacillus subtilis QST713 or Pseudomonas fluorescens CA in 1% methylcellulose and fungicides difenoconazole, carboxin or pyraclostrobin in 5% polyvinyl alcohol, and (2) the impact on disease severity of gummy stem blight (GSB) caused by Didymella bryoniae by the seed treatments and foliar spray application of methylcellulose-formulated B. subtilis or P. fluorescens. Difenoconazole, pyraclostrobin and microorganisms suppressed growth of D. bryoniae in a laboratory dual culture; carboxin had no effect on D. bryoniae growth. Germination of fungicide-treated seed was unaffected by accelerated seed ageing. Greenhouse: GSB disease severity with PVA and non-treated seed was 89% and 84%, respectively, whereas, difenoconazole, carboxin and pyraclostrobin, was significantly reduced, 56%, 53% and 40%, respectively. Germination of Bacillus-treated seed was unaffected by accelerated seed ageing, but was significantly reduced with Pseudomonas-treated seed. GSB disease severity with B. subtilis or P. fluorescens-treated seed was inconsistent; however, foliar spray application of B. subtilis significantly reduced GSB. Accelerated seed ageing exposed a significant negative impact on seed germination with P. fluorescens. Based on the accelerated ageing test, P. fluorescens-treated cucumber seed is detrimental to seed survival and therefore, is not a candidate for biocontrol activities for cucumber requiring seed storage.  相似文献   

7.
An effective formulated biopesticide for controlling sheath blight in rice was developed using three microbial antagonists (Bacillus megaterium, Bacillus subtilis and Aspergillus niger) isolated from the rice sheath. The efficiency of spore-based formulations of the above microbial antagonists was investigated and their effectiveness in controlling sheath blight was demonstrated. Application of talc-based formulations of individual antagonists and mixtures of the three antagonists as spray treatments or soil applications were effective in reducing the incidence by up to 45% at 27 days after inoculation of the pathogen of sheath blight and increased rice yield. The use of spores of a fungal antagonist (A. niger), in comparison to commonly used bacterial antagonists, is a novel feature of the present study. Optimum sporulation conditions of the antagonists for preparation of spore-based formulations and their commercially desirable features such as the ability to maintain spore viability in storage were also determined. Culturing in the synthetic replacement sporulation medium (SRSM-2) for 72 hours was the most effective for sporulation of the two bacterial antagonists while culturing in potato dextrose broth (PDB) for 7 days was the most effective for sporulation of the fungal antagonist. It was demonstrated that talc-based formulations of all antagonists, either in refrigerated storage (4°C) or at room temperature (28±2°C), were able to maintain greater spore viability over a longer period (>6 months) than spore suspensions. In view of the relatively shorter life spans of formulations based on vegetative cells, spore-based formulations have a distinct advantage in achieving longer-lasting control, especially under harsh field conditions.  相似文献   

8.
AIMS: To elucidate the factors that determine the rate of germination of Bacillus subtilis spores with very high pressure (VHP) and the mechanism of VHP germination. METHODS AND RESULTS: Spores of B. subtilis were germinated rapidly with a VHP of 500 MPa at 50 degrees C. This VHP germination did not require the spore's nutrient-germinant receptors, as found previously, and did not require diacylglycerylation of membrane proteins. However, the spore's pool of dipicolinic acid (DPA) was essential. Either of the two redundant enzymes that degrade the spore's peptidoglycan cortex, and thus allow completion of spore germination, was essential for completion of VHP germination. However, neither of these enzymes was needed for DPA release triggered by VHP treatment. Completion of spore germination as well as DPA release with VHP had an optimum temperature of approx. 60 degrees C, in contrast to an optimum temperature of 40 degrees C for germination with the moderately high pressure of 150 MPa. The rate of spore germination by VHP decreased approx. fourfold when the sporulation temperature increased from 23 degrees C to 44 degrees C, and decreased twofold when 1 mol l(-1) salt was present in sporulation. However, large variations in levels of unsaturated fatty acids in the spore's inner membranes did not affect rates of VHP germination. Complete germination of spores by VHP was not inhibited significantly by killing of spores with several oxidizing agents, and was not inhibited by ethanol, octanol or o-chlorophenol at concentrations that abolish nutrient germination. Completion of spore germination by VHP was also inhibited by Hg(2+), but this ion did not inhibit DPA release caused by VHP. In contrast, dodecylamine, a surfactant that can trigger spore germination, strongly inhibited DPA release caused by VHP treatment. CONCLUSIONS: VHP does not cause spore germination by acting upon the spore's nutrient-germinant receptors, but by directly causing DPA release. This DPA release then leads to subsequent completion of germination. VHP likely acts on the spore's inner membrane to cause DPA release, targeting either a membrane protein or the membrane itself. However, the precise identity of this target is not yet clear. SIGNIFICANCE AND IMPACT OF THE STUDY: There is significant interest in the use of VHP to eliminate or reduce levels of bacterial spores in foods. As at least partial spore germination by pressure is almost certainly essential for subsequent spore killing, knowledge of factors involved and the mechanism of VHP germination are crucial to the understanding of spore killing by VHP. This work provides new insight into factors that can affect the rate of B. subtilis spore germination by VHP, and into the mechanism of VHP germination itself.  相似文献   

9.
Alternaria helianthi is an important seed-borne pathogenic fungus responsible for blight disease in sunflower. The current detection methods, which are based on culture and morphological identification, are time-consuming, laborious and are not always reliable. A PCR-based diagnostic method was developed with species-specific primers designed based on the sequence data of a region consisting of the 5.8S RNA gene and internal transcribed spacers—ITS 1 and ITS 2 of nuclear ribosomal RNA gene (rDNA) repeats of A. helianthi. The specificity of the primer pairs AhN1F and AhN1R designed was verified by PCR analysis of DNA from 18 Alternaria helianthi strains isolated from India, 14 non-target Alternaria spp. and 11 fungal isolates of other genera. A single amplification product of 357-bp was detected from DNA of A. helianthi isolates. No cross-reaction was observed with any of the other isolates tested. The detection limit of the PCR method was of 10?pg from template DNA. The primers could also detect the pathogen in infected sunflower seed. This species-specific PCR method provides a quick, simple, powerful and reliable alternative to conventional methods in the detection and identification of A. helianthi. This is the first report of an A. helianthi-specific primer set.  相似文献   

10.
AIMS: To determine the mechanisms of Bacillus subtilis spore killing by and resistance to the general biological decontamination agents, Decon and Oxone. METHODS AND RESULTS: Spores of B. subtilis treated with Decon or Oxone did not accumulate DNA damage and were not mutagenized. Spore killing by these agents was increased if spores were decoated. Spores prepared at higher temperatures were more resistant to these agents, consistent with a major role for spore coats in this resistance. Neither Decon nor Oxone released the spore core's depot of dipicolinic acid (DPA), but Decon- and Oxone-treated spores more readily released DPA upon a subsequent normally sublethal heat treatment. Decon- and Oxone-killed spores initiated germination with dodecylamine more rapidly than untreated spores, but could not complete germination triggered by nutrients or Ca(2+)-DPA and did not degrade their peptidoglycan cortex. However, lysozyme treatment did not recover these spores. CONCLUSIONS: Decon and Oxone do not kill B. subtilis spores by DNA damage, and a major factor in spore resistance to these agents is the spore coat. Spore killing by both agents renders spores defective in germination, possibly because of damage to the inner membrane of spore. SIGNIFICANCE AND IMPACT OF STUDY: These results provide information on the mechanisms of the killing of bacterial spores by Decon and Oxone.  相似文献   

11.
AIMS: To determine the mechanism of the hydrolysis of 4-methylumbelliferyl-beta-D-glucopyranoside (beta-MUG) by germinating and outgrowing spores of Bacillus species. METHODS AND RESULTS: Spores of B. atrophaeus (formerly B. subtilis var. niger, Fritze and Pukall 2001) are used as biological indicators of the efficacy of ethylene oxide sterilization by measurement of beta-MUG hydrolysis during spore germination and outgrowth. It was previously shown that beta-MUG is hydrolysed to 4-methylumbelliferone (MU) during the germination and outgrowth of B. atrophaeus spores (Chandrapati and Woodson 2003), and this was also the case with spores of B. subtilis 168. Germination of spores of either B. atrophaeus or B. subtilis with chloramphenicol reduced beta-MUG hydrolysis by almost 99%, indicating that proteins needed for rapid beta-MUG hydrolysis are synthesized during spore outgrowth. However, the residual beta-MUG hydrolysis during spore germination with chloramphenicol indicated that dormant spores contain low levels of proteins needed for beta-MUG uptake and hydrolysis. With B. subtilis 168 spores that lacked several general proteins of the phosphotransferase system (PTS) for sugar uptake, beta-MUG hydrolysis during spore germination and outgrowth was decreased >99.9%. This indicated that beta-MUG is taken up by the PTS, resulting in the intracellular accumulation of the phosphorylated form of beta-MUG, beta-MUG-6-phosphate (beta-MUG-P). This was further demonstrated by the lack of detectable glucosidase activity on beta-MUG in dormant, germinated and outgrowing spore extracts, while phosphoglucosidase active on beta-MUG-P was readily detected. Dormant B. subtilis 168 spores had low levels of at least four phosphoglucosidases active on beta-MUG-P: BglA, BglH, BglC (originally called YckE) and BglD (originally called YdhP). These enzymes were also detected in spores germinating and outgrowing with beta-MUG, but levels of BglH were the highest, as this enzyme's synthesis was induced ca 100-fold during spore outgrowth in the presence of beta-MUG. Deletion of the genes coding for BglA, BglH, BglC and BglD reduced beta-MUG hydrolysis by germinating and outgrowing spores of B. subtilis 168 at least 99.7%. Assay of glucosidases active on beta-MUG or beta-MUG-P in extracts of dormant and outgrowing spores of B. atrophaeus revealed no enzyme active on beta-MUG and one enzyme that comprised > or =90% of the phosphoglucosidase active on beta-MUG-P. Partial purification and amino-terminal sequence analysis of this phosphoglucosidase identified this enzyme as BglH. CONCLUSIONS: Generation of MU from beta-MUG by germinating and outgrowing spores of B. atrophaeus and B. subtilis is mediated by the PTS-driven uptake and phosphorylation of beta-MUG, followed by phosphoglucosidase action on the intracellular beta-MUG-P. The major phosphoglucosidase catalyzing MU generation from beta-MUG-P in spores of both species is probably BglH. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the mechanism of uptake and hydrolysis of beta-MUG by germinating and outgrowing spores of Bacillus species, in particular B. atrophaeus. The research reported here provides a biological basis for a Rapid Readout Biological Indicator that is used to monitor the efficacy of ethylene oxide sterilization.  相似文献   

12.
管鹏 《植物医学》2020,(2):37-41
纳米氧化镁(MgO NP)因其自身卓越的物理化学性质,尤其是较高的比表面积,使其在光学、电学、材料学和生物医学等各个领域都表现出重要的应用前景.MgO NP对细菌表现出良好的抗菌性,而对真菌的抗菌性研究较少.本文研究了MgO NP对柑橘炭疽病菌胶孢炭疽菌(Colletotrichum gloeosporioides)的抗菌作用,测定了其对胶孢炭疽菌的菌丝生长和菌丝形态的影响,以及对孢子萌发的抑制作用,并测定了MgO NP对柑橘炭疽病的防控效果.研究结果表明,100~800μg/mL的MgO NP都能较好抑制胶孢炭疽菌菌丝生长和孢子萌发,其中400μg/mL和800μg/mL剂量效果最明显;同时提前施用400μg/mL的MgO NP表现出较好的柑橘炭疽病防治效果,说明MgO NP具有作为植物保护剂的潜力.  相似文献   

13.
AIMS: To determine the reason that spores of Bacillus species, in particular Bacillus subtilis, are able to form colonies with high efficiency on media with very high salt concentrations. METHODS AND RESULTS: Spores of various Bacillus species have a significantly higher plating efficiency on media with high salt concentration (termed osmoresistance) than do log or stationary phase cells. This spore osmoresistance is higher on richer media. Bacillus subtilis spores lacking various small, acid-soluble spore proteins (SASP) were generally significantly less osmoresistant than were wild-type spores, as shown previously (Ruzal et al. 1994). Other results included: (a) spore osmoresistance varied significantly between species; (b) the osmoresistance of spores lacking SASP was not restored well by amino acid osmolytes added to plating media, but was completely restored by glucose; (c) the osmoresistance of spores lacking SASP was restored upon brief germination in the absence of salt in a process that did not require protein synthesis; (d) significant amounts of amino acids generated by SASP degradation were retained within spores upon germination in a medium with high but not low salt; (e) slowing but not abolishing SASP degradation by loss of the SASP-specific germination protease (GPR) did not affect spore osmoresistance; (f) sporulation at higher temperatures produced less osmoresistant spores; and (g) spore osmoresistance was not decreased markedly by the absence of the stress sigma factor for RNA polymerase, sigmaB. CONCLUSIONS: Spore osmoresistance appears as a result of three major factors: (1) specific characteristics of spores and cells of individual species; (2) the precise sporulation conditions that produce the spores; and (3) sufficient energy generation by the germinating and outgrowing spore to allow the spore to adapt to conditions of high osmotic strength; the substrates for this energy generation can come from either the endogenous generation of amino acids by SASP degradation or from the spore's environment, in the form of a readily taken up and metabolized energy source such as glucose. SIGNFICANCE AND IMPACT OF STUDY: These results provide information on the mechanisms of spore osmoresistance, a spore property that can be of major applied significance given the use of high osmotic strength with or without high salt as a means of food preservation.  相似文献   

14.
Aims: Assessment of biological control of Cercospora sojina, causal agent of frogeye leaf spot (FLS) of soya bean, using three indigenous bacterial strains, BNM297 (Pseudomonas fluorescens), BNM340 and BNM122 (Bacillus amyloliquefaciens). Methods and Results: From cultures of each bacterial strain, cell suspensions and cell‐free supernatants were obtained and assayed to determine their antifungal activity against C. sojina. Both mycelial growth and spore germination in vitro were more strongly inhibited by bacterial cell suspensions than by cell‐free supernatants. The Bacillus strains BNM122 and BNM340 inhibited the fungal growth to a similar degree (I~52–53%), while cells from P. fluorescens BNM297 caused a lesser reduction (I~32–34%) in the fungus colony diameter. The foliar application of the two Bacillus strains on soya bean seedlings, under greenhouse conditions, significantly reduced the disease severity with respect to control soya bean seedlings and those sprayed with BNM297. This last bacterial strain was not effective in controlling FLS in vivo. Conclusions: Our data demonstrate that the application of antagonistic bacteria may be a promising and environmentally friendly alternative to control the FLS of soya bean. Significance and Impact of the Study: To our knowledge, this is the first report of biological control of C. sojina by using native Bacillus strains.  相似文献   

15.
The metabolic fate of the carbon skeleton of l-serine-U-14C has been investigated, in vivo and in vitro, in growing rats and chicks fed the diets with various protein calories percents (PC%) at 410 kcal of metabolizable energy.

The incorporation of 14C into body protein at 12 hr after the injection of serine-14C was about 49% of the injected dose in rats fed the 10 or 15 PC % diet, though the value was reduced in rats fed lower and higher protein diets. The 14CO2 production was smaller in rats fed the 10 and 15 PC% diet, and it showed an inverse pattern to that of the 14C incorporation into body protein. Urinary excretion of 14C was higher in rats fed 10 and higher PC% diets, whose growth rate and net body protein retention were maximum.

In contrast to the case of rats, the incorporation of 14C into body protein of chicks at 6 hr after the injection was rather reduced in the 15 PC% group. The proportion of 14C excreted as uric acid was remarkably increased above the 10 PC% group, and about 19% of the injected dose was recovered in the 50 PC% group.

The catabolic rate of serine in the liver slices of rats and chicks was increased by high protein diets.

These results support the concept that the nutritional significance of metabolism of the carbon skeleton of serine in growing rats and chicks is different from each other, especially at high protein diets.  相似文献   

16.
AIMS: To determine the mechanisms of Bacillus subtilis spore killing by and resistance to aqueous ozone. METHODS AND RESULTS: Killing of B. subtilis spores by aqueous ozone was not due to damage to the spore's DNA, as wild-type spores were not mutagenized by ozone and wild-type and recA spores exhibited very similar ozone sensitivity. Spores (termed alpha-beta-) lacking the two major DNA protective alpha/beta-type small, acid-soluble spore proteins exhibited decreased ozone resistance but were also not mutagenized by ozone, and alpha-beta- and alpha-beta-recA spores exhibited identical ozone sensitivity. Killing of spores by ozone was greatly increased if spores were chemically decoated or carried a mutation in a gene encoding a protein essential for assembly of the spore coat. Ozone killing did not cause release of the spore core's large depot of dipicolinic acid (DPA), but these killed spores released all of their DPA after a subsequent normally sublethal heat treatment and also released DPA much more readily when germinated in dodecylamine than did untreated spores. However, ozone-killed spores did not germinate with either nutrients or Ca(2+)-DPA and could not be recovered by lysozyme treatment. CONCLUSIONS: Ozone does not kill spores by DNA damage, and the major factor in spore resistance to this agent appears to be the spore coat. Spore killing by ozone seems to render the spores defective in germination, perhaps because of damage to the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide information on the mechanisms of spore killing by and resistance to ozone.  相似文献   

17.
AIMS: To determine if treatment of Bacillus subtilis spores with a variety of oxidizing agents causes damage to the spore's inner membrane. METHODS AND RESULTS: Spores of B. subtilis were killed 80-99% with wet heat or a variety of oxidizing agents, including betadine, chlorine dioxide, cumene hydroperoxide, hydrogen peroxide, Oxone, ozone, sodium hypochlorite and t-butylhydroperoxide, and the agents neutralized and/or removed. Survivors of spores pretreated with oxidizing agents exhibited increased sensitivity to killing by a normally minimal lethal heat treatment, while spores pretreated with wet heat did not. In addition, spores treated with wet heat or the oxidizing agents, except sodium hypochlorite, were more sensitive to high NaCl in plating media than were untreated spores. The core region of spores treated with at least two oxidizing agents was also penetrated much more readily by methylamine than was the core of untreated spores, and spores treated with oxidizing agents but not wet heat germinated faster with dodecylamine than did untreated spores. Spores of strains with very different levels of unsaturated fatty acids in their inner membrane exhibited essentially identical resistance to oxidizing agents. CONCLUSIONS: Treatment of spores with oxidizing agents has been suggested to cause damage to the spore's inner membrane, a membrane whose integrity is essential for spore viability. The sensitization of spores to killing by heat and to high salt after pretreatment with oxidizing agents is consistent with and supports this suggestion. Presumably mild pretreatment with oxidizing agents causes some damage to the spore's inner membrane. While this damage may not be lethal under normal conditions, the damaged inner membrane may be less able to maintain its integrity, when dormant spores are exposed to high temperature or when germinated spores are faced with osmotic stress. Triggering of spore germination by dodecylamine likely involves action by this agent on the spore's inner membrane allowing release of the spore core's depot of dipicolinic acid. Presumably dodecylamine more readily alters the permeability of a damaged inner membrane and thus more readily triggers germination of spores pretreated with oxidizing agents. Damage to the inner spore membrane by oxidizing agents is also consistent with the more rapid penetration of methylamine into the core of treated spores, as the inner membrane is likely the crucial permeability barrier to methylamine entry into the spore core. As spores of strains with very different levels of unsaturated fatty acids in their inner membrane exhibited essentially identical resistance to oxidizing agents, it is not through oxidation of unsaturated fatty acids that oxidizing agents kill and/or damage spores. Perhaps these agents work by causing oxidative damage to key proteins in the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: The more rapid heat killing and germination with dodecylamine, the greater permeability of the spore core and the osmotic stress sensitivity in outgrowth of spores pretreated with oxidizing agents is consistent with such agents causing damage to the spore's inner membrane, even if this damage is not lethal under normal conditions. It may be possible to take advantage of this phenomenon to devise improved, less costly regimens for spore inactivation.  相似文献   

18.
19.
The behaviour of Pseudomonas fluorescens EPS62e was investigated in apple and pear orchards under Mediterranean climatic conditions. The trials studied the influence of weather conditions, plant host species, presence of indigenous microbial community and spread from treated to nontreated trees on colonization and survival. Population dynamics were assessed by real-time PCR and CFU-counting methods. With inoculated flowers, weather conditions were optimal for colonization, and EPS62e established high and stable population levels around 10(8) CFU per organ, according to both methods of analysis. The plant host species did not influence the colonization rate, and the biocontrol agent dominated the microbial communities of blossoms, representing up to 100% of the total cultivable population. With inoculated leaves, the EPS62e population decreased to nondetectable levels 30 days after treatment according to both methods used. EPS62e spread moderately in the orchard, being detected in nontreated flowers of trees 15-35 m from the inoculation site. The combined use of real-time PCR and CFU-counting methods of analysis permitted the identification of three physiological states for EPS62e in the field, which consisted of active colonization, survival and entry into a viable but nonculturable state, and cell death.  相似文献   

20.
The fungus Monilinia vaccinii-corymbosi infects blueberry flowers via the stigma-style ovary pathway to cause mummy berry disease. Previous laboratory experiments documented considerable activity of stigma-applied biofungicides containing the bacteria Bacillus subtilis and, to a lesser extent, Pseudomonas fluorescens against flower infection by the pathogen. However, adequate and targeted delivery of the biocontrol agents to the stigmatic surfaces of open flowers in the field has remained problematic. Here we consider the application of the biofungicides Serenade AS (containing B. subtilis QST713) and BlightBan A506 (containing P. fluorescens A506) to blueberry flowers by air-assisted electrostatic spraying. In laboratory experiments with typical field-use rates, viability of B. subtilis and P. fluorescens was unaffected by different levels of induction-charging voltage (0–1.2 kV) and atomizing pressure (138–276 kPa) applied to an electrostatic spray-charging nozzle, showing that the bacteria in both formulations readily survived exposure to the intense electrical fields and near-sonic atomizing air shear encountered during electrostatic spraying. Electrostatically charged application significantly (P<0.0001) increased deposition of B. subtilis on the stigmatic surfaces of detached blueberry flower clusters by a factor of 4.5 compared with conventional hydraulic spraying; a similar comparison showed that population densities of P. fluorescens on the stigma were increased by a factor of 2.9, but this effect was not statistically significant (P=0.1487). For Serenade, the increased coverage and/or retention on the flower stigma, along with the excellent bacterial survival, portend well for electrostatic application for mummy berry disease control in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号