首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

In this study, biosynthesis of stable silver nanoparticles (Ag NPs) were prepared using Mukia madarasapattana leaf extract. X-ray diffraction analysis revealed the synthesized silver nanoparticles had face centered cubic crystalline structure. The TEM image showed the silver nanoparticles are not agglomerated, moderately mono dispersed with the size of 15 nm. The high negative zeta potential values indicated the dispersion stability of Ag NPs. Antibacterial activity was carried out against different test microorganisms in silver nanoparticles. The cyclic Voltammetry study showed that Ag NPs have an oxidation peak at 0.61 mV.

  相似文献   

2.
The present study was to determine the efficacies of anti-parasitic activities of synthesized silver nanoparticles (Ag NPs) using stem aqueous extract of Cissus quadrangularis against the adult of hematophagous fly, Hippobosca maculata (Diptera: Hippoboscidae), and the larvae of cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Contact toxicity method was followed to determine the potential of parasitic activity. Twelve milliliters of stem aqueous extract of C. quadrangularis was treated with 88ml of 1mM silver nitrate (AgNO(3)) solution at room temperature for 30min and the resulting solution was yellow-brown color indicating the formation extracellular synthesis of Ag NPs. The synthesized Ag NPs were characterized with UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscope (FESEM) and energy dispersive X-ray (EDX) spectroscopy. The synthesized Ag NPs were recorded by UV-visible spectrum at 420nm and XRD patterns showed the nanoparticles crystalline in nature. FTIR analysis confirmed that the bioreduction of Ag((+)) ions to Ag NPs were due to the reduction by capping material of plant extract. FESEM image of Ag NPs showed spherical and oval in shape. By using the Bragg's Law and Scherrer's constant, the average mean size of synthesized Ag NPs was 42.46nm. The spot EDX analysis showed the complete chemical composition of the synthesized Ag NPs. The mortality obtained by the synthesized Ag NPs from the C. quadrangularis was more effective than the aqueous extract of C. quadrangularis and AgNO(3) solution (1mM). The adulticidal activity was observed in the aqueous extract, AgNO(3) solution and synthesized Ag NPs against the adult of H. maculata with LC(50) values of 37.08, 40.35 and 6.30mg/L; LC(90) values of 175.46, 192.17 and 18.14mg/L and r(2) values of 0.970, 0.992 and 0.969, respectively. The maximum efficacy showed in the aqueous extract, AgNO(3) solution and synthesized Ag NPs against the larvae of R. (B.) microplus with LC(50) values of 50.00, 21.72 and 7.61mg/L; LC(90) values of 205.12, 82.99 and 22.68mg/L and r(2) values of 0.968, 0.945and 0.994, respectively. The present study is the first report on antiparasitic activity of the experimental plant extract and synthesized Ag NPs. This is an ideal eco-friendly and inexpensive approach for the control of H. maculata and R. (B.) microplus.  相似文献   

3.
Green synthesis of silver nanoparticles (AgNPs) has become a promising environmentally benign synthetic route in nanoscience and nanotechnology during recent years. In the present work, we have developed an environment-friendly and low-cost method for synthesis of silver nanoparticles from silver nitrate using aqueous fruit extract of Dillenia indica. The as-synthesized nanoparticles were characterized by UV-Vis spectrophotometer, transmission electron microscopy (TEM) and X-ray diffraction (XRD). FTIR study was performed to know the interaction of bio-molecules present in the fruit extract with AgNPs. The catalytic application of the as-synthesized AgNPs was demonstrated against degradation of methylene blue (MB) in aqueous system. The absorption spectra of colloidal suspension of AgNPs showed characteristic surface plasmon resonance (SPR) band centred at a wavelength of 416?nm. TEM image showed that the AgNPs were almost spherical in shape having an average diameter of 10.78?±?.48?nm. XRD pattern and selected area electron diffraction (SAED) pattern with bright spots signify the crystalline nature of nanoparticles. The fruit extract-capped AgNPs was highly stable and have showed the effective catalytic activity in reduction of MB dye.  相似文献   

4.
This is the first report of synthesis of silver nanoparticles by using callus extract of Carica papaya. MS medium supplemented with the growth hormones, 2.0 mg l?1 IBA and 0.5 mg l?1 BAP was found to be more suitable for the induction of callus and multiple shoots in papaya. The extract of callus obtained by grinding showed ability of synthesis of silver nanoparticles when treated with silver nitrate (1 mM). The formation of brown colour in the reaction mixture indicates the synthesis of silver nanoparticles. The further detection and characterization of these synthesized silver nanoparticles was carried by spectrophotometry. FTIR spectrum analysis showed peaks between 1000–2000 cm?1 which confirmed the presence of proteins and other ligands required for the synthesis and stabilization of silver nanoparticles. SEM micrograph confirmed the synthesis of spherical silver nanoparticles in the size range of 60–80 nm.  相似文献   

5.
Silver nanoparticles (AgNPs) are gaining considerable importance due to their attractive physicochemical properties for many applications. In the present study, (Ag NPs) were synthesized by the reduction of aqueous solutions of silver nitrate (AgNO3) with powder and solvent extracts of Padina pavonia (brown algae). The obtained nanoparticles exhibited high stability, rapid formation of the biogenic process (2 min -3 h), small size (49.58–86.37 nm) (the diameter of formed nanoparticles was measured by TEM and DLS) and variable shapes (spherical, triangular, rectangle, polyhedral and hexagonal). Preliminary characterization of nanoparticles was monitored by using UV–visible spectroscopy (UV–vis), Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) and finally by Fourier Transform Infrared spectroscopy (FTIR). The ratios of converted Ag NPs were recorded as 88.5; 86.2 and 90.5% in case of P. pavonia powder. extract and chloroform extract, respectively.  相似文献   

6.
Mosquito (Diptera: Culicidae) vectors are solely responsible for transmitting important diseases such as malaria, dengue, chikungunya, Japanese encephalitis, lymphatic filariasis and Zika virus. Eco-friendly control tools of Culicidae vectors are a priority. In this study, we proposed a facile fabrication process of poly-disperse and stable silver nanoparticles (Ag NPs) using a cheap leaf extract of Ichnocarpus frutescens (Apocyanaceae). Bio-reduced Ag NPs were characterized by UV–vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The acute toxicity of I. frutescens leaf extract and green-synthesized Ag NPs was evaluated against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. Compared to the leaf aqueous extract, Ag NPs showed higher toxicity against A. subpictus, A. albopictus, and C. tritaeniorhynchus with LC50 values of 14.22, 15.84 and 17.26 μg/mL, respectively. Ag NPs were found safer to non-target mosquito predators Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 values ranging from 636.61 to 2098.61 μg/mL. Overall, this research firstly shed light on the mosquitocidal potential of I. frutescens, a potential bio-resource for rapid, cheap and effective synthesis of poly-disperse and highly stable silver nanocrystals.  相似文献   

7.
Generally, limited research is extended in studying stability and applicational properties of silver nanoparticles (Ag NPs) synthesized by adopting ‘green chemistry’ protocol. In this work, we report on the synthesis of stable Ag NPs using plant-derived materials such as leaf extract of Neem (Azadirachta indica) and biopolymer pectin from apple peel. In addition, the applicational properties of Ag NPs such as surface-enhanced Raman scattering (SERS) and antibacterial efficiencies were also investigated. As-synthesized nanoparticles (NPs) were characterized using various instrumentation techniques. Both the plant materials (leaf extract and biopolymer) favored the synthesis of well-defined NPs capped with biomaterials. The NPs were spherical in shape with an average particle size between 14-27 nm. These bio-NPs exhibited colloidal stability in most of the suspended solutions such as water, electrolyte solutions (NaCl; NaNO3), biological solution (bovine serum albumin), and in different pH solutions (pH 7; 9) for a reasonable time period of 120 hrs. Both the bio-NPs were observed to be SERS active through displaying intrinsic SERS signals of the Raman probe molecule (Nile blue A). The NPs were effective against the Escherichia coli bacterium when tested in nutrient broth and agar medium. Scanning and high-resolution transmission electron microscopy (SEM and HRTEM) images confirmed cellular membrane damage of nanoparticle treated E. coli cells. These environmental friendly template Ag NPs can be used as an antimicrobial agent and also for SERS based analytical applications.  相似文献   

8.
The P. longifolia mediated silver (PL-AgNPs) nanoparticles are very stable and efficient. UV–Vis spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDX) were used to characterize the produced AgNPs. UV–Vis analysis showed a characteristic peak at 435 nm corresponding to surface plasmon resonance. The synthesis process was spectrophotometrically optimized for various parameters. After optimization, highly stable AgNPs were prepared using 3.0 ml of P. longifolia leaf extract, pH 7.0, 1.0 mM AgNO3, and 60 °C. The zeta potential was measured by DLS, which showed ?20.8 mV and the PDI value was 5.42. TEM and SEM analysis shows a spherical shape of the synthesized nanoparticles, and the size was measured between 10 and 40 nm. EDX analysis showed intense peaks from silver and oxygen and small peaks from various metal atoms such as Na, P, S and Al indicating their presence in trace amounts. The average size of the PL-AgNPs was 14 nm. The phytochemical analysis shows that the presence of alkaloids, essential oils and saponins seems to be responsible for the synthesis of nanoparticles. PL-AgNPs were further investigated for their antifungal activity against Alternaria alternata. The minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC) and effect of nanoparticles on cytomorphology of A. alternata have also been reported. Biosynthesized nanoparticles have proven to be inexpensive, environmentally friendly, stable, easily reproducible, and highly effective against plant-pathogenic fungi.  相似文献   

9.
The ability of a natural stabilizing and reducing agent on the synthesis of silver nanoparticles (Ag NPs) was explored using a rapid and single-pot biological reduction method using Nocardiopsis sp. GRG1 (KT235640) biomass. The UV–visible spectral analysis of Ag NPs was found to show a maximum absorption peak located at a wavelength position of ∼422 nm for initial conformation. The major peaks in the XRD pattern were found to be in excellent agreement with the standard values of metallic Ag NPs. No other peaks of impurity phases were observed. The morphology of Ag NPs was confirmed through TEM observation, demonstrating that the particle size distribution of Ag NPs entrenched in spherical particles is in a range between 20 and 50 nm. AFM analysis further supported the nanosized morphology of the synthesized Ag NPs and allowed quantifying the Ag NPs surface roughness. The synthesized Ag NPs showed significant antibacterial and antibiofilm activity against biofilm positive methicillin-resistant coagulase negative Staphylococci (MR-CoNS), which were isolated from urinary tract infection as determined by spectroscopic methods in the concentration range of 5–60 µg/ml. The inhibition of biofilm formation with coloring stain was morphologically imaged by confocal laser scanning microscopy (CLSM). Morphological alteration of treated bacteria was observed by SEM analysis. The results clearly indicate that these biologically synthesized Ag NPs could provide a safer alternative to conventional antibiofilm agents against uropathogen of MR-CoNS.  相似文献   

10.
Current exanimation reports, green fabrication of silver doped TiO2 nanoparticles (Ag/TiO2) using aqueous extract of Acacia nilotica as bio-reductant and assess its potential as antimicrobial and anticancer agent. The obtained spherical Ag/TiO2 were characterized by various analytical techniques including FTIR, (XRD), (FE-SEM EDS), and (TEM). Synthesized Ag/TiO2 demonstrated broad spectrum antibacterial and anticandidal activity. The order of antimicrobial activity was found to be E. coli > C. albicans > MRSA > P. aeruginosa. In addition, cytotoxicity and oxidative stress of Ag/TiO2 nanoparticles in (MCF-7) cells was also investigated. Outcomes of MTT assay showed concentration dependent reduction in cell viability. Further, synthesized NPs reduced the level of glutathione, induced ROS generation and lipid peroxidation in the treated cells. Therefore, it is envisaged that these spherical nanoparticles may be exploited in drug delivery, pharmaceutical, and food industry.  相似文献   

11.
This study reveals a green process for the production of multi-morphological silver (Ag NPs) and gold (Au NPs) nanoparticles, synthesized using an agro-industrial residue cashew nut shell liquid. Aqueous solutions of Ag+ ions for silver and chloroaurate ions for gold were treated with cashew nut shell extract for the formation of Ag and Au NPs. The nano metallic dispersions were characterized by measuring the surface plasmon absorbance at 440 and 546 nm for Ag and Au NPs. Transmission electron microscopy showed the formation of nanoparticles in the range of 5–20 nm for silver and gold with assorted morphologies such as round, triangular, spherical and irregular. Scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction analyses of the freeze-dried powder confirmed the formation of metallic Ag and Au NPs in crystalline form. Further analysis by Fourier transform infrared spectroscopy provided evidence for the presence of various biomolecules, which might be responsible for the reduction of silver and gold ions. The obtained Ag and Au NPs had significant antibacterial activity, minimum inhibitory concentration and minimum bactericidal concentration on bacteria associated with fish diseases.  相似文献   

12.
The aim of this study was to biosynthesis silver nanoparticles from the fungus Nigrospora sphaerica isolated from soil samples and to examine their activity against five human pathogenic strains of bacteria viz. Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi and Staphylococcus aureus using disc diffusion method. The synergistic effect of silver nanoparticles in combination with commonly used antibiotic Gentamycin against the selected bacteria was also examined. The synthesized silver nanoparticles from free-cell filtrate were characterized by using UV–Vis spectrophotometer analysis, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). UV–Vis spectrophotometer analysis showed a peak at 420 nm indicating the synthesis of silver nanoparticles, FTIR analysis verified the detection of protein capping of silver nanoparticles while SEM micrographs revealed that the silver nanoparticles are dispersed and aggregated and mostly having spherical shape within the size range between 20 and 70 nm. The synthesized silver nanoparticles exhibited a varied growth inhibition activity (15–26 mm diam inhibition zones) against the tested pathogenic bacteria. A remarkable increase of bacterial growth inhibition (26–34 mm diam) was detected when a combination of silver nanoparticles and Gentamycin was used. A significant increase in fold area of antibacterial activity was observed when AgNPs in combination with Gentamycin was applied. The synthesized silver nanoparticles produced by the fungus N. sphaerica is a promising to be used as safe drug in medical therapy due to their broad spectrum against pathogenic bacteria.  相似文献   

13.

The synthesis of metal nanoparticles by green methods attained enormous attention in recent years due to its easiness, non-toxicity, and eco-friendly nature. In the present study, noble metal nanoparticles such as silver and gold were prepared using an aqueous leaf extract of a medicinal plant, Bauhinia purpurea. The leaf extract performed as both reducing and stabilizing agents for the development of nanoparticles. The formations of silver and gold nanoparticles were confirmed by observing the surface plasmon resonance peaks at 430 nm and 560 nm, respectively, in UV–Vis absorption spectrum. Various properties of nanoparticles were demonstrated using the characterization techniques such as FTIR, XRD, TEM, and EDX. The synthesized silver and gold nanoparticles had a momentous anticancer effect against lung carcinoma cell line A549 in a dose-dependent manner with IC50 values of 27.97 µg/mL and 36.39 µg/mL, respectively. The antimicrobial studies of synthesized nanoparticles were carried out by agar well diffusion method against six microbial strains. Silver and gold nanoparticles were also showed high antioxidant potentials with IC50 values of 42.37 µg/mL and 27.21 µg/mL, respectively; it was measured using DPPH assay. Additionally, the nanoparticles were observed to be good catalysts for the reduction of organic dyes.

  相似文献   

14.
Silver nanoparticles (Ag NPs) of different sizes have been prepared by Lee and Meisel’s method using trisodium citrate as reducing agent under ultra sonication. Optical absorption and fluorescence emission techniques were employed to investigate the interaction of 1,4-dihydroxy-2,3-dimethyl anthracene-9,10-dione (DHDMAD) with silver nanoparticles. In fluorescence spectroscopic study, we used the DHDMAD and Ag NPs as component molecules for construction of Förster Resonance Energy Transfer (FRET), whereas DHDMAD serve as donor and Ag NPs as acceptor. The surface plasmon resonance (SPR) peak of the prepared silver colloidal solution was observed from 419 nm to 437 nm. The synthesized silver nanoparticles at different heating time intervals were spherical in shape about the size of 25 nm and 55 nm. The fluorescence interaction between silver nanoparticles and DHDMAD confirms the FRET mechanism. According to Förster theory, the distance between silver nanoparticles and DHDMAD and the critical energy transfer distance were calculated and it is increase with heating time.  相似文献   

15.
柴春镜  白红娟 《微生物学通报》2010,37(12):1798-1804
近年来,利用沼泽红假单胞菌合成银纳米粒子作为一种可靠和环境友好的方法出现。主要利用沼泽红假单胞菌的细胞滤液来还原银离子。制备的纳米粒子用紫外可见光谱(UV-vis)、X射线衍射光谱(XRD)和透射电镜(TEM)进行表征。含有银粒子溶液的UV-vis光谱显示在420 nm-460 nm处出现银纳米粒子的吸收峰。TEM图像表明所形成的银纳米粒子的粒径范围为5 nm-20 nm。纳米粒子的XRD图谱证明产物为金属银。所制备的银纳米粒子对大肠杆菌和金黄色葡萄球菌作抑菌性试验。  相似文献   

16.
Abstract

A great deal of research has been done on various uses of copper oxide. The synthesis of copper oxide nanoparticles was mediated using tea extract. The first sign of the reduction of copper ions to copper oxide was the change in color of extract to dark brown after treating with copper chloride. The resulting nanoparticles were characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometry (FTIR). Finally, the antimicrobial effects of these nanoparticles on Fusarium solani were studied in vitro by agar dilution method. The TEM images showed the synthesis of copper oxide with size of less than 80?nm. The synthesized copper oxide nanoparticles showed significant inhibitory effects on F. solani cultures so that the concentration of 80?μg/ml prevented approximately 90% of the mycelium growth of the fungus. The results showed that the inhibition zone of silver nanoparticles strongly depends on their concentration and increases by increasing the concentration of copper oxide nanoparticles in the medium.  相似文献   

17.
Nanotechnology is an emerging field with tremendous potential and usage of medicinal plants and green preparation of nanoparticles (NPs) is one of the widely explored areas. These have been shown to be effective against different biological activities such as diabetes mellitus, cancer, antioxidant, antimicrobial, etc. The current studies focus on the green synthesis of zinc NPs (ZnO NPs) from aqueous leaf extract of Murraya koenigii (MK). The synthesized Murraya koeingii zinc oxide NPs (MK ZnO NPs) were characterized using UV–visible spectroscopy, dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive spectrum (EDS) and cyclic voltammetry (CV). The synthesized MK ZnO NPs were evaluated for their in vitro antidiabetic, antioxidant, antimicrobial, and cytotoxic activity. They demonstrated significant antidiabetic and cytotoxic activity, as well as moderate free-radical scavenging and antibacterial activity.  相似文献   

18.

Background

Biosynthesis of nanoparticles has received increasing attention due to the growing need to develop safe, time-effective and environmentally friendly technologies for nano-materials synthesis. This paper reports the one pot green synthesis of silver nanoparticles (AgNPs) using the leaf bud extract of a mangrove plant, Rhizophora mucronata and their antimicrobial effects against aquatic pathogens. Highly stable AgNPs were synthesized by treating the mangrove leaf bud extract with aqueous silver nitrate solution at 15?psi pressure and 121°C for 5 minutes.

Results

The biosynthesized AgNPs were characterized by UV-visible spectrum, at 426?nm. The X-Ray Diffraction (XRD) pattern revealed the face-centered cubic geometry of AgNPs. Fourier Transform Infra Red (FTIR) spectroscopic analysis was carried out to identify the possible biomolecules responsible for biosynthesis of AgNPs from the leaf bud extract. The size and shape of the well-dispersed AgNPs were documented with the help of High Resolution Transmission Electron Microscopy (HRTEM) with a diameter ranged from 4 to 26?nm. However a maximum number of particles were observed at 4?nm in size. The antibacterial effects of AgNPs were studied against aquatic pathogens Proteus spp., Pseudomonas fluorescens and Flavobacterium spp., isolated from infected marine ornamental fish, Dascyllus trimaculatus.

Conclusion

This study reveals that the biosynthesized AgNPs using the leaf bud extract of a mangrove plant (R. mucronata) were found equally potent to synthetic antibiotics. The size of the inhibition zone increases when the concentration of the AgNPs increased and varies according to species.  相似文献   

19.
Here, we report for the first time the synthesis of bismuth-coated silver nanoparticles in dichroic bismuth glass nanocomposites by a novel and simple one-step melt quench technique without using any external reducing agent. The metallic silver nanoparticles (Ag NPs) were generated first, and subsequently, metallic bismuth was deposited on the Ag NPs and formed a thick layer. The reduction of Bi3+ to Bio and subsequently its deposition on the Ag NPs (which were formed earlier than Bio) in the K2O–Bi2O3–B2O3 (KBB) glass system have been explained by their standard reduction potentials. The UV–vis absorption spectra show a prominent surface plasmon resonance (SPR) absorption band at 575 nm at lower concentrations (up to 0.01 wt%); three bands at 569, 624 and 780 nm at medium concentration (0.02–0.03 wt%); and two weak bands at 619 and 817 nm at highest concentration (0.06 wt%) of silver. They have been explained by the electrodynamics theories. TEM images reveal the conversion of spheroidal (5–15 nm) to hexagonal (10–35 nm) shaped Ag NPs with the increase in concentration of silver (up to 0.06 wt%). SAED pattern confirms the crystalline planes of rhombohedral bismuth and cubic silver. Thermal treatment at 360 °C, which is the glass transformation temperature (T g) of the sample containing lower concentration of silver (0.007 wt%), shows red-shifted SPR band due to increase in size of NPs. Whereas the sample containing higher concentration (0.06 wt%) of silver under similar treatment exhibited changes in SPR spectral profile happened due to conversion to spherical NPs from hexagonal shape and reduction in size (10–20 nm) of NPs after heat treatment for 65 h. HRTEM images corroborate the different orientations of the NPs. FESEM images reveal hexagonal disk like structure having different orientations. Dichroic nature of the nanocomposites has been explained with the size and shape of Ag nanoparticles. We believe that this work will create new avenues in the area of nanometal–glass hybrid nanocomposites and the materials have significant applications in the field of optoelectronics and nanophotonics.  相似文献   

20.
This study highlights the ability of nitrate-reducing Bacillus subtilis EWP-46 cell-free extract used for preparation of silver nanoparticles (AgNPs) by reduction of silver ions into nano silver. The production of AgNPs was optimized with several parameters such as hydrogen ion concentration, temperature, silver ion (Ag+ ion) and time. The maximum AgNPs production was achieved at pH 10.0, temperature 60 °C, 1.0 mM Ag+ ion and 720 min. The UV–Vis spectrum showed surface plasmon resonance peak at 420 nm, energy-dispersive X-ray spectroscopy (SEM–EDX) spectra showed the presence of element silver in pure form. Atomic force microscopy (AFM) and transmission electron microscopy images illustrated the nanoparticle size, shape, and average particle size ranging from 10 to 20 nm. Fourier transform infrared spectroscopy provided the evidence for the presence of biomolecules responsible for the reduction of silver ion, and X-ray diffraction analysis confirmed that the obtained nanoparticles were in crystalline form. SDS-PAGE was performed to identify the proteins and its molecular mass in the purified nitrate reductase from the cell-free extract. In addition, the minimum inhibitory concentration and minimum bactericidal concentration of AgNPs were investigated against gram-negative (Pseudomonas fluorescens) and gram-positive (Staphylococcus aureus) bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号