首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Queensland fruit fly, Bactrocera tryoni (Froggatt), is the economically most significant Australian tephritid pest species with a large invasion potential, yet relatively little work on its biological control has been undertaken. Entomopathogenic nematodes (EPNs) are of potential interest for control of this fruit fly species as it pupates in the soil. Specifically, the pre-pupal stage of B. tryoni may present a unique window for EPN application, as fully developed larvae drop from infested fruit to the soil for pupation. For the first time, we tested the capacity of three EPN species with different foraging strategies, Steinernema feltiae, Steinernema carpocapsae and Heterorhabditis bacteriophora, to cause larval and pupal mortality in B. tryoni across a range of EPN concentrations (50, 100, 200, 500 and 1000 infective juveniles IJs cm-2), substrate moisture (10, 15, 20 and 25% w/v) and temperatures (15, 20, 25 and 30 °C). We found that all EPN species tested caused environment and density dependent mortality in the third larval instar while pupae were not affected. Steinernema feltiae caused high mortality across different IJ concentrations and over a wider moisture and temperature range than the other two EPN species. High mortality caused by S. carpocapsae and H. bacteriophora was more limited to high IJ concentrations and a narrower moisture and temperature range. Our findings highlight the potential of EPNs for the control of B. tryoni and warrant further laboratory and field experiments to evaluate their efficacy under the wide environmental conditions that B. tryoni can occur in.  相似文献   

2.
The objective of this study was to determine the susceptibility of the two primary direct insect pests of hazelnuts in Oregon to three species of entomopathogenic nematodes. The entomopathogenic nematodes (Heterorhabditis marelatus Pt. Reyes, Steinernema carpocapsae All and Steinernema kraussei L137) were used in laboratory soil bioassays to determine their virulence against filbertworm, Cydia latiferreana (Walsingham) (Lepidoptera: Tortricidae) and filbert weevil, Curculio occidentalis (Casey) (Coleoptera: Curculionidae). All three nematode species were infective in laboratory bioassays. Infectivity ranged from 73-100% and 23-85% for filbertworm and filbert weevil, respectively. Field results were similar to those found in the laboratory with filbertworm larvae being more susceptible to nematode infection.  相似文献   

3.
The susceptibility of the boll weevil (BW), Anthonomus grandis Boheman, to Steinernema riobrave and other nematode species in petri dishes, soil (Hidalgo sandy clay loam), and cotton bolls and squares was investigated. Third instar weevils were susceptible to entomopathogenic nematode (EN) species and strains in petri dish bioassays at 30 degrees C. Lower LC(50)'s occurred with S. riobrave TX- 355 (2 nematodes per weevil), S. glaseri NC (3), Heterorhabditis indicus HOM-1 (5), and H. bacteriophora HbL (7) than H. bacteriophora IN (13), S. riobrave TX (14), and H. bacteriophora HP88 (21). When infective juveniles (IJs) of S. riobrave were applied to weevils on filter paper at 25 degrees C, the LC(50) of S. riobrave TX for first, second, and third instars, pupae, and 1-day-old and 10-days-old adult weevils were 4, 5, 4, 12, 13, and 11IJs per weevil, respectively. The mean time to death, from lowest to highest concentration, for the first instar (2.07 and 1.27days) and second instar (2.55 and 1.39days) weevils were faster than older weevil stages. But, at concentrations of 50 and 100IJs/weevil, the mean time to death for the third instar, pupa and adult weevils were similar (1.84 and 2.67days). One hundred percent weevil mortality (all weevil stages) occurred 3days after exposure to 100IJs per weevil. Invasion efficiency rankings for nematode concentration were inconsistent and changed with weevil stage from 15 to 100% when weevils were exposed to 100 and 1IJs/weevil, respectively. However, there was a consistent relationship between male:female nematode sex ratio (1:1.6) and nematode concentration in all infected weevil stages. Nematode production per weevil cadaver increased with increased nematode concentrations. The overall mean yield of nematodes per weevil was 7680IJs. In potted soil experiments (30 degrees C), nematode concentration and soil moisture greatly influenced the nematode efficacy. At the most effective concentrations of 200,000 and 400,000IJs/m(2) in buried bolls or squares, higher insect mortalities resulted in pots with 20% soil moisture either in bolls (94 and 97% parasitism) or squares (92 and 100% parasitism) than those of 10% soil moisture in bolls (44 and 58% parasitism) or squares (0 and 13% parasitism). Similar results were obtained when nematodes were sprayed on the bolls and squares on the soil surface. This paper presents the first data on the efficacy of S. riobrave against the boll weevil, establishes the potential of EN to control the BW inside abscised squares and bolls that lay on the ground or buried in the soil.  相似文献   

4.
Pathogenicity of a native isolate of Steinernema feltiae (H1) and two exotic strains, Heterorhabditis bacteriophora and Steinernema carpocapsae was assessed under laboratory conditions using different concentrations i.e. 4000, 6000, 8000 and 10,000 infective juveniles/ml against second instar larvae, prepupa and pupa of Thrips tabaci Lindeman. The mortality data were recorded 24 and 48?h post-inoculation. The highest mortality rate was recorded for prepupa (62%) than second instar (12.5%) by H. bacteriophora and S. carpocapsae, respectively, 24?h after treatment. No significant differences were found in mortality between prepupa and pupa with increasing the nematodes concentrations (from 4000 to 10,000 nematode/ml) but increasing nematode concentrations increased the mortality of second instar. At the end of the experiment (48?h.), S. feltiae H1 caused the highest mortality on second instar larvae (74%), whereas all other species caused 80–83% mortalities on pupa. This study suggests that native isolate of S. feltiae (H1) had high potential to infect soil-dwelling stages of T. tabaci.  相似文献   

5.
We conducted a study to determine the relationship between turfgrass management intensity and natural occurrence of entomopathogenic nematodes (EPNs). We surveyed for EPNs on putting greens, fairways, and rough areas—three distinct surface types on golf courses that are managed with different intensities. We collected 159 soil samples from putting greens, contiguous fairways, and rough areas from 19 golf courses in Ohio, USA. Nematodes were recovered from soil samples using the insect baiting technique. We also analyzed the soil samples for texture, organic matter, pH, phosphorus, calcium, magnesium and potassium. We used principal components analysis and Pearson correlation to determine the relationship between nematode occurrence and the measured parameters. Surface type was the most important factor in predicting EPNs occurrence. Putting greens differed significantly from fairways and rough areas in the number of EPN-positive sites. No EPNs were recovered from putting greens but were recovered from 43% of the fairways and 57% of the rough areas. Putting greens also differed significantly from fairways and rough areas in organic matter, pH, calcium, and phosphorus. The fairways and rough areas did not however differ in number of EPN-positive sites and measured soil parameters. Presence of EPNs correlated significantly, although weakly, with sand, silt, phosphorus, organic matter, and magnesium content, but not with clay, pH, calcium, and potassium. Nematode isolates were identified as Heterorhabditis bacteriophora, Steinernema carpocapsae, and S. glaseri. This suggests that EPNs are more likely to occur in less intensively managed sites that receive fewer inputs and have relatively high sand, and moderate silt, organic matter, phosphorus, and magnesium content.  相似文献   

6.
《Journal of Asia》2022,25(2):101880
Bioassays to evaluate the mortality, virulence and reproduction potentials of four indigenous EPN strains, S-PQ16, S-BM12, H-KT3987 and H-CB3452 on insect larvae of mealworm (Tenebrio molitor) and greater wax moth (Galleria mellonella) revealed the highest mortality rates of two insect larvae at the highest inoculation dose of 100 IJs to range from 89 to 100 percent and 94.3–100 percent at 48 h after inoculation, respectively. Virulence was high for all nematode strains, with LC50 values between 29.6 and 47.3 IJs/insect host. The highest IJ yields were different between nematode strains and insect host, from 66.8 × 103 IJs (S-PQ16) to 118.6 × 103 IJs (H-KT3987) on T. molitor, and from 54.2 × 103 IJs (S-BM12) to 163.3 × 103 IJs (H-KT3987) on G. mellonella. The culturing cost in terms of food expenditure for rearing insect larvae varied between insect larvae and nematode strains, from 6.76 to 26.63 USD per billion IJs for nematode strains cultured on T. molitor larvae and from 3.54 to 7.81 USD per billion IJs for nematode strains cultured on G. mellonella larvae. The full cost for a nematode product of 2.5 × 109 IJs per hectare, produced through in vivo mass culturing, of the most efficient nematode strain, H-KT3987, was 191.3 USD, slightly cheaper than 199.4 USD for the same nematode product produced through in vitro mass culturing.  相似文献   

7.
The susceptibility of pupating larvae of pollen beetles, Meligethes spp. Stephens (Coleoptera: Nitidulidae) and brassica pod midges, Dasyneura brassicae Winnertz (Diptera: Cecidomyidae) to entomopathogenic nematodes (Nematoda: Rhabditida) was studied in the laboratory. The results showed that brassica pod midge larvae were almost unaffected by the tested nematodes (Steinernema bicornutum, S. feltiae and Heterorhabditis bacteriophora) whereas successful pupation of pollen beetle larvae was reduced with increasing number of nematodes (S. bicornutum, S. carpocapsae, S. feltiae and H. bacteriophora). The exposed larvae had been collected in the field and some of the pollen beetle larvae were parasitised by parasitoid wasps. It appeared that parasitised larvae were less affected by nematodes than non-parasitised larvae.  相似文献   

8.
Applications of Steinemema carpocapsae All strain in water thickener into cuts or holes made in residual rhizomes of bananas gave significant mortality of Cosmopolites sordidus larvae in the rhizomes. The methods proved suitable for field application and two large scale field trials using S. carpocapsae All and S. carpocapsae NC513 gave acceptable levels of control as measured by Vilardebo's (1973) Co-efficient of Infestation. Mortality of adult C. sordidus attracted to the application sites on treated rhizomes was observed during these field trials.  相似文献   

9.
Soil samples from different Egyptian Governorates as Giza, Behera, Alexandria, Sohag, Qulupeia, El-Sadat City, Sharkia, Bani-Swif, North Sinai (El-Arish) and South Sinai (Ras-Seder), Tanta, Fayoum and Suez have been surveyed for isolation of new entomopathogenic nematode isolates. One isolate coded as IB was isolated from Sharkia (Belbies). Based on morphometric characters, the isolate was found to belong to Heterorhabditidae and identified as Heterorhabditis indica. The isolate individuals were reproduced by in vivo method using sixth larval instars of Galleria mellonella. The survival of native isolate H. indica was better at low temperature (15 °C) compared to room temperature (27 °C).The bioassay results showed reduction in stored IJs activity against G. mellonella compared with fresh IJs where the median lethal concentration LC50 which recorded to be 46.87 for fresh IJs/ml then increased to 571.38 and to 1181.87 IJs/ml after storage for 2 and 4 weeks, respectively.  相似文献   

10.
用昆虫病原线虫小卷蛾斯氏线虫(Sc BJ)、夜蛾斯氏线虫(Sf Otio)、拟双角斯氏线虫(Sc D43)、格氏斯氏线虫(Sg NC32)和嗜菌异小杆线虫(Hb E-6-7)对长角血蜱雌蜱进行感染试验,所用线虫剂量为4 000 Ijs/dish。结果表明,5种线虫均对长角血蜱雌蜱有致死效应。Hb E-6-7和Sc BJ两种线虫对雌蜱各发育期致病力最强,导致雌蜱的累积死亡率和半致死时间分别为饥饿雌蜱82.5%,9.0天和75.0%,8.8天;吸血雌蜱90.0%,8.0天和82.5%,8.0天;饱血雌蜱93.3%,7.3天和86.7%,7.3天。Sc D43对饱血雌蜱有较高的致死效应,为80.0%,但半致死时间较长,为11.7天。Sf Otio和Sg NC32对长角血蜱雌蜱的致死效应较低。饱血雌蜱较饥饿雌蜱和吸血雌蜱更易被线虫感染。  相似文献   

11.
Cockroaches are major pests, vectors of pathogenic bacteria and induce allergies. Current control methods use chemical pesticides, but they can be ineffective and costly and there are reports of resistance in the field; hence new control methods are needed. There are conflicting reports about the susceptibility of cockroaches to entomopathogenic nematodes (EPNs); so we investigated if EPNs could kill several diverse cockroach species, including the Madagascan hissing roach (Gromphadorhina portentosa), the Lobster roach (Nauphoeta cinerea) and Blaptica dubia. Female adult cockroaches were exposed to either commercial products containing Steinernema kraussei or a combination of Heterorhabditis spp. and Steinernema spp. at 50 and 150 nematodes per cm2 for 21 days. We also monitored feeding and the numbers of infective juveniles that were produced from each cockroach corpse. We found that S. kraussei were harmless to all cockroach species (at both doses) but when exposed to a mixture of Heterorhabditis spp. and Steinernema spp. B. dubia died after 6 days and its feeding was strongly inhibited. We also found that the mixture of Heterorhabditis spp. and Steinernema spp. could proliferate in the cadavers of B. dubia whilst S. kraussei could only reproduce in G. portentosa and B. dubia but not N. cinerea. In conclusion, S. kraussei was harmless to all three cockroach species but B. dubia was killed when exposed to Heterorhabditis spp. and Steinernema spp., highlighting the differences in the host range of EPNs.  相似文献   

12.
昆虫病原线虫是新型的生物杀虫剂,对钻蛀及土栖性害虫防效较好,具有部分替代化学农药的潜力。昆虫病原线虫的产业化培养是昆虫病原线虫商业化应用的基础。本文介绍了目前世界上常用的昆虫病原线虫的培养方法,包括活体培养、半固体培养和液体培养的技术,这些技术的应用有助于昆虫病原线虫的种质保存及培养,为拓展昆虫病原线虫的产业化生产和应用奠定了基础。  相似文献   

13.
The Oriental armyworm, Mythimna separata Walker (Lepidoptera: Noctuidae) is a major pest of cereal crops, and its outbreaks result in complete crop loss. In this study, we tested the pathogenicity and reproductive potential of indigenous entomopathogenic nematodes (EPNs), Heterorhabditis indica Poinar, Karunakar, & David NBAIIH38, Steinernema abbasi Elawad NBAIISa01, S. carpocapsae Weiser NBAIISc05 and S. siamkayai Stock, Somsook and Reid NBAIRS92 against larval and pupal stages of M. separata under laboratory conditions. Steinernema carpocapsae caused significantly greater mortality in second- and fourth-instar larval stages than other EPNs species. Steinernema carpocapsae caused greatest mortality 100% in larval stages and 75% in pupal stages. Significant differences were observed in the lethal concentration values (LC50 and LC90) of EPNs species against different stages of M. separata. Differences in penetration and multiplication in the fourth-instar larval stages of M. separata were observed amongst the EPNs species. However, further studies are needed to reveal the field performance of EPN isolates tested to be included in the IPM programme of M. separata.  相似文献   

14.
A survey of entomopathogenic nematodes was conducted in the north Pacific (Guanacaste Conservation Area) and southeast Caribbean (Gandoca-Manzanillo Natural Refuge) regions of Costa Rica. Out of a total of 41 soil samples, 5 were positive for entomopathogenic nematodes (20.5%), with 3 (12.3%) containing Steinernema and 2 (8.2%) Heterorhabditis isolates. Morphological and molecular studies were undertaken to characterize these isolates. The Heterorhabditis isolates were identified as Heterorhabditis indica and the three Steinernema isolates were identified as two new undescribed species. H. indica was recovered from a coastal dry forest. Steinernema n. sp. 1 was isolated from a rainforest valley, between volcanoes. Steinernema sp. n. 2 was isolated from sand dunes in the Caribbean Coast (Punta Uva) near the rainforest strip along the coast. Although limited to two geographic regions, this study suggests entomopathogenic nematodes may be diverse and perhaps widely distributed in Costa Rica. A more intensive survey, covering all geographic regions is currently undergoing.  相似文献   

15.
Entomopathogenic nematodes and parasitoid wasps are used as biological control agents for management of insect pests such as the Indian meal moth, Plodia interpunctella. The parasitoid wasp Habrobracon hebetor injects a paralytic venom into P. interpunctella larvae before laying eggs. A previous study reported that the entomopathogenic nematode Heterorhabditis indica preferentially infects P. interpunctella that have been envenomed by H. hebetor while results in this study showed a similar preference by the entomopathogenic nematode, Steinernema glaseri. We therefore tested four hypotheses for why nematode infection rates are higher in envenomed hosts: (1) elevated CO2 emission from envenomed hosts attracts nematodes, (2) paralysis prevents hosts from escaping nematodes, (3) volatile chemicals emitted from envenomed hosts attract nematodes and increase infection, and (4) reduced immune defenses in envenomed hosts increase nematode survival. Results showed that envenomed P. interpunctella larvae emitted lower amounts of CO2 than non-envenomed larvae. Physical immobilization of P. interpunctella larvae did not increase infection rates by S. glaseri but did increase infection rates by H. indica. Emissions from envenomed hosts were collected and analyzed by thermal desorption gas chromatography/mass spectrometry. The most abundant compound, 3-methyl-3-buten-1-ol, was found to be an effective cue for S. glaseri attraction and infection but was not an effective stimulus for H. indica. Envenomed P. interpunctella exhibited a stronger immune response toward nematodes than non-envenomed hosts. Altogether, we conclude that different mechanisms underlie preferential infection in the two nematode species: host immobilization for H. indica and chemical cues for S. glaseri.  相似文献   

16.
The potential of entomopathogenic nematodes, Heterorhabditis bacteriophora, Heterorhabditis zealandica and Steinernema khoisanae, to infect pupariating larvae, pupae and adults of Ceratitis capitata and Ceratitis rosa was investigated in laboratory bioassays. Pupariating larvae and adult flies were susceptible to nematode infection, with no infection recorded for the pupae. Pupariating larvae of C. capitata were generally more susceptible to infection than those of C. rosa. Significantly more larvae of C. capitata were infected by H. bacteriophora. For C. rosa, highest infectivity of larvae was obtained with H. zealandica. In contrast, adults of both species were highly infected by S. khoisanae.  相似文献   

17.
We investigated differential susceptibility of lady beetles to entomopathogenic nematodes, for two reasons: (1) to estimate potential nontarget effects on natural lady beetle populations, (2) to compare the susceptibility of exotic versus native lady beetle species. We hypothesize that successful establishment of some exotically introduced arthropods may be due, in part, to a lower susceptibility relative to competing native species. In laboratory studies, we compared the pathogenicity, virulence, and reproductive capacity of Heterorhabditis bacteriophora and Steinernema carpocapsae among two native (Coleomegilla maculata and Olla v-nigrum) and two successfully established exotic (Harmonia axyridis and Coccinella septempunctata) lady beetles, and a known susceptible lepidopteran host, Agrotis ipsilon. After 1 and 2 days of exposure to either nematode species, mortality of A. ipsilon was higher than in all lady beetles. Thus, we predict that nematode field applications would have significantly less impact on lady beetle populations than on a susceptible target pest. Additionally, the impact of soil-applied nematodes may be lower on lady beetles than on soil-dwelling hosts because the former spends relatively less time on the soil. Exotic lady beetles were less susceptible to nematode infection than native species. Reproductive capacity data also indicated lower host suitability in H. axyridis, but not in C. septempunctata. Overall, the hypothesis that low susceptibility to pathogens in certain exotic lady beetles may have contributed to competitive establishment was supported (especially for H. axyridis). Additional studies incorporating different hosts and pathogens from various geographic locations will be required to further address the hypothesis.  相似文献   

18.
Ali MEHRVAR 《昆虫学报》2013,56(10):1229-1234
对采自伊朗阿塞拜疆东部西红柿大田的棉铃虫Helicoverpa armigera核型多角体病毒3个分离株[Maragheh (MRG), Nebrin (NBN)和 Marand (MRD)]繁殖的3个主要参数(幼虫期、 接种剂量和培养温度)进行了研究, 以在室内条件下筛选很有前景的分离株。在测试的各龄幼虫中, 5龄初期幼虫的病毒产量最高。最适接种剂量和接种温度分别为1 965.87 OB/mm2 和25℃。而在所有测试中, 采自Nebrin 的NBN分离株在规模化生产中表现最佳。  相似文献   

19.
Low-cost mass production of entomopathogenic nematodes (EPNs) is an important prerequisite towards their successful commercialisation. This study evaluated six low-cost solid substrate media for in vitro mass production of Steinernema innovationi. Cost analysis was undertaken and an estimated retail price was calculated. This was then compared to the costs of commercial EPN products currently on the market. The highest yield of infective juveniles (IJs) was obtained from a medium containing a puree of house fly, Musca domestica, larvae?+?0.15?g canola oil, (781,678?±?221 IJs/5?g medium). This medium also had the lowest number of adults remaining in the medium and dead IJs (<10%) at the time of harvest (Day 28). The estimated retail price (R243.27 per 50 million IJs) for S. innovationi produced with our solid culture system was considerably lower than the market price for other Steinernema species products sold by E~nema, BASF corporation, Koppert, BioBest and Natural Insect Control. The production system developed in this study offers a competitive technology to produce EPN products without having to invest in large-scale liquid fermentation equipment, by using a relatively cheap production medium and simple solid culture growing conditions using Erlenmeyer flasks.  相似文献   

20.
The seasonal dynamics of entomopathogenic nematodes (EPNs) of the genus Steinernema and Heterorhabditis were studied during one season in meadow and oak wood habitats, in the vicinity of Ceské Budejovice, Czech Republic. The influences of soil temperature, moisture, and abundance of suitable hosts on EPN dynamics were investigated. The host range of these nematodes, in both habitats was also observed. A total of four EPN species were found in both habitats. Steinernema affine was the dominant species both in oak wood and in meadow. Additionally, the oak wood habitat was inhabited by S. kraussei and S. weiseri; the meadow habitat by Heterorhabditis bacteriophora. The mean abundance of total EPN community was 28,000ind./m(2) in oak wood and 11,000ind./m(2) in meadow. The seasonal dynamics of entomopathogenic nematodes in both habitats were characterized by high nematode densities in the beginning of the season, followed by a rapid decrease, and then stabilization. EPN abundances did not show any apparent correlation with soil temperature and moisture, but they were negatively correlated with the abundance of suitable insect hosts. Inter- and intraspecific competition for limited nutrients (hosts) probably played a major role in EPN seasonal dynamics. Broad host range of entomopathogenic nematodes in both habitats was predominantly represented by dipteran and coleopteran larvae. Most common hosts belonged to the families Asilidae, Bibionidae, and Empididae (Diptera), as well as Carabidae and Curculionidae (Coleoptera).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号