首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mini‐dome bioassay was developed to study pathogenicity of Ascochyta rabiei and relative resistance of chickpea (Cicer arietanium). It was determined that the best condition for assaying pathogenicity of A. rabiei was to use 2 × 105 spores/ml as inoculum and to maintain a leaf wetness period of 24 h under mini‐domes at a temperature between 16 and 22°C. This mini‐dome pathogenicity assay was used to determine relative resistance of six chickpea cultivars (cvs) to isolates of two pathotypes of A. rabiei. Grafting was employed to detect any translocated factors produced in the chickpea plant that mediate disease response, which could help elucidate possible resistance mechanisms to Ascochyta blight. The six chickpea cv. were grafted in all possible scion–rootstock combinations, and then inoculated with isolates of two pathotypes of A. rabiei using the mini‐dome technique. Results showed that self‐grafted‐resistant plants remained resistant and self‐grafted‐susceptible plants stayed susceptible, indicating the grafting procedure did not alter host response to infection by A. rabiei. Susceptible scions always exhibited high and similar levels of disease severity regardless of rootstock genotypes, and resistant scions always showed low and similar levels of disease severity when they were grafted onto any of the six rootstock genotypes. Orthogonal contrasts showed that scion genotypes determined disease phenotype, and that rootstock genotypes had no contribution to disease phenotype of the scions. The pathogenicity assay did not detect any translocated disease‐mediating agents responsible for susceptibility or resistance in chickpea. Disease phenotypes of Ascochyta blight of chickpea were conditioned locally by scion genotypes.  相似文献   

2.
On the basis of incidence of appearance of Ascochyta blight symptoms after artificial inoculation of 25-day-old chickpea seedlings with 10 different pathotypes of Ascochyta rabiei, GL94011, PBG5 and C214 have been classified as resistant, moderately resistant and susceptible, respectively, to Ascochyta blight. In none of the pathotypes, peroxidase (PO) activity could be detected in culture medium and mycelium. Healthy tissues of GL94011 have almost three times the PO activity in comparison with that of C214. Resistant and moderately resistant genotypes showed 30–60% upregulation of PO activity against infection by A. rabiei whereas it was only 3–6% in susceptible genotype C214. These results indicate the possibility of using PO as a marker of Ascochyta blight resistance.  相似文献   

3.
Forty‐seven genotypes and one wild relative of soybean, Glycine soja, were screened for resistance against aerial blight under epiphytotic conditions in the field during the Kharif season of two consecutive years viz., 2016 and 2017. Out of the 48 genotypes screened, only 18 genotypes exhibited a moderately resistant response to aerial blight during both the years of study. In order to perform molecular screening of the genotypes for aerial blight resistance, the genomic DNA obtained from the seedlings of the forty‐eight soybean genotypes was subjected to PCR amplification with 12 SSR markers. The SSR markers Satt 119, Sat_076, Satt 433, Satt 281, Satt 277, Satt 245 and Satt 520 were able to clearly amplify different banding pattern for resistant and susceptible genotypes, out of which Satt 433 and Satt 520 were found to exhibit a pattern, highly similar to the results of field screening of the genotypes with respect to resistant and susceptible reaction to the disease. The eighteen soybean genotypes that exhibited moderately resistant reaction to RAB under field conditions during both the years showed a banding pattern similar to resistant check PS‐1583 in the amplification profile produced by the SSR markers. The polymorphism information content (PIC) from the analysis of amplification profile of the SSR markers used in the study, ranged from 0.58 to 0.95. The dendrogram constructed using UPGMA cluster analysis clearly differentiated the resistant and susceptible genotypes of soybean into two separate groups.  相似文献   

4.
Two alleles of a chickpea (Cicer arietinum L.) ethylene receptor-like sequence (CaETR-1) were sequence-characterized using synteny analysis with genome sequences of Medicago truncatula L. The full length of the sequence obtained in the accession FLIP84-92C resistant to ascochyta blight (CaETR-1a) span 4,428?bp, including the polyadenylation signal in the 3'-untranslated region (UTR), whereas it has a 730?bp deletion in the 3'-UTR region in the susceptible accession PI359075 (CaETR-1b). The deduced protein belongs to subfamily II of the ethylene receptors and contains all the domains that define EIN4 homologs in Arabidopsis. The EIN4-like sequence (CaETR-1) has been mapped using a recombinant inbred line (RIL) population derived from an intraspecific cross between ILC3279 and WR315, resistant and susceptible to blight, respectively. The locus was located in LGIVa of the genetic map, flanked by markers NCPGR91 and GAA47 (at distances of 11.3 and 17.9?cM, respectively). This is the first potentially functional sequence identified under a QTL peak for ascochyta blight resistance in chickpea (QTL(AR1)). This EIN4-like (CaETR-1) sequence explained up to 33.8% of the total phenotypic variation. This sequence could be directly related to blight resistance, together with other QTLs that have been found to be involved in resistance to this major chickpea disease.  相似文献   

5.
Ascochyta blight in chickpea (Cicer arietinum L.) is a devastating fungal disease caused by the necrotrophic pathogen, Ascochyta rabiei (Pass.) Lab. To elucidate the genetic mechanism of pathotype-dependent blight resistance in chickpea, F7-derived recombinant inbred lines (RILs) from the intraspecific cross of PI 359075(1) (blight susceptible) × FLIP84-92C(2) (blight resistant) were inoculated with pathotypes I and II of A. rabiei. The pattern of blight resistance in the RIL population varied depending on the pathotype of A. rabiei. Using the same RIL population, an intraspecific genetic linkage map comprising 53 sequence-tagged microsatellite site markers was constructed. A quantitative trait locus (QTL) for resistance to pathotype II of A. rabiei and two QTLs for resistance to pathotype I were identified on linkage group (LG)4A and LG2+6, respectively. A putative single gene designated as Ar19 (or Ar21d) could explain the majority of quantitative resistance to pathotype I. Ar19 (or Ar21d) appeared to be required for resistance to both pathotypes of A. rabiei, and the additional QTL on LG4A conferred resistance to pathotype II of A. rabiei. Further molecular genetic approach is needed to identify individual qualitative blight resistance genes and their interaction for pathotype-dependent blight resistance in chickpea.  相似文献   

6.
Chickpea is the third most important food legume in the world. The most important limiting factor for the chickpea production in the world, including Iran, has been the Ascochyta blight. The pathogenic variation of 40 Ascochyta rabiei isolates from the western provinces of Iran was assessed on eight chickpea differential lines. The results revealed that A. rabiei population is diverse in the western provinces of Iran and the virulence rating of isolates across differential lines showed a large but continuous pathogenic variability. Based on the statistical analysis and the continuous response in differential lines, it was not possible to categorise A. rabiei isolates in the present study into pathotypes or races. Information obtained from the current study can be valuable in developing quarantine methods aimed to prevent dissemination of highly virulent isolates and in the development of durable resistant cultivars against the Ascochyta blight of chickpea.  相似文献   

7.
Assessment of the differential expression of antioxidative enzymes and their isozymes, was done in 30 day-old ex vitro raised plants of three highly resistant (DP-25, Jhankri and Duradim) and one highly susceptible (N-118) genotypes of taro [Colocasia esculenta (L.) Schott]. Antioxidative enzymes were assayed in the ex vitro plants, 7 days after inoculation with the spores (15,000 spores ml−1 water) of Phytophthora colocasiae Raciborski to induce taro leaf blight disease. Uninoculated ex vitro plants in each genotype were used as control. The activity of superoxide dismutase (SOD) and guaiacol peroxidase (GPX) increased under induced blight condition when compared with control. Increase in antioxidative enzymes was more (67–92%) in the resistant genotypes than that (21–29%) of the susceptible genotype. The zymograms of SOD and GPX in the resistant genotypes, with pathogenic infection, showed increased activity for anodal isoform of SOD and increased expression and/or induction of either POX 1 or POX 2 isoforms of GPX. In susceptible genotype, expression of the above isoforms was faint for SOD and nearly absent for GPX under both blight free and induced blight conditions. Induction and/or increased activity of particular isoform of SOD and GPX against infection of Phytophthora colocasiae in the resistant genotypes studied led to the apparent conclusion of linkage of isozyme expression with blight resistance in taro. This might be an important criterion in breeding of taro for Phytophthora leaf blight resistance.  相似文献   

8.
广西玉米种质资源对纹枯病的抗性鉴定   总被引:2,自引:1,他引:1  
在人工接种条件下,对860份玉米材料进行了纹枯病抗性鉴定和评价,旨在为进一步开展玉米纹枯病抗性育种和分子生物学研究奠定基础。结果显示,在鉴定的860份玉米材料中,没有发现免疫的材料,高抗、抗、中抗、感和高感的比例分别为3.49%、28.60%、26.16%、10.35%和31.40%;在农家种、群体种和杂交种(组合)等杂合体中,抗病材料所占比例较大,而自交系等纯合体中,感病材料所占比例较大,表明玉米杂合体种质资源材料中可能蕴藏着不同的抗纹枯病基因,特别是广西农家种中可能存在对纹枯病具有稳定抗性的材料,值得进一步研究和利用。  相似文献   

9.
在人工接种条件下,对860份玉米材料进行了纹枯病抗性鉴定和评价,旨在为进一步开展玉米纹枯病抗性育种和分子生物学研究奠定基础。结果显示,在鉴定的860份玉米材料中,没有发现免疫的材料,高抗、抗、中抗、感和高感的比例分别为3.49%、28.60%、26.16%、10.35%和31.40%;在农家种、群体种和杂交种(组合)等杂合体中,抗病材料所占比例较大,而自交系等纯合体中,感病材料所占比例较大,表明玉米杂合体种质资源材料中可能蕴藏着不同的抗纹枯病基因,特别是广西农家种中可能存在对纹枯病具有稳定抗性的材料,值得进一步研究和利用。  相似文献   

10.
阐明了以甜椒N1345为抗原的疫病抗性遗传机制,为甜辣椒抗疫病新品种选育提供依据。通过稳定高抗疫病甜椒育种材料N1345,与高感疫病辣椒材料N1308构建的P1、P2、F1、B1、B2、F2六个联合世代,应用植物数量性状主基因+多基因联合分离分析方法,进行了疫病抗性遗传分析。结果显示,以甜椒N1345为抗原的疫病抗性由2对加性-显性-上位性主基因控制(B-1-1),两主基因加性效应、显性效应均相等,主基因遗传率在B1、B2和F2世代分别为63.43%、82.32%和83.46%。  相似文献   

11.
12.
13.
Molecular changes elicited by plants in response to fungal attack and how this affects plant–pathogen interaction, including susceptibility or resistance, remain elusive. We studied the dynamics in root metabolism during compatible and incompatible interactions between chickpea and Fusarium oxysporum f. sp. ciceri (Foc), using quantitative label‐free proteomics and NMR‐based metabolomics. Results demonstrated differential expression of proteins and metabolites upon Foc inoculations in the resistant plants compared with the susceptible ones. Additionally, expression analysis of candidate genes supported the proteomic and metabolic variations in the chickpea roots upon Foc inoculation. In particular, we found that the resistant plants revealed significant increase in the carbon and nitrogen metabolism; generation of reactive oxygen species (ROS), lignification and phytoalexins. The levels of some of the pathogenesis‐related proteins were significantly higher upon Foc inoculation in the resistant plant. Interestingly, results also exhibited the crucial role of altered Yang cycle, which contributed in different methylation reactions and unfolded protein response in the chickpea roots against Foc. Overall, the observed modulations in the metabolic flux as outcome of several orchestrated molecular events are determinant of plant's role in chickpea–Foc interactions.  相似文献   

14.
Of the 390 Kabuli chickpea genotypes evaluated from 2005 to 2010 against Ascochyta blight (AB), Fusarium wilt (FW) and Dry root rot (DRR) resistance using standard screening techniques, 48 were found to be resistant to FW and DRR. Of these, four genotypes viz GLK95091, GLK95061, GLK24092 and GLK24096 showed resistance to AB with disease score less than 4.0 while another four genotypes GLK22072, GLK22098 and GLK24099 displayed AB disease score 5.0. GLK 22117 with FW percentage 6.3 and DRR 3.5 tested for seven years displayed good performance at other locations in India as well. Extra bold seeded genotypes GLK 26171, GLK26177 and GLK23001have shown good level of resistance to AB, FW and DRR and can be suggested as donors in crossing programme. It was observed that level of FW resistance was comparatively low in large-seeded and extra-large-seeded kabuli than small seeded kabuli.  相似文献   

15.
Two quantitative trait loci (QTLs), (QTLAR1 and QTLAR2) associated with resistance to ascochyta blight, caused by Ascochyta rabiei, have been identified in a recombinant inbred line population derived from a cross of kabuli×desi chickpea. The population was evaluated in two cropping seasons under field conditions and the QTLs were found to be located in two different linkage groups (LG4a and LG4b). LG4b was saturated with RAPD markers and four of them associated with resistance were sequenced to give sequence characterized amplified regions (SCARs) that segregated with QTLAR2. This QTL explained 21% of the total phenotypic variation. However, QTLAR1, located in LG4a, explained around 34% of the total phenotypic variation in reaction to ascochyta blight when scored in the second cropping season. This LG4a region only includes a few markers, the flower colour locus (B/b), STMS GAA47, a RAPD marker and an inter-simple-sequence-repeat and corresponds with a previously reported QTL. From the four SCARs tagging QTLAR2, SCAR (SCY17590) was co-dominant, and the other three were dominant. All SCARs segregated in a 1:1 (presence:absence) ratio and the scoring co-segregated with their respective RAPD markers. QTLAR2 on LG4b was mapped in a highly saturated genomic region covering a genetic distance of 0.8 cM with a cluster of nine markers (three SCARs, two sequence-tagged microsatellite sites (STMS) and four RAPDs). Two of the four SCARs showed significant alignment with genes or proteins related to disease resistance in other species and one of them (SCK13603) was sited in the highly saturated region linked to QTLAR2. STMS TA72 and TA146 located in LG4b were described in previous maps where QTL for blight resistance were also localized in both inter and intraspecific crosses. These findings may improve the precision of molecular breeding for QTLAR2 as they will allow the choice of as much polymorphism as possible in any population and could be the starting point for finding a candidate resistant gene for ascochyta blight resistance in chickpea.  相似文献   

16.
Beet armyworm, Spodoptera exigua (Hübner), is an economic pest of chickpea, Cicer arietinum L., in Mexico and the Indian subcontinent. Larvae feed on the vegetative and reproductive stages of chickpea and the development of plant resistance is a priority in the management of this pest. Forty‐two recombinant inbred lines (RILs) from a chickpea recombinant inbred line population (CRIL‐7) developed from a cross between FLIP 84‐92C (susceptible C. arietinum) and PI 599072 (resistant C. reticulatum Lad. accession) were rated resistant (nine lines with post‐trial larval weights 0.42–0.59 mg), moderately resistant/susceptible (25 lines, larval weights 0.61–0.99 mg) and susceptible (eight lines, larval weights 1.01–2.17 mg) to beet armyworm larvae in a general glasshouse screening. Resistance and susceptibility of entries (RILs in the CRIL‐7 population, parents, checks) was based on the average weight gain and fate of early‐stage larvae on pre‐flowering plants. In a growth chamber trial, early‐instar larval weight gain differed significantly (P < 0.0001) among entries (12 RILs, parents, checks), with mean weights from 0.80 mg (resistant RIL) to 4.03 mg (susceptible kabuli cultivar). There were no significant differences (P = 0.0836) in larval mortality among the entries in the growth chamber trial, although mortality rates were 28.2–61.9%. Flavonoid and isoflavonoid extractions and analyses did not clarify the role played by these phytochemicals in chickpea resistance to S. exigua. The requisite high levels of resistance to S. exigua and other pests for breeding resistant culivars may reside in the CRIL‐7 population.  相似文献   

17.
Accessions from Cicer echinospermum, a wild relative of chickpea (Cicer arietinum L.), contain resistance to the fungal disease ascochyta blight, a devastating disease of chickpea. A linkage map was constructed based on an interspecific F(2) population, derived from a cross between a susceptible chickpea cultivar (Lasseter) and a resistant C. echinospermum accession (PI 527930). The linkage map incorporated 83 molecular markers, that included RAPD, ISSR, STMS and RGA markers; eight markers remained unlinked. The map comprised eight linkage groups and covered a map distance of 570 cM. Six out of the eight linkage groups were correlated to linkage groups from the integrated Cicer map using STMS markers. Quantitative trait loci (QTLs) associated with ascochyta blight resistance were detected using interval mapping and single-point analysis. The F(2) population was evaluated for seedling and stem resistance in glasshouse trials. At least two QTLs were identified for seedling resistance, both of which were located within linkage group 4. Five markers were associated with stem resistance, four of which were also associated with seedling resistance. QTLs from previous studies also mapped to LG 4, suggesting that this linkage group is an important region of the Cicer genome for resistance to ascochyta blight.  相似文献   

18.
Sheath blight caused by Rhizoctonia solani Kühn is one of the important diseases of rice, resulting in heavy yield loss in rice every year. No rice line resistant to sheath blight has been identified till date. However, in some rice lines a high degree of resistance to R. solani has been observed. An indica rice line, Tetep, is a well documented source of durable and broad spectrum resistance to rice blast as well as quantitative resistance to sheath blight. The present study identified genetic loci for quantitative resistance to sheath blight in rice line Tetep. A mapping population consisting of 127 recombinant inbred lines derived from a cross between rice cultivars HP2216 (susceptible) and Tetep (resistant to sheath blight) was evaluated for sheath blight resistance and other agronomic traits for 4 years across three locations. Based on sheath blight phenotypes and genetic map with 126 evenly distributed molecular markers, a quantitative trait loci (QTLs) contributing to sheath blight resistance was identified on long arm of chromosome 11. Two QTL mapping approaches i.e., single marker analysis and composite interval mapping in multi environments were used to identify QTLs for sheath blight resistance and agronomical traits. The QTL qSBR11-1 for sheath blight resistance was identified between the marker interval RM1233 (26.45 Mb) to sbq33 (28.35 Mb) on chromosome 11. This region was further narrowed down to marker interval K39516 to sbq33 (~0.85 Mb) and a total of 154 genes were predicted including 11 tandem repeats of chitinase genes which may be responsible for sheath blight resistance in rice line Tetep. A set of 96 varieties and a F2 population were used for validation of markers linked to the QTL region. The results indicate that there is very high genetic variation among varieties at this locus, which can serve as a starting point for allele mining of sheath blight resistance.  相似文献   

19.
Eighteen tomato genotypes, with varying degree of response to Alternaria leaf blight disease (ALBD) were used to assess the possible involvement of protease and peroxidase activities in disease response. Pre-infectional protease activity varied noticeably in tested genotypes. Highest pre-infectional protease activity was observed in susceptible genotype CLN-2123. Post-infectional protease activity level was generally lower when compared with pre-infectional level in all genotypes with exception of unchanged level in Tibrido. There was no correlation between post-infectional protease activity and percent disease index (%DI). In contrast, pre- and post-infectional leaf peroxidase activities showed a significant (p < 0.01) negative correlation with %DI. Genotypes with higher pre-infectional peroxidase activity performed better on exposure to Alternaria alternata infection and accumulate enhanced peroxidase activity. Tibrido accumulated highest peroxidase activity while level was lowest in 1621P, which showed highest ALBD incidence. Moreover, genotypes with better resistance to A. alternata infection maintained higher post-infectional peroxidase activity. In resistant (Tibrido) and all moderately resistant genotypes, leaf peroxidase activity raised after inoculation when compared with the pre-inoculation level. I summary, higher pre- and post-infectional peroxidase activity was found to be associated with Alternaria leaf blight resistance. The peroxidase activity can be used as a biochemical tool in marker-assisted screening of tomato germplasm for Alternaria leaf blight resistance.  相似文献   

20.
玉米种质资源对纹枯病的抗性鉴定与评价   总被引:6,自引:0,他引:6  
在人工接种条件下,对国内常用的285份玉米种质资源进行抗纹枯病大田鉴定与评价,未发现免疫材料,抗病材料很少.高抗、抗和中抗材料的比例分别为1.0%、3.2%、13.7%;绝大多数材料属于感病或高感,分别占29.8%、52.3%.株高、主穗位高、主穗位高/株高之比值与病情指数呈负相关,病斑高、病斑高/株高、病斑高/主穗位高之比值与病情指数呈正相关,可以将病斑高度与主穗位高度的比值作为抗性鉴定与评价指标之一.采用带菌麦粒在拔节中后期定位接种,以病斑到达的叶鞘位作为病情和抗性评价体系是较为准确和规范的方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号