首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seed mycoflora associated with wheat was studied on different media with a particular reference to Blotter and potato dextrose agar (PDA) procedures of ISTA. Seed-borne fungi, viz. Fusarium moniliforme, Rhizopus spp., Mucor spp., Alternaria alternata, Aspergillus niger, Aspergillus flavus, Curvularia lunata, Drechslera spp, Alternaria spp. and Penicillium spp., were isolated from the variety HD264. Blotter method was found to be the best media for the isolation of mycoflora whether borne externally or internally. Total number and frequency of occurrence of fungi were recorded. The effect of seed treatment with different chemicals and eco-friendly botanicals was analysed on germination, and growth, better percentage of seed germination and reduction in fungal pathogen were due to biochemical seed treatment.  相似文献   

2.
Pearl millet (Pennisetum glaucum L. Br.) is the most important crop in India and Africa. Downy mildew disease of pearl millet caused by the oomycetous fungus Sclerospora graminicola (Sacc.) Schroet., is the major biological constraint in the production of pearl millet. Plasma membrane H+-ATPase is induced in resistant pearl millet against downy mildew pathogen. Sodium orthovanadate, an inhibitor of H+-ATPase, was used in this study to understand its effect on other known defence responses in pearl millet including H+-ATPase. Results suggest that vanadate down-regulates all defence responses tested, such as H+-ATPase (53 ± 5.0%), peroxidase (36 ± 5.6%), phenylalanine ammonia lyase (43 ± 4.5%), β-1,3 glucanase (25 ± 4.2%), lytic activity (32 ± 3.0%), hypersensitive response (57 ± 4.3%) and pathogen colonisation. These data indicate that the plasma membrane H+-ATPase may be a key step in the signaling pathway leading to defence activation in pearl millet against downy mildew disease.  相似文献   

3.
4.
The response to increasing NaCl concentration of seedlings of 25 accessions of Ethiopian land races of each of Pennisetum americanum (L.) Leeke (pearl millet) and Eleusine coracana (L.) Gaertn (finger millet), and 15 accessions of Eragrostis tef (Zucc.) Trotter (tef), was examined after two week's growth in NaCl solution culture. Although increasing NaCl concentration significantly reduced seedling root lengths, there was considerable variation within, and between accessions within each species.Analysis based upon a non-linear least square inversion method, using root length data, revealed significant differences in accessions of P. americanum and E. tef on the basis of the estimated salinity threshold, C t , the NaCl concentrations at which root length begins to decrease. C t did not differ significantly between E. coracana accessions. Estimates of C50 and C0, mininum concentrations causing a 50% decrease in root length, and zero root growth respectively, revealed differences between and within accessions for all three species. Overall, finger millet was more tolerant than tef, which was more tolerant than pearl millet. There is clear evidence that differences in tolerance are genetically based from broad sense heritability estimates.  相似文献   

5.
Six strains of Plant growth promoting Rhizobacteria (PGPR) were tested for their ability to promote growth and induce resistance in pearl millet against downy mildew disease. All the PGRP strains showed a significant (P < 0.01) increase in growth promotion in laboratory as well as greenhouse conditions. Only two strains of Pseudomonas spp., UOM ISR 17 and UOM ISR 23, were capable of protecting pearl millet against downy mildew significantly. Pseudomonas UOM ISR 17 and UOM ISR 23 were able to offer 56.3 and 47.5%, respectively against downy mildew disease. When tested for the time gap needed to offer maximum protection, it was found that both the strains needed four days to offer maximum protection of 73.3% and 59.7%, respectively. While both the Acetobacter strains UOM Ab9 and Ab11 and Azospirillum strain UOM Az3 were able to promote growth and offered disease protection of 39.2, 22.3 and 17.40% respectively, they were not as efficient as the two Pseudomonas strains in protecting pearl millet against downy mildew. Maximum growth promotion was recorded by Pseudomonas spp. UOM ISR 17 with 33.9 cm height which was 44, 45, 42 and 46.8% more in height, fresh weight, dry weight and leaf area over the control which recorded 27 cm height, 8.1 g fresh weight, 2.1 g dry weight and 29 cm2 leaf area, respectively.  相似文献   

6.
The cDNA encoding the antifungal protein AFP from the mould Aspergillus giganteus was introduced into two pearl millet (Pennisetum glaucum) genotypes by particle bombardment. Stable integration and expression of the afp gene was confirmed in two independent transgenic T0 plants and their progeny using Southern blot and RT-PCR analysis. In vitro infection of detached leaves and in vivo inoculation of whole plants with the basidomycete Puccinia substriata, the causal agent of rust disease, and the oomycete Sclerospora graminicola, causal agent of downy mildew, resulted in a significant reduction of disease symptoms in comparison to wild type control plants. The disease resistance of pearl millet was increased by up to 90% when infected with two diverse, economically important pathogens. This is the first report of genetic enhancement of Pennisetum glaucum against fungal infections.  相似文献   

7.
8.
Pearl millet is widely consumed in regions of Africa and Asia, and is increasingly being grown as an alternative grain in drought-prone regions of the United States. Pearl millet and corn were grown in dryland conditions at Tifton, Georgia, USA and grains were compared for pre-harvest infection by potentially toxigenic fungi and contamination by mycotoxins. Corn hybrids Agripro 9909 and Pioneer 3146, and pearl millet Tifgrain 102 were grown in 2000 and 2001; pearl millet HGM 100 was included in the test in 2001. Hybrids were sown on multiple planting dates in each year to induce variation in flowering time. Host species differed in the frequency of isolation of potentially toxigenic fungal species in both years. Across years, corn hybrids were more prone to infection by Aspergillus flavus Link (maximum isolation frequency = 8.8%) and Fusarium moniliforme Sheldon sensu lato (maximum isolation frequency = 72.8%), with corresponding greater concentrations of aflatoxins (maximum concentration = 204.9 μg kg−1) and fumonisins (maximum concentration = 34,039 μg kg−1). Pearl millet was more prone to infection by F. semitectum Berk. & Ravenel (maximum isolation = 74.2%) and F. chlamydosporum Wollenweb & Reinking (maximum isolation = 33.0%), and contamination by moniliformin (maximum contamination = 92.1 μg kg−1). Beauvericin (maximum concentration = 414.6 μg kg−1) was present in both hosts. Planting date of corn affected aflatoxin and beauvericin contamination in 2000, and fumonisin concentration in 2001. The observed differences in mycotoxin contamination of the grains, which are likely due to host-specific differences in susceptibility to pre-harvest mycoflora, may affect food safety when the crops are grown under stress conditions.  相似文献   

9.
The effects of seed dressing, sowing date and cultivar on incidence and severity of downy mildew of pearl millet induced by Sclerospora graminicola and yield were studied in a two-year field trial conducted at the Research farm of University of Maiduguri. The millet cultivars, Ex-Borno, SOSAT-C88, GB 8735 and Gwagwa were each dressed with metalaxyl at 0.75 and 1.50 g a.i./kg seed; and a batch of undressed seeds of each cultivar served as control. Both dressed and undressed seeds were used for dry-planting and wet-planting in early and late seasons. The results showed that seed dressing with the fungicides significantly (p ≤ 0.05) reduced the incidence and severity of downy mildew and increased grain yield. Dry-planting also significantly (p ≤ 0.01) increased grain yield irrespective of disease incidence. Delay in sowing led to a significant reduction in incidence and severity of downy mildew. Differences between the cultivars in relation to incidence and severity of downy mildew and grain yield were significant. SOSAT-C88 developed low or no downy mildew in both seasons. Sowing of dressed SOSAT-C88 as soon as rainfall established appeared most beneficial in the control of downy mildew. Dry- or wet-planting Ex-Borno dressed with any of the metalaxyl formulations proved to be effective for downy mildew management and for high yield.  相似文献   

10.
Assessment of genetic diversity within and between pearl millet landraces   总被引:4,自引:0,他引:4  
A minimum core subset of pearl millet [Pennisetum glaucum (L.) R. Br.], which comprised 504 landrace accessions, was recently established from the global pearl millet germplasm collection of ICRISAT. The accessions for this core were selected by a random proportional sampling strategy following stratification of the entire landrace collection (about 16,000 accessions) according to their geographic origin and morpho-agronomic traits. In this study RFLP probes were used to quantify the genetic diversity within and between landrace accessions of this minimum core using a subset comprising ten accessions of Indian origin. Twenty five plants per accession were assayed with EcoRI, EcoRV, HindIII and DraI restriction enzymes, and 16 highly polymorphic RFLP probes, nine associated with a quantitative trait loci (QTLs) for downy mildew resistance, and five associated with a QTL for drought tolerance. A total of 51 alleles were detected using 16 different probe-enzyme combinations. The partitioning of variance components based on the analysis of molecular variance (AMOVA) for diversity analysis revealed high within-accession variability (30.9%), but the variability between accessions was significantly higher (69.1%) than that within the accessions. A dendrogram based on the dissimilarity matrix obtained using Ward's algorithm further delineated the 250 plants into ten major clusters, each comprised of plants from a single accession (with the exception of two single plants). A similar result was found in an earlier study using morpho-agronomic traits and geographic origin. This study demonstrated the utility of RFLP markers in detecting polymorphism and estimating genetic diversity in a highly cross-pollinated species such as pearl millet. When less-tedious marker systems are available, this method could be further extended to assess the genetic diversity between and within the remaining accessions in the pearl millet core subset.  相似文献   

11.
Toxigenicity of fungi from grain sorghum   总被引:2,自引:0,他引:2  
The mycoflora of nine varieties of grain sorghum was determined by plating serial dilutions of ground samples on rose bengal-streptomycin agar. Seventeen species of fungi representing 10 genera were identified. Curvularia, Penicillium, Mucor, and Aspergillus were dominant genera. Extracts of P. herquei were highly toxic to brine shrimp, while those of C. clavata, C. lunata, and Mucor mucedo showed low to moderate toxicity. Extracts of C. clavata, C. lunata, and M. mucedo were highly toxic to chicken embryos; those of six other species showed low to moderate toxicity. Extracts of C. clavata, C. lunata, M. mucedo, Fusarium moniliforme, Alternaria tenuissima, P. herquei, and P. steckii showed varying degrees of toxicity to day-old cockerels.  相似文献   

12.
Plant resistance (R) proteins belonging to nucleotide-binding site–leucine-rich repeat (NBS–LRR) family are mainly involved in recognition of effectors secreted by pathogens. Pearl millet [Pennisetum glaucum (L.) R.Br] is one of the most drought tolerant cereals, staple food crop of the semi-arid tropics but is highly susceptible to the downy mildew disease caused by oomycetous Sclerospora graminicola (Sacc) schroet. Earlier studies have identified several resistance gene analogues (RGAs) in pearl millet which may be involved in resistance against downy mildew. Of these, a clone RGPM213 was shown to have more than 60% identity with R-proteins coding for NBS–LRR-like protein kinase. The exact nature and function of the R-protein encoded by this gene was not known. In the present study, the cDNA of RGPM213 encompassing NBS–LRR region was inserted into an expression vector pRSET-A and transformed into BL21 E.coli cells. The expressed recombinant fusion protein with a His tag was purified using nickel affinity purification and it had a molecular weight of 35 kDa on SDS-PAGE. Immunoaffinity purification using antibodies raised against this recombinant R-protein identified two proteins of molecular weights 55 kDa and 66 kDa from pearl millet seedling extracts. Peptide mass fingerprinting of these proteins followed by homology search in database revealed similarity of the 55 kDa protein with a protein kinase from Brassica oleracia containing serine/ threonine kinase domain.  相似文献   

13.
Bagasse remaining after extracting the juice from crop biomass for ethanol production could be preserved as silage and used in animal feedstock, but the nutritive and conservation attributes of bagasse silage from sweet sorghum (Sorghum bicolor (L.) Moench) and sweet pearl millet (Pennisetum glaucum (L.) R.Br) are not well known. We evaluated the nutritive and conservation attributes of silages made with the bagasse of two species (sweet pearl millet and sweet sorghum) harvested on two dates (August and September) at two sites in Québec (Canada) and ensiled after four delays between biomass chopping and pressing (0.5, 2, 4, and 6 h). Bagasse silages made in laboratory silos were considered well preserved (pH?≤?4.0, NH3-N?<?100 g kg?1 total N, lactate?>?30 g kg?1 DM, no propionic and butyric acids) regardless of species, harvest date, or delay between biomass chopping and pressing. Sweet pearl millet and sweet sorghum bagasse silages had similar total N concentration, in vitro true digestibility of dry matter (IVTD), and in vitro neutral detergent fiber digestibility (NDFD). Bagasse silage made from biomass harvested in August rather than in September had a 4 % greater concentration of total N, a 4 % greater IVTD, and a 8 % greater NDFD. The delay between biomass chopping and pressing did not affect the nutritive and conservation attributes of silages. Juice extraction from the biomass of sweet pearl millet and sweet sorghum did not impair attributes of good silage fermentation but it reduced its nutritive value.  相似文献   

14.
A germplasm collecting trip to Malawi was launched during March/April 1979, resulting in the collection of 260 traditional cultivars of pearl millet (Pennisetum americanum), 11 intermediate forms, and 6 accessions of wild Pennisetum. Most of the cultivated pearl millet samples were obtained from the hot lowlands of the lower Shire Valley, with a few samples from the cool highlands of Mulanje and Mangochi. A mixture of different types that varied in plant height, maturity, and spike characters were observed in farmers’ fields. In the south, early types with loose, thin, cylindrical spikes and in the north, late-maturing types producing many tillers with stout spikes having long bristles were found. The grain is used to prepare a thick porridge, nsima, or to brew local beer, chimera. When the collection was evaluated at ICRISAT Center, Patancheru, considerable variation was observed for days to 50% flowering and plant height, but not for spike and grain characters. During the rainy season, the majority of the accessions flowered early (70 days), grew very tall (250 cm), and produced thin (22 mm), short (22 cm) spikes with small, obovate to elliptical, corneous grey grain. In the postrainy season, most of the accessions flowered a week earlier accompanied by reduction in plant height. Millet germplasm from Malawi belongs to the race typhoides and serves as a good source of genes for earliness, tillering, and corneous endosperm.  相似文献   

15.
Abstract

Downy mildew (Sclerospora graminicola [Sacc.] Schroet.) is a serious agricultural problem for pearl millet (Pennisetum glaucum [L.] R. Br.) grain production under field conditions. Six medicinally important plant species Azadirachta indica, Argemone mexicana, Commiphora caudata, Mentha piperita, Emblica officinalis and Viscum album were evaluated for their efficacy against pearl millet downy mildew. Seeds of pearl millet were treated with different concentrations of aqueous extract of the plants to examine their efficacy in controlling downy mildew. Among the plant extracts tested, V. album treatment was found to be more effective in enhancing seed quality parameters and also in inducing resistance against downy mildew disease. Germination and seedling vigor was improved in seeds treated with V. album extracts over control. Seeds treated with 10% concentration of V. album showed maximum protection against downy mildew disease under greenhouse and field conditions. The downy mildew disease protection varied from 44–70% with different concentrations. Leaf extract of V. album did not inhibit sporulation and zoospore release from sporangia of Sclerospora graminicola, indicating that the disease-controlling effect was attributed to induced resistance. Seed treatment with V. album extract increased pearl millet grain yield considerably. In V. album, treated pearl millet seedlings increased activities of peroxidase, and phenylalanine ammonia-lyase enzyme was detected. FTIR analysis of V. album extracts showed the presence of amides and other aromatic compounds which are antimicrobial compounds involved in plant defense.  相似文献   

16.
Kodo millet (Paspalum scrobiculatum L.) is known for its high nutritive value, dietary fiber, antioxidant activity, as well as for drought tolerance. It is primarily grown as a grain in India and in Africa it is either cultivated or harvested in wild. Neutral—ISSR (inter simple sequence repeat) as well as functional—SCoT (start codon targeted) and SRAP (sequence-related amplified polymorphism) markers were employed for genetic diversity studies in 96 accessions of kodo millet collected from diverse regions of India. The genetic diversity parameters like average bands per primer, Polymorphic information content, Nei’s gene diversity and Shannon’s information index of 11.22, 9.69; 0.12, 0.11; 0.15 ± 0.14, 0.13 ± 0.13 and 0.26 ± 0.21, 0.22 ± 0.19 was observed with neutral and functional markers respectively. Neutral markers were showing higher values as compared to functional markers for the genetic diversity parameters as discussed. Structure based analysis placed all the accessions into four sub-groups not strictly according to their geographical locations. The accessions from Bihar followed by Karnataka were showing high diversity based on both the marker systems useful for designing exploration, conservation and germplasm enrichment strategies. Further, the set of diverse accessions selected based on these markers would serve as potential sources of unique alleles and may be exploited in future for enhancement and utilization of kodo millet germplasm. Usage of African gene pool and wild species for broadening the genetic base of Indian kodo millet was also suggested based on the present studies.  相似文献   

17.
Plant growth is often affected with hampered physiological and cellular functioning due to salinity and drought stress. To assess the effectiveness of plant bioregulators (PBRs) in mitigating abiotic stresses, a double spilt plot field study was conducted with three replications at ICAR-CSSRI, research farm, Nain, Panipat. The study comprised of three deficit irrigation regimes viz., 100, 80 and 60% of crop evapo-transpiration (ETc) (I1, I2 and I3), four levels of irrigation water salinity i.e. 2, 4, 8, 12 dS m−1 (S0, S1, S2 and S3) and two PBRs salicylic acid (SA; G1) and thiourea (TU; G2). Irrigations, as per regimes and salinity, were applied at identified critical stages of wheat and if needed in pearl millet. PBRs were applied as seed priming and foliar sprays at two sensitive stages of respective crops. The trend of plant height, and physiological and biochemical traits was similar under different treatments at both stages, but differed significantly only at reproductive stage. Water deficit caused significant reduction in pearl millet (5.1%) and wheat (6.7%) grain yields. The reduction in grain yield under 8 and 12 dS m−1 was 12.90 and 22.43% in pearl millet and 7.68 and 32.93% in wheat, respectively compared to 2 dS m−1. Application of either SA (G1) or TU (G2) significantly enhanced plant height and grain yield, but magnitude of the increment was higher with SA in pearl millet and with TU in wheat. Application of SA and TU increased grain yield by 14.42 and 12.98 in pearl millet, and 12.90 and 17.36% in wheat, respectively. The plant height, RWC, TC, MI, LP, proline, Fv/Fm and Na/K ratio significantly reduced by salinity stress in pearl millet and both water and salinity stress in wheat. Application of both PBRs proved beneficial to mitigate adverse effect of water deficit and salt stress by significantly improving physiological traits, biochemical traits and ultimately grain yield in both crops.  相似文献   

18.

Key message

Association analyses accounting for population structure and relative kinship identified eight SSR markers ( p < 0.01) showing significant association ( R 2  = 18 %) with nine agronomic traits in foxtail millet.

Abstract

Association mapping is an efficient tool for identifying genes regulating complex traits. Although association mapping using genomic simple sequence repeat (SSR) markers has been successfully demonstrated in many agronomically important crops, very few reports are available on marker-trait association analysis in foxtail millet. In the present study, 184 foxtail millet accessions from diverse geographical locations were genotyped using 50 SSR markers representing the nine chromosomes of foxtail millet. The genetic diversity within these accessions was examined using a genetic distance-based and a general model-based clustering method. The model-based analysis using 50 SSR markers identified an underlying population structure comprising five sub-populations which corresponded well with distance-based groupings. The phenotyping of plants was carried out in the field for three consecutive years for 20 yield contributing agronomic traits. The linkage disequilibrium analysis considering population structure and relative kinship identified eight SSR markers (p < 0.01) on different chromosomes showing significant association (R 2 = 18 %) with nine agronomic traits. Four of these markers were associated with multiple traits. The integration of genetic and physical map information of eight SSR markers with their functional annotation revealed strong association of two markers encoding for phospholipid acyltransferase and ubiquitin carboxyl-terminal hydrolase located on the same chromosome (5) with flag leaf width and grain yield, respectively. Our findings on association mapping is the first report on Indian foxtail millet germplasm and this could be effectively applied in foxtail millet breeding to further uncover marker-trait associations with a large number of markers.  相似文献   

19.
Aldicarb and Bay 68138 (ethyl 4-(methylthio)-m-tolyl isopropylphosphoramidate) were effective in increasing the plant height and yield of millet and sorghum-sudangrass hybrids. Stunting of plants and reduction in yield were inversely proportional to the number of Pratylenchus spp. and Belonolaimus longicaudatus present in the rhizosphere. Millet and sorghum-sudangrass hybrids supported large numbers of Criconemoides ornatus, Pratylenchus spp., B. longicaudatus, and Xiphinema americanum. Funk''s sorghum × sudangrass Hybrid 78 was more sensitive to injury by the nematode complex than were Tift 23A × 186 or Gahi-I pearl millet. ''Tiflate'' pearl millet was more resistant than other millets or sorghums to injury caused by C. ornatus, Pratylenchus spp., Trichodorus christiei, and B. longicaudatus. Millet and sorghum-sudangrass hybrids are poor summer cover crops because they favor intensive development of P. brachyurus, P. zeae, T. christiei, and B. longicaudatus.  相似文献   

20.
In the course of a search for antifungal proteins from plant seeds, we observed inhibition of mycelial growth of Trichoderma viride with extracts of pearl millet. We have identified several proteins with antifungal properties in the seeds of pearl millet. One of these proteins has been purified to homogeneity and characterized. The purified protein has a molecular mass of 25 kDa. The N-terminal sequence of the protein (25 residues) shows homology to non-specific lipid transfer proteins (LTPs) of cotton, wheat and barley. The purified LTP inhibited mycelial growth of T. viride and the rice sheath blight fungus, Rhizoctonia solani in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号