首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Safflower wilt, caused by Fusarium oxysporum f. sp. carthami (Foc) is a major limiting factor for safflower (Carthamus tinctorius) production worldwide. In India alone, about 40–80% disease incidence has been reported. A rapid, efficient, specific, and sensitive diagnostic technique for Foc is therefore crucial to manage Fusarium wilt of safflower. Twenty-five isolates of F. oxysporum formae speciales infecting other crops, 17 isolates of Fusarium spp. and seven isolates of other fungal pathogens of safflower along with 75 Foc isolates were used for identification of band specific to Foc using inter-simple sequence repeat (ISSR) analysis. Out of 70 ISSR primers, the one that specifically amplified a 490 bp fragment from all the Foc isolates was selected. Sequence of the amplified fragment was utilized to design sequence characterized amplified region (SCAR) primers (FocScF/FocScR). The primer pair unambiguously and exclusively amplified a DNA fragment of approximately 213 bp in all the 75 Foc isolates. The primer set was able to detect as low as 10 pg of Foc genomic DNA using conventional PCR, while the SCAR primers when coupled with real-time qPCR demonstrated detection limits of 1 pg for Foc genomic DNA and 1000 conidia/g for soil. The assay enabled reliable diagnosis of Foc DNA in contaminated safflower fields and expedited Foc detection at 72 h post inoculation in asymptomatic seedlings. This method facilitates quick and precise detection of Foc in plant and soil samples and can be exploited for timely surveillance and sustainable management of the disease.  相似文献   

3.
In an effort to clarify the cause of the deterioration of the colorfully painted murals that adorn the inner walls of the small stone chambers in the Takamatsuzuka and Kitora Tumuli in Japan, we enumerated the fungi that were isolated from moldy spots on the plaster walls collected between May 2004 and April 2005. The 262 fungal isolates from 79 samples of both tumuli were identified as approximately 100 species based on their phenotypic characters. Fusarium, Trichoderma, and Penicillium species were the predominant colonizers in the stone chamber interior and adjacent areas of both tumuli. In addition to the 28S phylogeny, neighbor-joining and Bayesian phylogenies of partial EF-1-alpha gene sequences revealed 24 genetically diverse fusaria in the Takamatsuzuka and Kitora Tumuli. Most of the fusaria were nested in clade 3 of the Fusarium solani species complex (FSSC); however, a few isolates were members of the F. oxysporum species complex (FOSC) clade or the F. avenaceum/F. tricinctum species complex clade. The FSSC isolates were compared with those detected in the Lascaux cave in France. In addition, a partial EF-1α gene phylogeny indicated that 13 Trichoderma isolates clustered in the Harzianum-Virens clade and 5 isolates in the Viride clade or Trichoderma sect. Longibrachiatum. Our analyses suggest that most of the fungi recovered from both tumuli are typically soil dwellers. First two authors contributed equally to this work  相似文献   

4.
Genetic variability among isolates of Fusarium oxysporum f. sp. cepae was obtained from different onion-growing areas of Tamil Nadu, India. Random amplified polymorphic DNA (RAPD) analysis was carried out using 12 random primers, each of them consisting of 10 base pairs. Four out of the 12 primers were differentiated between some of the tested F. oxysporum f. sp. cepae isolates. Analysis of the genetic coefficient matrix derived from the scores of RAPD profile showed that minimum and maximum per cent similarities among the F. oxysporum f. sp. cepae isolates were in the range of 14–85%. Cluster analysis, using the unweighted pair-group method with arithmetic average, clearly separated the isolates into two clusters (A and B) confirming the genetic diversity among the isolates of F. oxysporum f. sp. cepae from onion.  相似文献   

5.
From 2012 to 2014, 70 isolates of Fusarium species were recovered from the wheat fields of Khosf, Giuk, Taqab, Amirabad, Mohammadieh and Bojd in the South Khorasan Province, Eastern Iran. Based on morphological characteristics, these isolates belonged to 14 Fusarium species. DNA of 23 isolates was extracted and their ribosomal ITS regions were amplified, sequenced and aligned with Fusarium species sequences of the GenBank. Among Fusarium isolates, the isolates belonging to F. solani (18.6%), F. acuminatum (12.9%), F. longipes (11.4%) and F. nygamai (10%) species had the higher frequencies. Other isolates from wheat crown and root were F. avenaceum, F. compactum, F. crookwellense, F. culmorum, F. diversisporum, F. equiseti, F. fujikuroi, F. javanicum, F. oxysporum and F. semitectum. This study is the first investigation of Fusarium species associated to wheat crown and root in the eastern desert area of Iran.  相似文献   

6.
A total of 13 representative isolates of Fusarium oxysporum f. sp. melonis (FOM) from Iran, USA and France, eight isolates of seven formae speciales from Iran and one isolate of F. oxysporum f. sp. niveum from the USA were compared based on isozyme analysis and soluble mycelial protein pattern. Isozyme analyses of alkaline phosphatase (ALP), catalase (CAT), esterase (EST), malate dehydrogenase (MDH), superoxide dismutase (SOD) and xanthine dehydrogenase (XDH) revealed polymorphism among the F. oxysporum isolates in which 22 electrophoretic phenotypes (EP) were determined. At least 10 putative loci for these six enzymes were detected and they were all polymorphic. Maximum genetic diversity was observed in CAT, EST and XDH loci. Using UPGMA, the 22 isolates were separated into three main groups with one of the groups divided into two subgroups. Group I included isolates belonging to five formae speciales from Iran, whereas group II that included FOM isolates from both Iran and the USA was divided into two subgroups each containing the vast majority of the respective isolates from either country. Group III constituted FOM isolates from France and one pathogenic isolate on pepper from Iran. FOM isolates representing five different geographical regions from Iran belonged to two different races of 1 and 1,2Y and one vegetative compatibility group (VCG)0134 and thus were genetically homologous. Isozyme polymorphism in these isolates was highly correlated with VCG and geographical origins and to a lesser extent with races. Variations in soluble protein profile in FOM isolates were correlated with genetic distances determined in isozyme analysis. This study suggests that isozyme analysis could be a useful tool for identifying genetic diversity not only in FOM but also several formae speciales of F. oxysporum.  相似文献   

7.
In order to determine the crown and root agents and their mycotoxins produced in different growth stages of wheat including seedling, tillering and heading, sampling was done in north of Iran, during 2011–2012. From 160 isolates of Fusarium, eight species were obtained including F. graminearum, F. culmorum, F. equiseti, F. nygamai, F. semitectum, F. solani, F. acuminatum and F. oxysporum. Sampling at different growth stages showed that F. graminearum was the predominant causal agent of crown and root at the heading stage, whereas other species of Fusarium were mostly observed at the seedling and tillering stages. Moreover, identification of pathogenic species was confirmed using species-specific primers pairs. In F. graminearum isolates, presence of Tri13 gene, responsible for nivalenol (NIV) and deoxynivalenol (DON) mycotoxins biosynthesis, was detected using specific PCR primers. Finally, the ability of trichothecene production of five F. graminearum isolates was confirmed with high-performance liquid chromatography.  相似文献   

8.
Abstract

The pathogenicity of nine isolates of Fusarium oxysporum f. sp. vasinfectum (Fov) was evaluated on seedlings of 30 cotton (Gossypium barbadense L.) genotypes in 2005 and 2006. Isolate×genotype interaction was a highly significant (P < 0.01) source of variation in wilt incidence, suggesting that physiologic specialization exists within Fov isolates. Cluster analysis of aggressiveness of isolates and susceptibility of genotypes by the unweighted pair-group method based on arithmetic means (UPGMA) placed the isolates and the genotypes in several groups. Isolates were separated into two distinct groups. One group was closely related to race 5 while the other group was closely related to race 1. Cluster analysis also demonstrated that the Egyptian commercial cultivars had unique susceptibility patterns to Fov isolates remotely related to those of the other genotypes. The interaction between experiments of 2005 and 2006 was mainly due to a differential effect of years on the disease incidence for cotton cultivars.  相似文献   

9.
Protein and esterase patterns of eleven isolates of F. oxysporum f. sp. elaeidis, one isolate of F. oxysporum var. redolens pathogenic to oil palm from Africa and six non-pathogenic isolates of F. oxysporum from oil palm soils in Malaysia were studied by vertical disc-electrophoresis and isoelectric focusing, to determine whether the pathogenic and saprophytic forms of F. oxysporum could be distinguished using these two methods. The protein patterns of all the isolates studied by the two methods were almost identical qualitatively and it was impossible to distinguish between the pathogenic isolates of F. oxysporum f. sp. elaeidis and F. oxysporum var. redolens from Africa and saprophytic isolates of F. oxysporum from Malaysia. Esterase zymograms of the isolates produced by the two methods were different. Esterase zymograms produced by vertical disc-electrophoresis showed great variations between and within the African and Malaysian isolates, but the esterase patterns produced by isoelectric focusing were almost identical qualitatively.  相似文献   

10.
Genetic variation among 11 isolates of Fusarium oxysporum f.sp. cubense (FOC) was analysed by random amplification of polymorphic DNA using the polymerase chain reaction (RAPD-PCR). The isolates represented three of the four FOC races and the seven vegetative compatibility groups (VCGs) known to occur in Australia. Isolates of F. oxysporum f.sp. cubense were also compared to isolates of F. oxysporum f.sp. gladioli, F. oxysporum f.sp. zingiberi, F. oxysporum f.sp. lycopersici, F. moniliforme, Aspergillus niger and Colletotrichum gloeosporioides. DNA was extracted from fungal mycelium and amplified by RAPD-PCR using one of two single random 10-mer primers; the primer sequences were chosen arbitrarily. The RAPD-PCR products were separated by polyacrylamide gel electrophoresis producing a characteristic banding pattern for each isolate. The genetic relatedness of the F. oxysporum f.sp. cubense isolates was determined by comparing the banding patterns generated by RAPD-PCR. This RAPD-PCR analysis revealed variation at all five levels of possible genetic relatedness examined. F. oxysporum f.sp. cubense could very easily be distinguished from the other fungi, and the three races and five VCGs of F. oxysporum f.sp. cubense could also be differentiated. Within F. oxysporum f.sp. cubense, each isolate was scored for the presence or absence of each band (50 different bands were produced for primer SS01 and 59 different bands for primer RC09) and these data were clustered using the UPGMA method (unweighted pair-group method, arithmetic average). UPGMA cluster analysis of the data generated by primer SS01 revealed two distinct clusters. One cluster contained race 4 isolates (VCGs 0120, 0129 and 01211) and the other cluster contained both race 1 (VCGs 0124, 0124/5 and 0125) and race 2 isolates (VCG 0128). Similar results were obtained with primer RC09. The banding patterns for each isolate were reproducible between experiments. These results indicated that RAPD-PCR was a useful method for analysing genetic variation within F. oxysporum f.sp. cubense. Some of the advantages of this technique were that it was rapid, no sequence data were required to design the primers and no radioisotopes were required.  相似文献   

11.
In the current study, 160 pathogenic strains of Fusarium oxysporum collected from tomato, eggplant and pepper were studied. Eighteen inter‐primer binding site (iPBS)‐retrotransposon primers were used, and these primers generated 205 scorable polymorphic bands. The number of polymorphic bands per primer varied between 9 and 19, with a mean of 11 bands per primer. The highest polymorphism information content (PIC) value was determined as 0.27, and the lowest was 0.05. The unweighted pair‐group method with arithmetic averages (UPGMA) dendrogram including a heat map revealed that the 160 pathogenic strains of F. oxysporum were divided into two main clusters. The first cluster mainly included F. oxysporum f. sp. capsici (FOC) and F. oxysporum f. sp. melongenae (FOMG) isolates. The second cluster mainly comprised F. oxysporum f. sp. lycopersici (FOL) and F. oxysporum f. sp. radicis lycopersici (FORL) isolates. The highest percentage of loci in significant linkage disequilibrium (LD) was detected for FOL, whereas the lowest level of LD was found for FOC, and 95.2%, 99.4%, 99.1% and 97.4% of the relative kinship estimates were less than 0.4 for FOL, FOMG, FORL and FOC, respectively. LD differences were detected among formae speciales, and LD was higher in FOL as compare to FOC species. The findings of this study confirm that iPBS‐retrotransposon markers are highly polymorphic at the intraspecific level in Fusarium spp.  相似文献   

12.
Populations of Fusarium oxysporum f. sp. albedinis, the causal agent of Bayoud disease of date palm, are derivatives of a single clonal lineage and exhibit very similar Fot 1 hybridization patterns. In order to develop a sensitive diagnostic tool for F. oxysporum f. sp. albedinis detection, we isolated several DNA clones containing a copy of the transposable element Fot 1 from a genomic library of the date palm pathogen. Regions flanking the insertion sites were sequenced, and these sequences were used to design PCR primers that amplify the DNA regions at several Fot 1 insertion sites. When tested on a large sample of Fusarium isolates, including 286 F. oxysporum f. sp. albedinis isolates, 17 other special forms, nonpathogenic F. oxysporum isolates from palm grove soils, and 8 other Fusarium species, the primer pair TL3-FOA28 allowed amplification of a 400-bp fragment found only in F. oxysporum f. sp. albedinis. Sequence analysis showed that one of the Fot 1 copies was truncated, lacking 182 bp at its 3′ terminus. The primer pair BI03-FOA1 amplified a 204-bp fragment which overlapped the Fot 1 truncated copy and its 3′ site of insertion in the F. oxysporum f. sp. albedinis genome and identified 95% of the isolates. The primer pairs BIO3-FOA1 and TL3-FOA28 used in PCR assays thus provide a useful diagnostic tool for F. oxysporum f. sp. albedinis isolates.  相似文献   

13.
Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non‐pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non‐pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific.  相似文献   

14.
Abstract

Fusarium species are known to play a role in several diseases of cotton including the seedling disease complex, wilt, and boll rot. Therefore, a mycoflora study was conducted in 1998 in order to identify Fusarium species found in association with cotton roots. A total of 109 samples of cotton seedlings infected with post-emergence damping-off or rotted roots of adult plants were obtained from different cotton-growing areas in Egypt. Forty-six isolates were recovered and were identified as follows: F. oxysporum (28 isolates), F. moniliforme (9), F. solani (6), F. avenaceum (2), F. chlamydosporum (1). F. oxysporum, F. moniliforme and F. solani, the dominant species, accounted for 60.9%, 19.6% and 13% of the total isolates, respectively in 1998. F. oxysporum showed the highest isolation frequency in Beharia and Minufiya while F. moniliforme showed the most isolation frequency in Minufiya and Gharbiya. F. oxysporum was one of the major taxa of the Fusarium assemblage from Giza 70. F. oxysporum showed the most frequently isolated fungus in May while F. moniliforme and F. solani were the most frequently isolated fungi in August. Isolation frequency of Fusarium spp. during July and August was significantly greater than that of April or June. This implies that cotton roots are subjected more to colonization by Fusarium spp. as plants mature. Regarding pathogenicity, of the 46 isolates of Fusarium spp. tested under greenhouse conditions, 38 isolates (82.4%) were pathogenic to seedlings of Giza 89. This study indicates that F. oxysporum and F. moniliforme are important pathogens in the etiology of cotton damping-off in Egypt.  相似文献   

15.
Root and basal rot of common onion (Allium cepae L.) caused by Fusarium oxysporum f. sp. cepae is one of the most important diseases causing tremendous losses in onion‐growing areas worldwide. In this study, random amplified polymorphic DNA (RAPD), intersimple sequence repeats (ISSR) and virulence studies were conducted to analyse 26 F. oxysporum f. sp. cepae isolates obtained from the main onion‐growing regions of Iran, including Fars, Azerbaijan and Isfahan states. Cluster analysis using UPGMA method for both RAPD and ISSR markers revealed no clear grouping of the isolates obtained from different geographical regions, and the isolates were observed to derive probably from the same clonal lineage. Pathogenicity test indicated that all F. oxysporum f. sp. cepae isolates were pathogenic on onion; however, virulence variability was observed among the isolates. The grouping based on virulence variability was not correlated with the results of RAPD and ISSR analyses.  相似文献   

16.
The utility of fatty acid methyl ester (FAME) profiles for characterization and differentiation of isolates of Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici was investigated. Two fatty acid analysis protocols of the normal (MIDI) and a modified MIDI method were used for their utility. Only the modified MIDI method allowed a clear differentiation between F. oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicislycopersici. FAME profiles using the modified MIDI method gave the most consistent and reproducible analyzed fatty acid data. Evaluation of the FAME profiles based on cluster analysis and principal-component analysis revealed that FAME profiles from tested isolates were correlated with the same vegetative compatibility groups (VCGs) compared to the same races in F. oxysporum f. sp. lycopersici. Results indicated that FAME profiles could be an additional tool useful for characterizing isolates and forma species of F. oxysporum obtained from tomato.  相似文献   

17.

During years 2001, 2002 and 2003 the gravity of the Fusarium wilt in 1000 hectares of melon culture was evaluated in Colima (Mexico). In spite of the soil disinfections with methyl bromide, the losses could reach 25% of the final production. The analysis of 4 soil samples from the fields with ill plants, in a selective medium for Fusarium, allowed to detect the presence of F. oxysporum. By means of the presented technique “soil phytopathometry”, 31 isolates of F. oxysporum f. sp. melonis were obtained from the soil samples. The isolates were inoculated on melon plants to evaluate their pathogenicity. The 31 isolates inoculated, produced the symptoms of chlorosis and wilting, in melon cultivars that allowed us to affirm that all isolates were race 1 of F. oxysporum f. sp. melonis. Being this the first news of the presence of F. oxysporum f. sp. melonis in the state of Colima (Mexico).  相似文献   

18.
Thirteen species of weed plants were collected between May and September in 2010 and 2011 from eggplant fields representing 11 distinct locations covering a wide geographical area of Turkey. Weeds are potential hosts of many plant pathogens and may not exhibit disease symptoms when colonized. Fusarium spp. were isolated from five monocotyledonous species and eight dicotyledonous species. A total of 212 isolates recovered from weeds were assigned to eight Fusarium species on the basis of morphological characteristics. F. oxysporum was the most frequently isolated species (29.7%), followed by F. solani (19.8%), F. graminearum (13.7%), F. verticillioides (12.7%), F.equiseti (9.9%), F. avenacearum (8.0%), F. proliferatum (3.8%) and F. subglutinans (2.4%). The F. oxysporum isolates from different weed hosts were characterized by means of pathogenicity and vegetative compatibility grouping (VCG) tests. Among these, 29 isolates were found to be pathogenic to eggplant cv. Kemer and re‐isolated as Fusarium oxysporum Schlecht. f. sp. melongenae (Fomg) as evidenced. These isolates from weed hosts were assigned to VCG 0320. This study is the first report of Fomg isolated from weeds in eggplant fields in Turkey. None of the weed species tested showed symptoms of wilting in pot experiments, and F. oxysporum was isolated with greater frequency from all inoculated weeds. The results of this study indicate that several weed plants may serve as alternative sources of inoculum for Fomg, during the growing season.  相似文献   

19.
Fusarium crown and root rot of tomato (Lycopersicon esculentum) caused by Fusarium oxysporum f. sp. radicis‐lycopersici is a new devastative disease of tomato greenhouse crops in Tunisia. Nothing is known neither about the population of this pathogen in this region, nor about the population of F. oxysporum f. sp. lycopersici the causal agent of Fusarium wilt of tomato. In order to examine the genetic relatedness among the F. oxysporum isolates by intergenic spacer restriction fragment length polymorphism (IGS‐RFLP) analysis and to elucidate the origin of the formae specialesradicis‐lycopersici in Tunisia by looking for genetic similarity of Tunisians isolates with isolates from a foreign source, the genetic diversity among F. oxysporum f. sp. radicis‐lycopersici and F. oxysporum f. sp. lycopersici populations was investigated. A total of 62 isolates of F. oxysporum, obtained from symptomless tomato plants, were characterized using IGS typing and pathogenicity tests on tomato plants. All Fusarium isolates were highly pathogenic on tomato. Fusarium oxysporum f. sp. radicis‐lycopersici isolates were separated into five IGS types. From the 53 F. oxysporum f. sp. radicis‐lycopersici isolates, 34 isolates have the same IGS types (IGS type 25), and the remaining 19 isolates were distributed into four IGS types. However, the only nine isolates of F. oxysporum f. sp. lycopersici have six different IGS types. This difference of diversity between the two formae speciales suggests that F. oxysporum f. sp. radicis‐lycopersici isolates have a foreign origin and may have been accidentally introduced into Tunisia.  相似文献   

20.
Wilt of Psidium guajava L., incited by Fusarium oxysporum f. sp. psidii and Fusarium solani is a serious soil-borne disease of guava in India. Forty-two isolates each of F. oxysporum f. sp. psidii (Fop) and F. solani (Fs) collected from different agro climatic zones of India showing pathogenicity were subjected to estimate the genetic and molecular characterisation in terms of analysis of microsatellite marker studies. Out of eight microsatellite markers, only four microsatellite markers, viz. MB 13, MB 17, RE 102 and AY212027 were amplified with single band pattern showing the character of identical marker for molecular characterisation and genetic identification. Microsatellite marker MB 13 was amplified in F. oxysporum f. sp. psidii and F. solani isolates. Product size of 296 bps and 1018 bps were exactly amplified with a single banding pattern in all the isolates of F. oxysporum f. sp. psidii and F. solani, respectively. Microsatellite markers, viz. MB 17, RE 102 and AY212027 were also exactly amplified with a single banding pattern. MB 17 was amplified in F. oxysporum f. sp. psidii isolates with a product size of 300 bp. RE 102 and AY212027 were amplified in F. solani isolates with the product size of 153 bp and 300 bp, respectively. Therefore, amplified microsatellite marker may be used as identifying DNA marker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号