首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Spot blotch, caused by the fungus Bipolaris sorokiniana, is one of the most important diseases on wheat. The effects of silicon (Si) on this wheat disease were studied. Plants of wheat cultivars BR‐18 and BRS‐208 were grown in plastic pots containing Si‐deficient soil amended with either calcium silicate (+Si) or calcium carbonate (?Si). The content of Si in leaf tissue was significantly increased by 90.5% for the +Si treatment. There was no significant difference between Si treatments for calcium content, so variations in Si accounted for differences in the level of resistance to spot blotch. The incubation period was significantly increased by 40% for the +Si treatment. The area under spot blotch progress curve, number of lesions per cm2 of leaf area, and real disease severity significantly decreased by 62, 36 and 43.5% in +Si treatment. There was no significant effect of Si on lesion size. The role played by total soluble phenolics in the increased resistance to spot blotch of plants from both cultivars supplied with Si was not clear. Plants from cultivar BR‐18 supplied with Si showed the highest values for concentration of lignin‐thioglycolic acid derivatives during the most advanced stages of fungus infection. Chitinase activity was high at the most advanced stages of fungus infection on leaves from both cultivars supplied with Si and may have had an effect on fungus growth based on the reduction of the components of resistance evaluated. Peroxidase activity was found to be high only at 96 h after inoculation of both cultivars supplied with Si. Polyphenoloxidase activity had no apparent effect on resistance regardless of Si treatments. Results revealed that supplying Si to wheat plants can increase resistance against spot blotch.  相似文献   

3.
Rice brown leaf spot is a major disease in the rice paddy field. The causal agent Cochliobolus miyabeanus is an ascomycete fungus and a representative necrotrophic pathogen in the investigation of rice-microbe interactions. The aims of this research were to identify a quantitative evaluation method to determine the amount of C. miyabeanus proliferation in planta and determine the method’s sensitivity. Real-time polymerase chain reaction (PCR) was employed in combination with the primer pair and Taqman probe specific to CmSCD1, a C. miyabeanus unigene encoding SCYTALONE DEHYDRATASE, which is involved in fungal melanin biosynthesis. Comparative analysis of the nucleotide sequences of CmSCD1 from Korean strains with those from the Japanese and Taiwanese strains revealed some sequence differences. Based on the crossing point (CP) values from Taqman real-time PCR containing a series of increasing concentrations of cloned amplicon or fungal genomic DNA, linear regressions with a high level of reliability (R2>0.997) were constructed. This system was able to estimate fungal genomic DNA at the picogram level. The reliability of this equation was further confirmed using DNA samples from both resistant and susceptible cultivars infected with C. miyabeanus. In summary, our quantitative system is a powerful alternative in brown leaf spot forecasting and in the consistent evaluation of disease progression.  相似文献   

4.
Necrotrophic fungal pathogen Cochliobolus miyabeanus causes brown spot disease in rice leaves upon infection, resulting in critical rice yield loss. To better understand the rice–C. miyabeanus interaction, we employed proteomic approaches to establish differential proteomes of total and secreted proteins from the inoculated leaves. The 2DE approach after PEG‐fractionation of total proteins coupled with MS (MALDI‐TOF/TOF and nESI‐LC‐MS/MS) analyses led to identification of 49 unique proteins out of 63 differential spots. SDS‐PAGE in combination with nESI‐LC‐MS/MS shotgun approach was applied to identify secreted proteins in the leaf apoplast upon infection and resulted in cataloging of 501 unique proteins, of which 470 and 31 proteins were secreted from rice and C. miyabeanus, respectively. Proteins mapped onto metabolic pathways implied their reprogramming upon infection. The enzymes involved in Calvin cycle and glycolysis decreased in their protein abundance, whereas enzymes in the TCA cycle, amino acids, and ethylene biosynthesis increased. Differential proteomes also generated distribution of identified proteins in the intracellular and extracellular spaces, providing a better insight into defense responses of proteins in rice against C. miyabeanus. Established proteome of the rice–C. miyabeanus interaction serves not only as a good resource for the scientific community but also highlights its significance from biological aspects.  相似文献   

5.
This study was undertaken to investigate the effects of both nitrogen (N) and potassium (K) rates on rice resistance to brown spot, caused by the fungus Bipolaris oryzae. Rice plants (cultivar ‘Metica 1’) were grown in soil corrected with 0, 25, 50, 75 and 100 mg of N / kg (as NH4NO3) of soil as well as with 25, 50, 75, 125 and 150 mg of K / kg (as KCl) of soil. Thirty‐three‐day‐old plants were inoculated with a suspension of Bipolaris oryzae conidia and the incubation period (IP), number of lesions (NL) per cm2 of leaf area and disease severity was evaluated. Disease severity was scored at 24, 48, 72, 96, 120 and 144 h after inoculation and data were used to obtain the area under brown spot progress curve (AUBSPC). Soil plant analysis development (SPAD) index, plant dry weight and concentration of N and K in leaf tissues were also determined for both non‐inoculated (NI) and inoculated (IN) plants. Concentration of N in leaf tissue increased as the N rates in the soil increased. Concentration of K in leaf tissue increased sharply as the K rates in the soil increased for both NI and IN plants. Concentration of K in leaf tissue was not affected by N rates. The IP increased as the N rates increased, but was somewhat less impacted by increasing K rates. The NL decreased as the N rates increased. The NL dramatically declined at the highest K rates. The AUBSPC dramatically declined as the N and K rates in the soil increased. SPAD index values increased as the N and K rates in the soil increased for both NI and IN plants. Plant dry weight increased as the N and K rates in the soil increased for both NI and IN plants. Results from this study suggest that combining high N and K rates may contribute to reducing the intensity of brown spot in rice while improving plant development.  相似文献   

6.
Brassinolide (BR) is a new green plant growth regulator. The present field study was conducted on two fragrant rice cultivars (i.e., Meixiangzhan-2 and Xiangyaxiangzhan) to study the effects of foliar application of BR on fragrant rice performance. At the heading stage, BR solutions at 0.05, 0.15, 0.25 and 0.50 mg L-1 were sprayed on fragrant rice at 600 liters per hectare; these treatments were named as BR1, BR2, BR3 and BR4, respectively. The treatment sprayed with distilled water was taken as a control (CK). Compared with CK, the BR2 treatment significantly enhanced the chlorophyll concentration and net photosynthetic rate for Meixiangzhan-2, and Xiangyaxiangzhan. The BR3 and BR4 treatments increased the concentrations of chlorophyll a, chlorophyll b and carotenoid, and also enhanced net photosynthetic rate by 31.91% and 40.43%, respectively. Higher grain yields were recorded in the BR2 treatment than on CK on Meixiangzhan-2, while on Xiangyaxiangzhan, the BR3 and BR4 treatments increased grain yield compared with CK. In relation to CK, higher head rice rates were recorded in the BR2 treatment for Meixiangzhan-2, and in the BR3 and BR4 treatments for Xiangyaxiangzhan. BR treatments (BR2 for Meixiangzhan-2, BR3 and BR4 for Xiangyaxiangzhan) also significantly enhanced the activities of GPX, SOD and CAT by 10.22% to 23.00%, and reduced the malonaldehyde concentration. In addition, we observed that some BR treatments (BR2 for Meixiangzhan-2, BR3 and BR4 for Xiangyaxiangzhan) decreased the grain 2-acetyl-1-pyrroline concentration of fragrant rice.  相似文献   

7.
Fifty plant extracts, four oil cakes and eight antagonistic organisms were tested against Bipolaris oryzae (Cochliobolus miyabeanus), the causal agent of brown spot disease of rice. In vitro studies indicated that two leaf extracts, Nerium oleander and Pithecolobium dulce exerted the higher percent inhibition to mycelial growth (77.4, 75.1%) and spore germination (80.3, 80.0%) of B. oryzae. Among the four oil cake extracts tested in vitro against B. oryzae, neem cake extract showed the maximum inhibition percent to mycelial growth (80.18%) and spore germination (81.13%) of the pathogen followed by mahua cake extract, castor and gingelly cake extract. Trichoderma viride (Tv2) was significantly effective in inhibiting the mycelial growth (62.92%) and spore germination (77.03%) of the pathogen followed by Trichoderma harzianum (Th5) and Trichoderma reesei (Tr3). The promising leaf extracts, oil cake extracts and antagonistic microorganisms were further evaluated for their efficacies in disease management under glasshouse and field conditions. In glasshouse studies, post-infectional spraying of rice plants with neem cake extract, N. oleander leaf extract and T. viride (Tv2) was significantly effective in reducing the incidence of brown spot of rice by 66, 52 and 45 percent respectively. Two rounds of spraying of rice plants with neem cake extract, N. oleander leaf extract and T. viride (Tv2) in the field at initial appearance of disease and 15 days later reduced the incidence of brown spot (70, 53 and 48% disease reduction respectively) and increased the yield by 23, 18 and 15 percent respectively.  相似文献   

8.
籼稻二元不育系9730A及三交种的初步研究   总被引:1,自引:0,他引:1  
通过对所选育的籼稻二元不育系9730A的花粉育性、自交结实率、雌性育性、对"920"的敏感性、柱头外露情况、花时、雄性不育的可恢复性及三交种的抽穗整齐度、有效穗、株高、单株产量、结实率、主茎穗长、主茎叶长、穗粒等变异度的分析,对杂交水稻三交法育种的应用价值进行初步探讨.结果认为:通过引进具有不同优良品种特性的第二保持系,可以在保持所选育杂种品种主要农艺性状整齐一致的前提下,较大幅度地拓宽品种的遗传基础,改进雄性不育系的异交性能,从而为提高杂种种子生产水平、及时利用优良常规稻育种成果材料和综合实现杂交稻品种选育过程中的多抗、广适、高产、优质育种目标提供新的途径.  相似文献   

9.
Apical dominance in assimilate filling impacts grain growth in basal spikelets of rice panicle. In this study, organic materials of the pericarp, apoplasmic space and endosperm of the apical and basal caryopses, and photosynthesis of the flag leaf were measured during early part of grain development in three types of rice cultivars with similar phenology, but difference in grain weight and size in the dry and wet seasons of 2006 and 2007, respectively. Photosynthetic activity of the flag leaf was consistently low in small-seeded cultivars. Rates of grain filling and cell division of endosperm and concentration of assimilates, starch, proteins and chlorophylls of the caryopsis were lower, but spikelet ethylene production and peroxidase activity were higher in a small-seeded cultivar compared to a big-seeded cultivar. Similar disparities in grain filling and other attributes were noticed for the inferior basal spikelets of the panicle compared to the superior apical spikelets, except the assimilate concentration of the pericarp and endosperm. Temporal fluctuation in assimilate concentration of the organs were similar between the cultivars. Concentration of apoplasmic assimilates mostly exhibited negative correlation with that of pericarp and endosperm. Compared to the apical spikelets, correlation was more negative for the basal spikelets. Conversely, correlation was positive between the concentration of apoplasmic assimilates and endosperm cell number and grain weight of the cultivars. Ethylene released from the spikelets at anthesis affected growth and cell division rates of endosperm and enhanced protein and chlorophyll degradation and peroxidase activity of the caryopsis. It was concluded that variation in spikelet ethylene production may be responsible for differences in size or weight of grains among rice cultivars and spikelets at different locations of the panicle. The concentration of apoplasmic assimilates could be an indicator for grain filling capacity, and ethylene regulated the concentration by affecting pericarp activity for assimilate unloading.  相似文献   

10.
Brown spot is one of the most devasting and prevalent disease of rice and its control is mainly dependent on fungicide application. Therefore, this study aimed to examine the effects of Si and Mn on the development of brown spot on rice plants grown in hydroponic culture. Rice plants (cv. ‘Metica‐1’) were grown in plastic pots containing 0 or 2 mm Si (?Si and +Si treatments, respectively) with three Mn rates (0.5, 2.5 and 10 μm ). Plants were inoculated with B. oryzae 39 days after emergence. The following components of resistance were evaluated: incubation period (IP), number of lesions (NL) per cm2 of leaf area, real disease severity (RDS) and area under brown spot progress curve (AUBSPC). The content of Si and Mn in the plant tissues was also determined. Si content was significantly higher in rice tissue of plants of the +Si treatment than of the ?Si treatment regardless of the Mn rates used. The Mn rates did not affect the Si content of the rice plants. The Mn content of the rice tissues was significantly higher in the ?Si treatment than on +Si treatment, regardless of the Mn rate used. The Mn content was significantly lower at 0.5 μm Mn in comparison to the other rates for both ?Si and +Si treatments. The IP of brown spot on rice leaves significantly increased in the +Si treatment; but the Mn rates in the presence of Si had no effect on IP. In the ?Si treatment, the IP was significantly higher only at the rate of 2.5 μm . The NL, RDS and AUBSPC were significantly reduced in the +Si treatment regardless of the Mn rates. The Mn rates in the presence of Si had no effect on these components of resistance. Overall, Si dramatically impacted the development of brown spot regardless of the presence of Mn at either low or high rates. This may be useful in regions where the soil has either toxic or deficient levels of Mn and cultivars with brown spot resistance are not commercially available.  相似文献   

11.
Tiller number can contribute significantly to yield potential of rice, but little knowledge is available on hormonal regulation of tillering and tiller dynamics. In the present study, Indole-3-acetic acid (IAA), kinetin (6-furfuryl amino purine) and Gibberellic acid (GA3) treatments have been applied at the early tillering stage to two rice cultivars that contrast for tiller number. The responses of the hormones were studied on growth, development, grain yield, senescence patterns, assimilate concentration of the panicle and ethylene production in different classes of tillers. The leaf area, panicle grain number, fertility percentage and grain yield of tillers were higher in the low-tillering cultivar than that of high-tillering cultivar; the treatment of kinetin was more effective in the latter than in the former. High ethylene production was responsible for reduction of growth duration and grain yield of the tillers. Kinetin application reduced ethylene production of the late-tillers significantly for the benefit of grain yield.  相似文献   

12.
Change of plant type in rice resulting in increased compactness of the panicle, allows space for accommodation of a larger number of spikelets, but grain yield does not increase proportionately because of limitations in grain filling. The objective of this study was to evaluate potential causes of poor filling of spikelets by comparing the physiological processes that influence source and sink activities between a compact- (OR-1920-7) and a loose-panicled (Lalat) rice cultivars growing in the open field conditions in the farm of Regional Research and Technology Transfer Station, Orissa University of Agriculture and Technology, Chiplima, India during dry season of 2007. Although grain number per unit length of the branches was higher in the compact-panicled cultivar than the loose-panicled cultivar, average grain weight was lower on the primary and secondary branches at top, middle and basal positions of the panicle in the former compared to the corresponding positions of the panicle in the latter. Compared to Lalat, ethylene production rate was considerably higher in the boot of the flag leaf sheath of OR-1920-7 during the pre-anthesis period. Ethylene evolution rate correlated negatively with growth and cell division rates and starch concentration of the juvenile endosperm. Because spikelet growth was slower in OR-1920-7 than in Lalat, unused carbohydrates accumulated in the endosperm. The stomatal conductance of the flag leaf during this period was also lower in the former than that of the latter and it correlated negatively with ethylene evolution rate of the boot. It is concluded that high ethylene production slackened grain filling of compact-panicled rice cultivar OR-1920-7 because of its adverse influence on both source and sink activities.  相似文献   

13.
本文报道了利用原始爪哇稻资源与光温敏雄性不育系培矮64S配制的27个籼爪交组合在长沙的农艺性状和杂种优势表现.从总体上来看,籼爪交组合与对照相比在每穗实粒数和理论产量上无显著差异,在其它性状上均有极显著的差异;籼爪交组合在秆高、穗长、每穗总粒数、每穗实粒数和千粒重方面有正向对照优势,在播始历期、有效分蘖数、结实率、理论产量和实际产量上存在负向对照优势.从个体上来看,籼爪交组合理论产量对照优势>40%的比例为11.1%.实际产量对照优势>40%的机率为3.7%,说明爪哇稻资源在籼爪交杂种优势利用中具有利用价值.本文还对爪哇稻资源在籼爪杂种优势利用中的一些问题进行了讨论.  相似文献   

14.
Salinity stress is a major limiting factor in cereal productivity. Many studies report improvements in salt tolerance using model plants, such as Arabidopsis thaliana or standard varieties of rice, e.g., the japonica rice cultivar Nipponbare. However, there are few reports on the enhancement of salt tolerance in local rice cultivars. In this work, we used the indica rice (Oryza sativa) cultivar BR5, which is a local cultivar in Bangladesh. To improve salt tolerance in BR5, we introduced the Escherichia coli catalase gene, katE. We integrated the katE gene into BR5 plants using an Agrobacterium tumefaciens-mediated method. The introduced katE gene was actively expressed in the transgenic BR5 rice plants, and catalase activity in T1 and T2 transgenic rice was approximately 150% higher than in nontransgenic plants. Under NaCl stress conditions, the transgenic rice plants exhibited high tolerance compared with nontransgenic rice plants. T2 transgenic plants survived in a 200 mM NaCl solution for 2 weeks, whereas nontransgenic plants were scorched after 4 days soaking in the same NaCl solution. Our results indicate that the katE gene can confer salt tolerance to BR5 rice plants. Enhancement of salt tolerance in a local rice cultivar, such as BR5, will provide a powerful and useful tool for overcoming food shortage problems.  相似文献   

15.
The senescence pattern of the three uppermost leaves of four rice (Oryza sativa L.) cultivars viz. Ratna, Jaya, Masuri and Kalojira was analysed in terms of decline of chlorophyll and by measuring [32P]-phosphate retention and export from leaf to grains during the reproductive development. With the advancement of reproductive development, the cultivars Masuri and Kalojira showed a sequential mode of senescence, but the cultivars Ratna and Jaya showed a non-sequential mode of leaf senescence where the flag leaf senesced earlier than the older second leaf. Foliar spraying with benzyladenine (0.5 mM) significantly delayed, and abscisic acid (0.1 mM) accelerated, leaf senescence. In untreated control plants, the second leaf had the highest export of labelled phosphate among the leaves at the grain formation stage (0–7 days) in Masuri and Kalojira. This was compensated by the flag leaf at the grain development stage (7–14 days), whereas export of [32P]-phosphate was highest from the flag leaf of Ratna and Jaya at the grain development stage. Compared with the control, benzyladenine treatment caused higher retention of [32P]-phosphate in the leaves and also export to the grains, but abscisic acid treatment gave lower retention and export of [32P]-phosphate to the grains. The amount of [32P]-phosphate export from a mother to a daughter shoot developed in the axil of the second leaf of plants with the panicle removed, was less than that to panicles remaining on control plants of all cultivars. When the panicle had been excised, the greatest export of [32P]-phosphate took place from the second leaf to the daughter shoot in all cultivars. Excision of the panicle delayed leaf senescence as compared with intact controls and maintained an age-related leaf senescence pattern in all the four cultivars. The results presented here demonstrate that mobilization of phosphorus from leaf to grains, regardless of cultivar or age and position of the leaf, correlates well with the senescence of that leaf.  相似文献   

16.
Brown spot disease, caused by Cochliobolus miyabeanus, is currently considered to be one of the most important yield reducers of rice (Oryza sativa L.). Despite its agricultural importance, little is known about the virulence mechanisms deployed by the fungus. Therefore, we set out to identify novel virulence factors with a role in disease development. This article reports, for the first time, the production of tentoxin by C. miyabeanus as a virulence factor during brown spot disease and the identification of the non‐ribosomal protein synthetase (NRPS) CmNps3, responsible for tentoxin biosynthesis. We compared the chemical compounds produced by C. miyabeanus strains differing in virulence ability using ultra‐high‐performance liquid chromatography (UHPLC) coupled to high‐resolution Orbitrap mass spectrometry (HRMS). The production of tentoxin by a highly virulent strain was revealed by principal component analysis of the detected ions and confirmed by UHPLC coupled to tandem‐quadrupole mass spectrometry (MS/MS). The corresponding NRPS was identified by in silico genome analysis and confirmed by gene deletion. Infection tests with wild‐type and Cmnps3 mutants showed that tentoxin acts as a virulence factor and is correlated with chlorosis development during the second phase of infection. Although rice has previously been classified as a tentoxin‐insensitive plant species, our data demonstrate that tentoxin production by C. miyabeanus affects symptom development.  相似文献   

17.
The incidence and severity of frogeye leaf spot of soybean (Glycine max (L.) Merr.) was studied in agroecological region II of Zambia during the 1997/98 crop growing season. A survey was conducted on farmers' fields on SCSI Kaleya, Magoye and Hernon-147 cultivars. Disease incidence and severity was assessed by monitoring disease increments at two weeks interval (beginning of January to April) from nine fields, three from each province. Soybean cultivars were evaluated for yield losses resulting from frogeye leaf spot. Field plots of each cultivar were either sprayed twice with benomyl (benlate) or not sprayed at all. The results showed that the incidence of frogeye leaf spot was highest in Southern province (5.1), followed by Lusaka province (4.9) while Central province had the lowest disease incidence (1.8). Values for area under disease progress curve (AUDPC) were significantly greater (P < 0.05) for Lusaka and Southern provinces than for Central province. Yields in benomyl protected plots ranged from 1444 kg ha−1 to 2320 kg ha−1 and were significantly different among the cultivars. Average yields of non protected plants were reduced by 30.5% for Kaleya, 35.6% for Hernon-147 and 37.2% for SCS1. Incidence and severity increased with time and varied depending on weather parameters and susceptibility of cultivars to the disease. Yield losses due to frogeye leaf spot occurred through a reduction in seed size. Differences in weather conditions and amount of inocula are believed to contribute to the observed variation in incidence and severity of the disease at different locations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
《Comptes rendus biologies》2014,337(11):635-641
A critical investigation was conducted to find out the effect of neck blast disease on yield-contributing characters, and seed quality traits of aromatic rice in Bangladesh. Both healthy and neck-blast-infected panicles of three aromatic rice cultivars (high-yielding and local) were collected and investigated at Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh. All of the tested varieties were highly susceptible to neck blast disease under natural conditions, though no leaf blast symptoms appear on leaves. Neck blast disease increased grain sterility percentages, reduced grain size, yield and quality traits of seeds. The degrees of yield and seed quality reduction depended on disease severity and variety's genetic make-up. Unfilled grains were the main source of seed-borne pathogen, especially for blast in the seed lot. Transmission of blast pathogen from neck (panicle base) to seed was very poor. These findings are important, especially concerning the seed certification programme in which seed lots are certified on the basis of field inspection. Finally, controlled experiments are needed to draw more critical conclusions.  相似文献   

19.
为明确水稻功能叶与产量构成因素间的相关性,以不同遗传背景下籼稻的10个不育系和16个恢复系为亲本,按照NCII设计配制两套双列杂交组合,对水稻12个功能叶性状与8个产量性状构成因素进行了相关分析,结果表明:3片功能叶叶长与叶面积、剑叶宽、倒2叶宽等性状之间均存在极显著正相关,功能叶夹角之间也存在极显著正相关,但不同遗传背景对夹角性状与9个形态性状之间的相关性则存在明显差异,在第1套组合中,其相关系数均为负值,且相关均不显著;而第2套组合则相反。8个产量构成因素中,单株穗数与平均穗长、着粒密度、穗实粒数以及穗着粒数之间存在极显著负相关,平均穗长与穗着粒数、结实率与单株产量呈显著或极显著正相关,遗传背景对产量组成上有较大影响,在第1套组合中单株产量主要由结实率、单株穗数以及穗实粒数等性状决定,而在第2套中则主要由穗实粒数和结实率等性状决定。在功能叶与产量构成因素的相关中,叶长、叶面积、剑叶宽、倒2叶宽与着粒密度、穗实粒数以及穗着粒教等3个性状之间存在显著或极显著正相关。12个水稻功能叶性状与8个产量构成因素之间的主成分分析表明,在不同的遗传背景下,产量构成因素均主要受叶面积和叶夹角影响,两种不同遗传背景中其累积贡献率分别为69.8%和84.0%。  相似文献   

20.
Three experiments with five alternately-branched and one sequentially-branched cultivar of groundnuts are described. Spraying to control Cercospora leaf spot disease doubled the leaf area duration and increased the total weight of a plant by about 65 %. Spraying increased the weight of kernels per plant but in the alternately-branched cultivars also increased the weight of stem and leaves. The proportion of the total dry weight in the kernels in the alternate cultivars was hardly changed by spraying. The sequentially-branched cultivar gave the same increase in total dry weight when sprayed but spraying resulted in a larger increase in the dry weight of kernels. The sequentially-branched cultivar, with few initials for vegetative growth, did not give the same increase in leaf growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号