首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhizoctonia damping-off caused by Rhizoctonia solani Kühn, is one of the most damaging sugar beet diseases. It causes serious economic damage wherever sugar beets are grown. Biological control is an efficient and environmentally friendly way to prevent damping-off disease. Suppression of damping-off disease caused by R. solani was carried out by four isolates of Bacillus subtilis (Ehrenberg) Cohn as well as three isolates of each of Trichoderma harzianum Rifai and Trichoderma hamatum (Bonord.) Bainier. The effect of Bacillus and Trichoderma isolates against R. solani was investigated in vitro and tested on sugar beet plants under greenhouse conditions. Isolates of Bacillus and Trichoderma were able to inhibit the growth of R. solani in dual culture. Furthermore, Trichoderma isolates gave high antagonistic effect than isolates of B. subtilis. Under greenhouse conditions, coating seeds by T. harzianum and B. subtilis separately, reduced seedling damping-off significantly. However, applications of T. harzianum increased the percentage of surviving plants more than B. subtilis in comparison to control. The obtained results indicate that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in sugar beet damping-off and should be harnessed for further biocontrol applications.  相似文献   

2.
A survey was conducted in Ankara and Eskisehir provinces of Turkey for determining anastomosis groups and pathogenicity of Rhizoctonia species associated with root and crown rot of wheat. Pathogenicity tests revealed that Rhizoctonia solani AG 8 caused the common symptoms of damping‐off and stunting.  相似文献   

3.
山东省玉米纹枯菌融合群类型及遗传多样性   总被引:2,自引:0,他引:2  
从山东省14个县市区采集的玉米纹枯病标本上分离获得103个玉米纹枯菌菌株。核荧光染色确定菌丝细胞核的数目,以及利用配对培养法确定不同菌株细胞是否融合。结果表明这些菌株分别属于多核丝核菌的AG-1-IA、AG-1-IB、AG-1-IC、AG-3、AG-4-HG-I、AG-5和WAG-Z融合群和双核丝核菌的AG-Ba融合群,其中AG-1-IA类型菌株数量占菌株总数的60.19%,为优势融合群。通过inter-simple sequence repeats(ISSR)标记技术进行菌株的遗传多样性分析,获得45个ISSR分子标记,其中91.1%的片段具有多态性,表明种群间存在丰富的遗传多样性。UPGMA聚类分析将103个菌株分成6个遗传聚类群,遗传聚类群的菌株组成说明遗传群组的划分与菌株的地理来源和菌株融合群类型均存在一定的相关性。  相似文献   

4.
施硅增强水稻对纹枯病的抗性   总被引:23,自引:0,他引:23  
采用水培的方法,从细胞学和生理生化方面研究了硅增强水稻对纹枯病的抗性作用。结果表明:加硅处理的水稻叶片硅化细胞和叶片表面的硅元素含量均显著高于缺硅处理(对照):接种纹枯病菌后,加硅处理的MDA含量总体上低于缺硅处理,峰值尤为显著;加硅处理的SOD活性始终高于缺硅处理,接种后第4天加硅处理SOD活性较低时,其POD活性较高,而缺硅处理的POD活性较低,表明硅增强了SOD和POD之间的协调性;接种后硅对CAT和PAL活性没有产生明显影响,但降低了PP0活性;加硅能显著降低水稻植株的纹枯病病情指数。  相似文献   

5.
Rhizoctonia complex of rice has been detected in rice growing areas of Myanmar. The primary objective of this study is to study the varietal response of rice to Rhizoctonia complex and to distinguish the symptom expression of rice responses to these pathogens. Myanmar rice cultivars namely Manawthukha, Shwethweyin, Sinthwelatt and Yezinlonthwe were used to inoculate with three isolates of each species of Rhizoctonia solani, Rhizoctonia oryzae and Rhizoctonia oryzae-sativae. The symptoms created by each species of Rhizoctonia were distinguished by the size and colour of the lesion. Variation in lesion length was observed among different isolate-rice cultivar combination. Shwethweyin variety is the most susceptible one to all the tested three species among the four tested varieties.  相似文献   

6.
The maize b-32 protein is a functional ribosome-inactivating protein (RIP), inhibiting in vitro translation in the cell-free reticulocyte-derived system and having specific N-glycosidase activity on 28S rRNA. Previous results indicated that opaque-2 (o2) mutant kernels, lacking b-32, show an increased susceptibility to fungal attack and insect feeding and that ectopic expression in plants of a barley and a pokeweed RIP leads to increased tolerance to fungal and viral infection. This prompted us to test whether b-32 might functi on as a protectant against pathogens. The b32.66 cDNA clone under the control of the potato wun1 gene promoter was introduced into tobacco by Agrobacterium tumefaciens-mediated transformation. Out of 23 kanamycin resistant regenerated shoots, 16 contained a PCR fragment of the corrrect size spanning the boundary between the promoter used and the coding region of the b-32 gene. Eight independently transformed tobacco lines were randomly chosen for protein analysis: all of them expressed b-32 protein. The data presented indicate that transgenic tobacco plants expressing b-32 show an increased tolerance against infection by the soil-borne fungal pathogen Rhizoctonia solani Kuhn  相似文献   

7.
In Australia, in the past, pasture legumes were rotated mainly with cereals, but increasingly these rotations now involve pasture legumes with a wider range of crops, including legumes. This increasing frequency of the leguminous host in the rotation system may be associated with increased root rots in legumes in the current pasture-crop rotations. The primary aim of this study was to see whether the pathogenicity on pasture legumes of strains of Rhizoctonia solani sourced from lupins and cereals (common crops in rotation with pastures) is associated with increased incidence of root rots in pasture legumes in the disease conducive sandy soils of the Mediterranean regions of southern Australia. The second aim was to determine sources of resistance among newly introduced pasture legumes to R. solani strains originating from rotational crops as this would reduce the impact of disease in the pasture phase. Fifteen pasture legume genotypes were assessed for their resistance/susceptibility to five different zymogram groups (ZG) of the root rot pathogen R. solani under glasshouse conditions. Of the R. solani groups tested, ZG1–5 and ZG1–4 (both known to be pathogenic on cereals and legumes) overall, caused the most severe root disease across the genotypes tested, significantly more than ZG6 (known to be pathogenic on legumes), in turn significantly >ZG4 (known to be pathogenic on legumes) which in turn was >ZG11 (known to be pathogenic on legumes including tropical species). Overall, Ornithopus sativus Brot. cvs Cadiz and Margurita, Trifolium michelianum Savi. cvs Paradana and Frontier and T. purpureum Loisel. cv. Electro showed a significant level of resistance to root rot caused by R. solani ZG11 (root disease scores ≤1.2 on a 1–3 scale where 3 = maximum disease severity) while O. sativus cvs Cadiz and Erica showed a significant level of resistance to root rot caused by R. solani ZG4 (scores ≤1.2). O. compressus L. cvs Charano and Frontier, O. sativus cv. Erica, and T. purpureum cv. Electro showed some useful resistance to root rot caused by R. solani ZG6 (scores ≤1.8). This is the first time that cvs Cadiz, Electro, Frontier, Margurita and Paradana have been recognised for their levels of resistance to root rot caused by R. solani ZG11; and similarly for cvs Cadiz and Erica against ZG4; and for cvs Charano, Erica, and Electro against ZG6. These genotypes with resistance may also serve as useful sources of resistance in pasture legume breeding programs and also could potentially be exploited directly into areas where other rotation crops are affected by these R. solani strains. None of the tested genotypes showed useful resistance to R. solani ZG1–4 (scores ≥2.0) or ZG1–5 (scores ≥2.5). This study demonstrates the relative potential of the various R. solani ZG strains, and particularly ZG1–4, ZG1–5, ZG4 and ZG6 to attack legume pastures and pose a significant threat to non-pasture crop species susceptible to these strains grown in rotation with these pasture legumes. Significantly, the cross-pathogenicity of these strains could result in the continuous build-up of inoculum of these strains that may seriously affect the productivity eventually of legumes in all rotations. In particular, when choosing pasture legumes as rotation crops, caution needs to be exercised so that the cultivars deployed are those with the best resistance to the R. solani ZGs most likely to be prevalent at the location.  相似文献   

8.
A semi‐solid fermentation product of the potential biocontrol fungus Stilbella aciculosa was formulated on wheat bran: water (1:1, w/w) and incubated 5, 10 and 15 days before addition to soil infested with the pathogen Rhizoctonia solani. Generally, preparations did not reduce survival of the pathogen in infested beet seed but they did prevent saprophytic growth of the pathogen from beet seed into soil. The magnitude of reduction by the 15‐day‐old inoculum was greater than that by the 5‐day‐old inoculum. Ten‐day‐old bran preparations of S. aciculosa at rates of 0.5 and 1.0% (w/w) in soil prevented post‐emergence damping‐off of cotton, radish and sugar beet in the glasshouse and a rate of 1.0% gave stands similar to those in the non‐infested control soil. The antagonist, grown on perlite formulated with molasses, cornmeal, alfalfa tissue or corn stover, prevented damping‐off of cotton in a naturally infested soil. However, the stands were not as great as that in soil planted with pentachloronitrobenzene (PCNB)‐treated seed. Toxic metabolites, produced by S. aciculosa developing on various substrates, slightly inhibited the growth of R. solani in culture and induced cytoplasmic leakage of the pathogen mycelium.  相似文献   

9.
The aim of this study was to assess the biocontrol efficacy against Rhizoctonia solani of three bacterial antagonists introduced into naturally Rhizoctonia-infested lettuce fields and to analyse their impact on the indigenous plant-associated bacteria and fungi. Lettuce seedlings were inoculated with bacterial suspensions of two endophytic strains, Serratia plymuthica 3Re4-18 and Pseudomonas trivialis 3Re2-7, and with the rhizobacterium Pseudomonas fluorescens L13-6-12 7 days before and 5 days after planting in the field. Similar statistically significant biocontrol effects were observed for all applied bacterial antagonists compared with the uninoculated control. Single-strand conformation polymorphism analysis of 16S rRNA gene or ITS1 fragments revealed a highly diverse rhizosphere and a less diverse endophytic microbial community for lettuce. Representatives of several bacterial (Alpha-, Beta- and Gammaproteobacteria, Firmicutes, Bacteriodetes), fungal (Ascomycetes, Basidiomycetes) and protist (Oomycetes) groups were present inside or on lettuce plants. Surprisingly, given that lettuce is a vegetable that is eaten raw, species of genera such as Flavobacterium, Burkholderia, Staphylococcus, Cladosporium and Aspergillus, which contain potentially human pathogenic strains, were identified. Analysis of the indigenous bacterial and endophytic fungal populations revealed only negligible, short-term effects resulting from the bacterial treatments, and that they were more influenced by field site, plant growth stage and microenvironment.  相似文献   

10.
In the present study, characterisation of genotypic variations of Rhizoctonia solani AG-1 IA associated with rice sheath blight by Rep-PCR assay and their structure of the genotypic variations by monitoring vertical and horizontal movements of their populations at a short distance level were investigated in Japanese paddy fields. Differences of the Rep-PCR fingerprintings were observed and distinguished into four genotypic variations referred to as GI, GII, GIII and GIV, respectively. Although similarity index of each genotype showed high levels of homology (85–90%) within the same genotypes, low levels of similarity index (65–70%) were also varied among the comparison of different genotypes. Moreover, diversity of genotypic populations was observed which is consistent with the correlations between the geographical undulations of the paddy fields and the occupation of their genotypic populations, indicating the presence of genotype GI on low lands such as AK1 and also the presence ofgenotype GIV on high lands such as AK4.  相似文献   

11.
Interaction of tomato roots with Trichoderma virens TRS106 provided protection against Rhizoctonia solani-induced disease. In tomato, plants inoculated with R. solani disease symptoms were observed on the roots as brown, necrotic lesions. These symptoms were limited on plants treated with TRS106 and inoculated with R. solani. It was shown that TRS106 did not directly inhibit Rhizoctonia growth in in vitro test. The tested Trichoderma isolate stimulated systemic defence responses in tomato plants, by activating defence enzymes including guaiacol peroxidase (GPX), syringaldazine peroxidase (SPX) and phenylalanine ammonia lyase (PAL). Simultaneously, it enhanced accumulation of phenolics and hydrogen peroxide (H2O2) accompanied by decrease in lipid peroxidation in the leaves. HPLC analysis indicated remarkable increases in the concentrations of 22 phenolics in the leaves of Trichoderma-treated tomato, both uninoculated and inoculated with R. solani. Some of the phenolics were present in a free form, the others were accumulated in a bound form as glycosylated conjugates belonging to phenylpropanoids, hydroxybenzoic and cinnamic acid derivatives and flavonoids. Several of the detected phenolics: ferulic and salicylic acids, pyrocatechol and hesperetin were strongly toxic to R. solani in plate tests. The systemic mobilisation of phenolic metabolism might be an element of tomato defence response positively involved in biocontrol of R. solani by TRS106. Based on the results, T. virens TRS106 may have potential to develop a new biofungicide for integrated management of R. solani-induced disease.  相似文献   

12.
The sensitivity of different forms of propagules of Rhizoctonia solani anastomosis group (AG)2‐1/zymogram group (ZG)5 to volatile compounds produced in soil amended with green manure will influence the efficacy of green manures used to manage the disease. In laboratory experiments, we determined the impact of volatiles arising from residues of five species of Brassicaceae, and Avena sativa (oat), a non‐Brassicaceae species, and volatiles of pure allyl isothiocyanate (AITC) or 2‐phenylethyl isothiocyanate (2‐PEITC) in either their soluble or vapour phase on the hyphal growth of R. solani arising from different propagules. The brassicaceous species were Brassica napus var. Karoo, B. napus B1, B. napus B2, B. nigra and Diplotaxis tenuifolia (a brassicaceous weed). Colony growth and hyphal density on water agar were measured up to 7 days. The amendment of a sandy soil with green manures at a high (100 g kg?1, 10%) concentration generally suppressed the growth of the pathogen, but at a low (10 g kg?1, 1%) concentration, the amendment had little effect on the radial fungal growth of the pathogen but increased the density of hyphae through more branching. The inhibition by volatiles from the residues of Brassicaceae species at 10% concentration was stronger (82–86%) than that by volatiles from oat (64%) amendment at the same rate. Hyphae arising from sclerotia and precolonised ryegrass seed were less sensitive than hyphae growing out of potato dextrose agar plugs. This indicates that thick‐pigmented cell walls may have protected the fungus from these unfavourable conditions. Pure AITC and 2‐PEITC in the range of 0.5–2.0 mM inhibited the growth of R. solani from all forms of propagules, but hyphae originating from agar plugs were the most vulnerable compared with the two others. Thus, hyphae arising from the medulla of the sclerotia may be relatively tolerant to volatile compounds emanating from decomposing Brassica green manure amendments in the field and in vitro inhibition of the vegetative growth of the pathogen may not reflect its response to the amendments in the field.  相似文献   

13.
Rice sheath blight, caused by the soilborne fungus Rhizoctonia solani, causes severe yield losses worldwide. Elucidation of the pathogenic mechanism of R. solani is highly desired. However, the lack of a stable genetic transformation system has made it challenging to examine genes' functions in this fungus. Here, we present functional validation of pathogenicity genes in the rice sheath blight pathogen R. solani by a newly established tobacco rattle virus (TRV)–host-induced gene silencing (HIGS) system using the virulent R. solani AG-1 IA strain GD-118. RNA interference constructs of 33 candidate pathogenicity genes were infiltrated into Nicotiana benthamiana leaves with the TRV-HIGS system. Of these constructs, 29 resulted in a significant reduction in necrosis caused by GD-118 infection. For further validation of one of the positive genes, trehalose-6-phosphate phosphatase (Rstps2), stable rice transformants harbouring the double-stranded RNA (dsRNA) construct for Rstps2 were created. The transformants exhibited reduced gene expression of Rstps2, virulence, and trehalose accumulation in GD-118. We showed that the dsRNA for Rstps2 was taken up by GD-118 mycelia and sclerotial differentiation of GD-118 was inhibited. These findings offer gene identification opportunities for the rice sheath blight pathogen and a theoretical basis for controlling this disease by spray-induced gene silencing.  相似文献   

14.
The rhizosphere competence of 15 in vitro antagonists of Rhizoctonia solani was determined 4 weeks after sowing inoculated lettuce seeds into nonsterile soil. Based on the colonization ability determined by selective plating, eight strains were selected for growth chamber experiments to determine their efficacy in controlling bottom rot caused by R. solani on lettuce. Although in the first experiment all antagonists colonized the rhizosphere of lettuce with CFU counts above 2 × 106 g−1 of root fresh weight, only four isolates significantly reduced disease severity. In subsequent experiments involving these four antagonists, only Pseudomonas jessenii RU47 showed effective and consistent disease suppression. Plate counts and denaturing gradient gel electrophoresis (DGGE) fingerprints of Pseudomonas -specific gacA genes amplified from total community DNA confirmed that RU47 established as the dominant Pseudomonas population in the rhizosphere of inoculated lettuce plants. Furthermore, the DGGE fingerprint revealed that R. solani AG1-IB inoculation severely affected the bacterial and fungal community structure in the rhizosphere of lettuce and that these effects were much less pronounced in the presence of RU47. Although the exact mechanism of antagonistic activity and the ecology of RU47 remain to be further explored, our results suggest that RU47 is a promising agent to control bottom rot of lettuce.  相似文献   

15.
Rhizoctonia solani anastomosis group (AG) 11 causes serious damping‐off and hypocotyl rot of narrow‐leafed lupins (Lupinus angustifolius) in the northern grain‐belt of Western Australia. R. solani AG‐11 produced abundant sclerotia in sand overlaid on potato dextrose agar. Sclerotia were produced in larger numbers in natural Lancelin sand than in Geraldton loamy sand collected from the northern grain‐belt of Western Australia. The majority of the sclerotia produced were in >250 to <500 μam size range. The germination levels of sclerotia in the first two cycles of drying and germination were not significantly different. Sclerotia still retained 50% germination after four such cycles, indicating that they may have the ability to withstand the climatic cycles of the Mediterranean environment of southwestern Western Australia. The radial growth of the mycelium from sclerotia, however, declined with each drying and germination cycle. Inoculum potential of the pathogen increased with the size of sclerotia resulting in more severe lupin hypocotyl rot with larger sclerotia. The number of sclerotia produced in soil increased with increasing density of lupin seedlings. The results also indicate that R. solani AG‐11 can produce sclerotia on infected plant tissues as well as in soil. This is the first report of the prolific production of sclerotia by AG‐11 and their significant role in infection of lupins in soil in Western Australia.  相似文献   

16.
The antifungal potentialities of three endophytic bacterial strains, Stenotrophomonas maltophila H8 (Xanthomonadales: Xanthomonadaceae), Pseudomonas aeruginosa H40 (Pseudomonadales: Pseudomonadaceae) and Bacillus subtilis H18 (Bacillales: Bacillaceae) were evaluated against the phytopathogenic fungus Rhizoctonia solani in cotton seedlings under greenhouse conditions. The bacterial strains were applied as a soil drench or talc-based bioformulation in R. solani-infested soil and non-infested soil. Results indicated that the soil drench treatment was more efficient than talc-based bioformulation. A significant increase of seed emergence and seedling survival with a clear reduction of disease severity was achieved with the endophytic bacterial treatments. At the same time, the fresh weight, dry weight, shoot length and root length of the treated plants were markedly enhanced. Moreover, there was an apparent induction of the antioxidant enzymes (peroxidase, polyphenol oxidase and catalase) of the treated seedlings. Gas chromatography–mass spectrometry revealed the presence of various bioactive compounds in the bacterial supernatant. The antagonistic activity of the bacterial strains against R. solani was attributed to their capability to produce a broad spectrum of antifungal compounds in addition to bioactive molecules that can trigger the systemic resistance in the infected seedlings.  相似文献   

17.
A disease survey in Finnish oilseed Brassica (OSR) fields in 2007–09 revealed the widespread occurrence and several fold increase of necrotic stem base lesions and severely injured blackened roots in comparison to a corresponding survey carried out in 1984–89. Rhizoctonia solani was the predominant fungi detected in the isolations and was followed by several species of Fusarium and Thielaviopsis basicola. In 60% of the samples all three species were detected together. Only the R. solani AG 2–1 strains isolated from OSR and other cruciferous hosts caused damping off or stem base symptoms on turnip rape in a greenhouse experiment. Therefore R. solani AG 2–1 was considered the main pathogen associated with the observed symptoms in OSR crops. Cultural practices changed significantly between the 1980s and 2000s. In the 2007–09 survey there was an increase in the cultivation of oilseed rape instead of turnip rape, increase in the use of no soil or reduced soil tillage and of chemical control of weeds, but a reduction in macronutrient fertilization, especially P and K, when compared to the 1980s survey. The risk for high incidence of stem base lesions and blackened roots was affected by different cultural practices. No tillage and maintaining sufficient soil pH and NPK fertilisation decreased the risk for both types of R. solani induced symptoms. Late sowing date increased the risk for high incidence of stem base lesions, while application of fungicides against Sclerotinia reduced it. The incidence of R. solani damages in many fields was very high in spite of relatively long crop rotations and therefore the average effect of crop rotation in the disease was insignificant. Current turnip rape cultivars are vulnerable to root rot while oilseed rape is vulnerable to stem base symptoms. The higher incidence of R. solani induced diseases could be associated with the decline in productivity of OSR crops in Finland. This study showed that cultural practices such as reduced or no soil tillage, adequate levels of pH and of NPK fertilization could reduce the severity of the symptoms in OSR fields.  相似文献   

18.
Eight fungicides (benodanil, carboxin, cyproconazole, fenpropimorph, fur-mecyclox, iprodione, pencycuron and tolclofos-methyl) were evaluated, under growth chamber conditions, as seed treatments against pre-emergence damping-off and post-emergence seedling root rot in six Brassica species. Five cultivars of B. rapa, four cultivars of B. juncea, four cultivars of B. napus and one cultivar/ strain from each of B. carinata, B. nigra and B. oleracea were grown in soilless mix infested with an isolate of Rhizoctonia solani AG-2-1. B. nigra and B. juncea were considerably less susceptible to R. solani than the four other species. Cyproconazole at 0.05-0.1 g a.i./kg seed and the other fungicides at 2–4 g a.i./ kg seed provided almost complete control of pre-emergence damping-off in most Brassica species and their cultivars. Their efficacy varied against the post-emergence seedling root rot. Furmecyclox, iprodione, tolclofos-methyl and pencycuron consistently gave good control of seedling root rot in all Brassica species and their cultivars. Benodanil and fenpropimorph provided moderate control, and carboxin and cyproconazole gave poor control against root rot. Efficacy of carboxin, cyproconazole, benodanil and fenopropimorph against seedling root rot varied significantly (P ≤ 0.05) among cultivars within a Brassica species.  相似文献   

19.
The synthetic mustered flavouring essential oil, allyl isothiocyanate (AITC), was evaluated for its effect on suppression of Rhizoctonia solani growth in vitro, and in field soils for reducing inoculum density, saprophytic substrate colonization and seedling damping off and blight using snap bean and cabbage as indicator plants. In vitro growth was completely inhibited at the concentration of 50 μl/l. Inoculum density and saprophytic substrate colonization by the fungus in soil were not affected by AITC concentrations of 50 or 75 μl/kg soil. The inoculum density estimation by the use of soil‐drop technique created an artefact leading to an erroneous conclusion that the fungus was eradicated from soil within 1–3 days after AITC treatment at 150 or 200 μl/kg soil. The saprophytic substrate colonization showed that although the activity of R. solani was greatly reduced, the fungus still colonized 45% of the substrate units at these concentrations, and up to 100% at lower concentrations within 1 day after treatment. At higher concentrations the recovery rate from the substrates gradually declined over time to <6%. Drenching R. solani infested sandy‐loam or silty‐clay‐loam soil with water containing the emulsified AITC to provide 150 or 200 μl/l soil, a few days prior to planting, gave over 90% disease control in snap bean and cabbage, with no apparent phytotoxic effect. The effect of AITC was not influenced by the physical soil texture. AITC appears to have a good potential to replace methyl bromide fumigation of the substrate used for transplant production.  相似文献   

20.
In the Province of Aydin‐Turkey most frequently Fusarium spp. and secondly Rhizoctonia solani Kühn were isolated from the roots and crown of tomato plants. Based on affinities for hyphal fusion with test isolates, all R. solani isolates were identified as AG‐4. The tomato cultivars which were grown in soil infested with R. solani AG‐4 exhibited different reactions. From the point of symptom expression and the rate of seedling emergence Sunny 6066 F1 was found to be the most resistant cultivar, whereas Rio Grande, Rio Fuego, NDM 725, Interpeel and Konia were the most susceptible cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号