首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to develop biological control methods that are effective against the root-knot nematode Meloidogyne incognita (Kofoid and White) chitwood, the activity of ethanolic and aqueous extracts of wild plant species distributed on Okinawa Island on the viability and mobility of second stage M. incognita juveniles (J2s) was evaluated. Eleven of the 29 extracts immobilized at least half of the J2 stage nematodes in an in vitro assay. Aqueous extracts of Bidens pilosa L. var. radiata Scherff, Hydrocotyle dichondroides Makino, Oxalis corymbosa DC., Oxalis corniculata L., and Stenactis annus (L.) Cass gave 90% or better immobilization activity. Among these, B. pilosa var. radiata had the highest activity. Significant immobilization, lethality, repellence and egg hatching inhibition were observed with extracts from each B. pilosa plant part, but especially from leaves. The effects of plant extracts on the mobility of M. incognita were higher than on the free-living nematode Panagrolaimus sp., suggesting that M. incognita could be suppressed using B. pilosa extracts without significantly affecting beneficial nematodes.  相似文献   

2.
Culture filtrates of selected soil fungi, namely Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Fusarium oxysporum, Penicillium vermiculatum and Rhizopus nigricans exhibited variable response to egg hatching and mortality of the root-knot nematode, Meloidogyne incognita. Higher concentrations of the culture filtrates of all the fungi inhibited egg hatching and proved to be toxic to the juveniles of M. incognita. In addition, development of the gall and multiplication of M. incognita were also found adversely affected in varying degrees on all the plants of Vigna radiata treated with the filtrates. The culture filtrate of A. niger showed highest toxicity to the nematode than those of any other fungus tested. Soil drench application of the culture filtrates gave better seedling growth and least nematode multiplication in comparison to seed soaking treatment.  相似文献   

3.
Root-knot nematodes are serious pathogens that severe damage to major crops. They damage plant root system that caused significant yield losses. Moreover, the predisposition of nematode-infected plants is secondary infection from fungal plant pathogen that additional adverse effects on plant growth. Our target is to find the antagonist for control nematode, and secondary infection agents and stimulate plant growth. Twenty-three plant-parasitic nematode infested soils were taken from some provinces in the northern and center of Thailand and actinomycetes and fungi were isolated. Eighty-three isolates belong to actinomycete and 67 isolates were fungi. The predominant actinomycete taxa was Streptomyces (97.6%). The predominant fungal taxa were Penicillium (37.3%) and Fusarium (32.8%). All actinomycete and fungal isolates were subjected for primary screening in vitro for their effects on egg hatching and juvenile mortality of Meloidogyne incognita. Secondary screening was evaluated for antagonist effect on plant pathogenic fungi collected from nematode-infected plant, plant growth hormone (indole-3-acetic acid; IAA) and siderophore production. From primary screening, 7 actinomycete and 10 fungal isolates reduced egg hatching and kill juveniles of M. incognita after 7 days incubation. In secondary screening, 10 nematophagous microbes produced IAA and 9 isolates produced hydroxamate siderophore. Streptomyces sp. CMU-MH021 was selected as a potential biocontrol agent. It reduced egg hatching rate to 33.1% and increased juvenile mortality rate to 82% as contrasted to the control of 79.6 and 3.6%, respectively. This strain had high activity to against tested fungi and high ability on IAA (28.5 μg ml−1) and siderophore (26.0 μg ml−1) production.  相似文献   

4.
The present study was carried out in vitro to determine the efficacy of indigenous fungi isolated from egg masses of root-knot nematode, Meloidogyne incognita on egg parasitism, egg hatching, mobility and mortality against root-knot nematode, M. incognita. The tested fungi were Acremonium strictum, Aspergillus terreus, A. nidulans, A. niger, Chetomium aubense, Chladosporium oxysporum, Fusarium chlamydosporium, F. dimarum, F. oxysporum, F. solani, Paecilomyces lilacinus, Pochonia chlamydosporia, Trichoderma viride and T. harzianum. All tested fungi showed varied effects against the nematodes. Culture filtrates of A. strictum was very effective against the nematode in regards to egg parasitism (53%), egg hatching inhibition (86%) and mortality (68%) compared to controls. A. strictum was found to have an advantage over P. lilacinus, P. chlamydosporia, T. viride and T. harzianum in that it caused greater mortality of the second stage juveniles (J2). A. terreus did not show egg parasitism but was found to be highly toxic against second stage juveniles (J2) causing high mortality (around 68%). Thus, A. strictum and A. terreus showed good biocontrol potential against root-knot nematode, M. incognita under in vitro conditions.  相似文献   

5.
The present study was carried out to assess the nematicidal potential of Punica granatum L. against the root-knot nematode Meloidogyne javanica responsible for yield losses in tomato. Varied concentrations of methanolic, ethanolic and aqueous extracts from pomegranate peels were investigated for activity against eggs and juveniles of M. javanica in in vitro assays. All extracts used significantly inhibited egg hatch by over than 75%, but viability of second-stage juveniles (J2) was not significantly inhibited by ethanolic extract. Aqueous extract was assessed at the concentration of 10, 25 and 50% against M. javanica on tomato in greenhouse trials; pomegranate peels powder was also tested at the rate of 3, 6 and 9 g as a soil amendment. Both extracts significantly reduced nematode infestations; aqueous extract enhanced plant growth but powder amendment exhibited a phytotoxicity compared to the untreated plants. The reduction in number of galls, egg masses and nematode reproduction rate was recorded.  相似文献   

6.
Strong evidence suggests that cryoprotectant accumulation during pre-cold acclimation protects cells against freezing injuries caused by cellular dehydration. In this study, the concentrations of trehalose and glycerol were measured in Meloidogyne incognita and it was found that both cryoprotectants were significantly accumulated in second-stage juveniles (J2) of M. incognita after acclimation at 4°C. However, compared with non-acclimated samples, only a higher level of trehalose was induced in the egg masses of M. incognita in response to cold treatment. Further characterizations indicated that pre-cold acclimation efficiently accelerated the speed of larvae hatching from egg masses that were subjected to freezing at −1°C. In addition, the survival rate and pathogenicity of M. incognita J2 that had been acclimated prior to freezing were significantly enhanced when compared with non-acclimated J2 individuals. As far as we know, this is the first time that this phenomenon has been reported in M. incognita.  相似文献   

7.

Leaf extracts of noxious weeds such as Solanum xanthocarpum and Argemone maxicana were used as bare-root dip treatment for the management of three important plant-parasitic nematodes, Meloidogyne incognita, Rotylenchulus reniformis and Tylenchorhynchus brassicae infesting tomato (Lycopersicon esculantum ) and chilli (Capsicum annuum) plants. Significant reduction was observed in the root-knot development caused by M. incognita, multiplication of nematode populations of R. reniformis and T. brassicae on both the test plants. Larval penetration of second stage juveniles of M. incognita was also inhibited at various concentrations of leaf extracts and dip durations. Leaf extract of S. xanthocarpum caused relatively more inhibition in root-knot development in case of root-knot nematode, nematode multiplication of reniform and stunt nematodes than that of A. maxicana. Because of dip treatment in leaf extracts of Argemone maxicana and Solanum xanthocarpum, the plants show better growth and at the same time the populations of nematodes such as M. incognita, R. reniformis and T. brassicae significantly decreased, which naturally improved plant growth. The efficacy of root-dip treatment with respect to improvement in plant weight and reduction in root-knot development and nematode populations, increased with increasing the concentration of leaf extracts and dip durations.  相似文献   

8.
Abstract

Root-knot nematodes (Meloidogyne spp.) are one of the most harmful plant pathogenic nematodes worldwide. Application of some herbal products can safely reduce negative effect of these nematodes. In the present study, the effect of aqueous extracts of Amygdalus scoparia and Arctium lappa on hatching and mortality of second-stage juveniles of M. javanica evaluated under laboratory condition and LC30, LC50, LC70 and LC90 values were determined by probit analysis from March to November 2016. Tomato seeds (cv. Early-Urbana) were sown in 1.5?kg plastic pots and simultaneously were inoculated with 4000 eggs and second stage juveniles (J2s) of M. javanica and soil-drenched (50?ml/pot) with selected concentrations of A. scoparia viz. 0.37, 0.54, 0.8 and 1.39% and A. lappa viz. 0.51, 0.85, 1.4 and 2.91%. The experiments were carried out in completely randomized design tests with four replications. Plant growth parameters as well as nematode population indices were calculated 60?days after inoculation. Results showed that after 120?hours, leaf extracts of A. scoparia at the rate of 7.5 and 10%, and leaf extract of A. lappa at the rate of 10% lead to 100% inhibition of M. javanica egg hatching under laboratory condition. Leaf extracts of both of the tested plants at the rate of 2% caused 100% mortality of J2s. Any increase in concentration of used plant extracts significantly improved the growth indices in both of the inoculated and uninoculated tomato plants. As compared to control, application of A. scoparia leaf extract at the rate of 2%, reduced the number of galls, egg masses and eggs per root system as well as the number of J2s per pot and reproduction factor of nematode by 37, 43, 45, 73 and 46%, and in the case of A. lappa, these indices reduced by15, 26, 27, 74 and 28%, respectively. Our results showed potential of leaf extracts of A. scoparia and A. lappa for management of M. javanica infecting tomato plants.  相似文献   

9.
An investigation was carried out to study the pathogenicity of root knot nematode Meloidogyne incognita on okra and its management through various organic amendments. The inoculum level of 1000 juveniles per plant showed significant reduction in various plant growth parameters, which reveals that M. incognita is a potential pathogen of okra. With the increase in inoculums level of M. incognita (J2), there was a progressive decrease in various plant growth parameters. The maximum reduction in plant growth parameters was observed at an inoculum level of 4000 juveniles per plant. The efficacy of five organic amendments viz. groundnut cake, castor cake, sunflower cake, linseed cake and sawdust was tested against root knot nematode M. incognita. Amending the soil with different oil cakes was found to be effective in reducing the nematode soil population, number of females, number of egg masses as well as root gall formation in okra. The highest increase in plant growth (13%) and maximum reduction in number of galls (54%), number of females (57%) and number of egg masses (55%) was recorded on application of groundnut cake.  相似文献   

10.
Guardian peach rootstock was evaluated for susceptibility to Meloidogyne incognita race 3 (Georgia-peach isolate) and M. javanica in the greenhouse. Both commercial Guardian seed sources produced plants that were poor hosts of M. incognita and M. javanica. Reproduction as measured by number of egg masses and eggs per plant, eggs per egg mass, and eggs per gram of root were a better measure of host resistance than number of root galls per plant. Penetration, development, and reproduction of M. incognita in Guardian (resistant) and Lovell (susceptible) peach were also studied in the greenhouse. Differences in susceptibility were not attributed to differential penetration by the infectivestage juveniles (J2) or the number of root galls per plant. Results indicated that M. incognita J2 penetrated Guardian roots and formed galls, but that the majority of the nematodes failed to mature and reproduce.  相似文献   

11.
The root-knot nematode Meloidogyne incognita is one of the most damaging plant parasitic nematodes in the world. In this study, the effect of cystatin from Amaranthus hypochondriacus (AhCPI) as a potential control agent for M. incognita was explored. In vitro bioassays demonstrated that AhCPI affects the growth and development of eggs and the infectivity of juveniles (J2) of M. incognita, such as mortality and slower development, showing characteristic tissue damage. Mortality levels were quantified by Probit analysis, estimating LC50s of 1.4 mg/mL for eggs and 0.028 mg/mL for J2. In planta bioassays showed that infected tomato seedlings treated with 0.056 mg/mL of AhCPI showed a 60% reduction in the number of galls, as compared with untreated J2-inoculated seedlings. Under greenhouse conditions, three applications of 10 mL of AhCPI (1.4 mg/mL) in the soil around the stem of M. incognita-infected tomato plants, reduced the number of galls by 93 ± 8%, as compared to the control M. incognita-infected plants. The application of AhCPI to the infected plants increased the yield (10.7%) of harvested tomato fruits, as compared to infected plants. These results show the potential of AhCPI for the control of M. incognita in tomato plants.  相似文献   

12.
In Pseudomonas fluorescens CHA0, mutation of the GacA-controlled aprA gene (encoding the major extracellular protease) or the gacA regulatory gene resulted in reduced biocontrol activity against the root-knot nematode Meloidogyne incognita during tomato and soybean infection. Culture supernatants of strain CHA0 inhibited egg hatching and induced mortality of M. incognita juveniles more strongly than did supernatants of aprA and gacA mutants, suggesting that AprA protease contributes to biocontrol.  相似文献   

13.
Three isolates of Verticillium leptobactrum proceeding from egg masses of root-knot nematodes (RKN) Meloidogyne spp. and soil samples collected in Tunisia were evaluated against second-stage juveniles (J2) and eggs of M. incognita, to determine the fungus biocontrol potential. In vitro tests showed that V. leptobactrum is an efficient nematode parasite. The fungus also colonized egg masses and parasitized hatching J2. In a greenhouse assay with tomato plants parasitized by M. incognita and M. javanica, V. leptobactrum was compared with isolates of Pochonia chlamydosporia and Monacrosporium sp., introducing the propagules into nematode-free or naturally infested soils. The V. leptobactrum isolates were active in RKN biocontrol, improving plants growth with a significant increase of tomato roots length, lower J2 numbers in soil or egg masses, as well as higher egg mortalities. In a second assay with M. javanica, treatments with three V. leptobactrum isolates reduced egg masses on roots as well as the density of J2 and the number of galls. To evaluate the fungus capability to colonize egg masses a nested Real-time polymerase chain reaction (PCR) assay, based on a molecular beacon probe was used to assess its presence. The probe was designed on a V. leptobactrum ITS region, previously sequenced. This method allowed detection of V. leptobactrum from egg masses, allowing quantitative DNA and fungal biomass estimations.  相似文献   

14.
An isolate of the actinomycete, Streptomyces sp. CMU-MH021 produced secondary metabolites that inhibited egg hatch and increased juvenile mortality of the root-knot nematode Meloidogyne incognita in vitro. 16S rDNA gene sequencing showed that the isolate sequence was 99% identical to Streptomyces roseoverticillatus. The culture filtrates form different culture media were tested for nematocidal activity. The maximal activity against M. incognita was obtained by using modified basal (MB) medium. The nematicidal assay-directed fractionation of the culture broth delivered fervenulin (1) and isocoumarin (2). Fervenulin, a low molecular weight compound, shows a broad range of biological activities. However, nematicidal activity of fervenulin was not previously reported. The nematicidal activity of fervenulin (1) was assessed using the broth microdilution technique. The lowest minimum inhibitory concentrations (MICs) of the compound against egg hatch of M. incognita was 30 μg/ml and juvenile mortality of M. incognita increasing was observed at 120 μg/ml. Moreover, at the concentration of 250 μg/ml fervenulin (1) showed killing effect on second-stage nematode juveniles of M. incognita up to 100% after incubation for 96 h. Isocoumarin (2), another bioactive compound produced by Streptomyces sp. CMU-MH021, showed weak nematicidal activity with M. incognita.  相似文献   

15.
Filtrates of three isolates of the nematophagous fungus Verticillium leptobactrum were evaluated for their nematicidal activity against the root-knot nematode Meloidogyne incognita. The filtrates inhibited egg hatching, with maximum toxicity observed for isolate HR21 at 50% (v:v) dilution, after 7 days exposure. Filtrates also inactivated second-stage juveniles (J2) at 10-50% dilutions. A scanning electron microscopy study of treated eggs showed severe alterations caused by the filtrate of isolate HR43 on M. incognita eggs, which appeared collapsed and not viable, suggesting the production of chitin-degrading enzymes or other active compounds.  相似文献   

16.
Significant reduction was observed in the population of plant-parasitic nematodes, Meloidogyne incognita, Rotylenchulus reniformis and Tylenchorhynchus brassicae infesting eggplant and cauliflower when given root-dip treatment in the leaf extracts of Argemone maxicana and Solanum xanthocarpum at different concentrations and dip durations. The root-knot development and larval penetration of second stage juveniles of M. incognita were also inhibited, may be due to bare-root dip treatment in leaf extracts of both the weed plants. Leaf extracts of S. xanthocarpum caused more inhibition in root-knot development, nematode multiplication of reniform and stunt nematodes than that of A. maxicana. Plant growth improvement was noted which seems to be due to dip treatment and reduction in the population of parasitic nematodes. The efficacy of root-dip treatment with respect to improvement in plant growth of eggplant and cauliflower and reduction in root-knot development and nematode population, increased with increasing the concentration of leaf extracts and dip durations.  相似文献   

17.
Five isolates of Arthrobotrys dactyloides were isolated from different locations of India and their in vitro predacity was tested against Meloidogyne incognita (J2), Tylenchorhynchus brassicae and Hoplolaimus indicus. All isolates of A. dactyloides captured and killed M. incognita and T. brassicae but not H. indicus. The isolates also differed in their predacity of the first two nematode species. The application of mass culture of A. dactyloides in soil infested with 2000 juveniles of M. incognita per ‘kg’ before planting of tomato seedlings reduced the number of root knots by 5.6–45.6%, of females by 44.7–72.9%, of egg masses by 44.5–51.3% and of juveniles by 37.9–81.8% and increased the plant growth in a pot experiment. The effect of this fungus as biocontrol agent was enhanced when its mass culture was applied with cow dung manure, which reduced the number of root knots by 61.7–66.6%, of females by 80.6–94.7%, of egg masses by 80.3–89.6% and of juveniles by 68.1–88.0%.  相似文献   

18.
Nemours effective management tactics were used to reduce world crop losses caused by plant-parasitic nematodes. Nowadays the metallic nanoparticles are easily developed with desired size and shape. Nanoparticles (NPs) technology becomes a recognized need for researchers. Ecofriendly and biosafe SiNPs are developed from microorganisms. Recently, silicon nanoparticles (SiNPs) have gained novel pesticide properties against numerous agricultural pests. This study assessed the biosynthesis of SiNPs from Fusarium oxysporum SM5. The obtained SiNPs were spherical with a size of 45 nm and a negative charge of −25.65. The nematocidal effect of SiNPs against egg hatching and second-stage juveniles (J2) of root-knot nematode (RKN) (Meloidogyne incognita) was evaluated on eggplant,Solanum melongena L. plants. In vitro, all tested SiNPs concentrations significantly (p ≤ 0.05) inhibited the percentage of egg hatching at a different time of exposure than control. Meanwhile, after 72 h, the percent mortality of J2 ranged from 87.00 % to 98.50 %, with SiNPs (100 and 200 ppm). The combination between SiNPs and the half-recommended doses (0.5 RD) of commercial nematicides namely,  fenamiphos (Femax 40 % EC)R, nemathorin (Fosthiazate 10 % WG) R, and fosthiazate (krenkel 75 % EC) R confirmed the increase of egg hatching inhibition and J2 mortality after exposure to SiNPs (100 ppm) mixed with 0.5 RD of synthetic nematicides. The findings suggest that the combination between SiNPs, and 0.5 RD of nematicides reduced nematode reproduction, gall formation, egg masses on roots and final population of J2 in the soil. Therefore, improving the plant growth parameters by reducing the M. incognita population.  相似文献   

19.
The individual, concomitant and sequential inoculation of second stage juveniles (at 2000 J2/kg soil) of Meloidogyne incognita and Rhizoctonia solani (at 2 g mycelial mat/kg soil) showed significant reduction in plant growth parameters viz. plant length, fresh weight and dry weight as compared to control. The greatest reduction in plant growth parameters was recorded in the plants simultaneously inoculated with M. incognita and R. solani followed by sequential and individual inoculation. In sequential inoculation, plant inoculated with M. incognita 15 days prior to R. solani shows more reduction in comparison to plant inoculated with R. solani 15 days prior to M. incognita. Moreover, the multiplication of nematode and number of galls/root system were significantly reduced in concomitant and sequential inoculation as compared to individual inoculation, whereas the intensity of root-rot/root system caused by R. solani was increased in the presence of root-knot nematode M. incognita as compared to when R. solani was inoculated individually.  相似文献   

20.
The efficacy of the phosphonate fertilizers, Calphos® (a.i. calcium phosphonate), Magphos® (a.i. magnesium phosphonate and potassium phosphonate) and Phosphoros® (a.i. potassium phosphonate) against two species of root knot nematodes (RKN), Meloidogyne javanica and M. incognita is evaluated. Laboratory experiments showed that Calphos®, Magphos® and their main components inhibited egg hatching and caused 100% mortality of the second stage juveniles (J2s) of the two RKN species; the hatching inhibition effects persisted after transferring the egg masses of both species to water. However, Phosphoros® (0.5%) did not suppress egg hatching or the survival of J2s of both RKN species. No hatching occurred when egg masses were treated for one week with the nematicide Vydate L® (2 ml/l), however, J2s hatched when the Vydate L® treated egg masses were moved to water. The glasshouse study indicated that Magphos®, Calphos® and Phosphoros® reduced root galling caused by M. javanica by 98, 66 and 47%, respectively, in comparison to the untreated controls. Magphos® resulted in the lowest number of root galls formed by M. incognita, the reduction was 84%. In contrast, Calphos® and Phosphoros® reduced galling by 47 and 39%, respectively. The Magphos® treatment resulted in the lowest numbers of egg masses and the lowest reproductive factor (RF) of both nematode species. However, plants treated with Phosphoros® resulted in higher foliage weights compared with the application of the other two fertilizers and the untreated plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号