首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The introduction of site-specific fungicides almost 50 years ago has revolutionized chemical plant protection, providing highly efficient, low toxicity compounds for control of fungal diseases. However, it was soon discovered that plant pathogenic fungi can adapt to fungicide treatments by mutations leading to resistance and loss of fungicide efficacy. The grey mould fungus Botrytis cinerea, a major cause of pre- and post-harvest losses in fruit and vegetable production, is notorious as a ‘high risk’ organism for rapid resistance development. In this review, the mechanisms and the history of fungicide resistance in Botrytis are outlined. The introduction of new fungicide classes for grey mould control was always followed by the appearance of resistance in field populations. In addition to target site resistance, B. cinerea has also developed a resistance mechanism based on drug efflux transport. Excessive spraying programmes have resulted in the selection of multiresistant strains in several countries, in particular in strawberry fields. The rapid erosion of fungicide activity against these strains represents a major challenge for the future of fungicides against Botrytis. To maintain adequate protection of intensive cultures against grey mould, strict implementation of resistance management measures are required as well as alternative strategies with non-chemical products.  相似文献   

2.

Utilization of biocontrol agents is a sustainable approach to reduce plant diseases caused by fungal pathogens. In the present study, we tested the effect of the candidate biocontrol fungus Aureobasidium pullulans (De Bary) G. Armaud on strawberry under in vitro and in vivo conditions to control crown rot, root rot and grey mould caused by Phytophthora cactorum (Lebert and Cohn) and Botrytis cinerea Pers, respectively. A dual plate confrontation assay showed that mycelial growth of P. cactorum and B. cinerea was reduced by 33–48% when challenged by A. pullulans as compared with control treatments. Likewise, detached leaf and fruit assays showed that A. pullulans significantly reduced necrotic lesion size on leaves and disease severity on fruits caused by P. cactorum and B. cinerea. In addition, greenhouse experiments with whole plants revealed enhanced biocontrol efficacy against root rot and grey mould when treated with A. pullulans either in combination with the pathogen or pre-treated with A. pullulans followed by inoculation of the pathogens. Our results demonstrate that A. pullulans is an effective biocontrol agent to control strawberry diseases caused by fungal pathogens and can be an effective alternative to chemical-based fungicides.

  相似文献   

3.
The yeast Cryptococcus albidus, originally isolated from mature strawberry fruits, was tested for antagonistic activity against Botrytis cinerea, the causal agent of grey mould in strawberries. Conidial germination and germ tube growth of conidia of B. cinerea were inhibited by a cell suspension of the antagonist in aqueous strawberry fruit pulp suspension (1%) after 6 and 24 hours of incubation. Application of a cell suspension (1 × 106 cells/ml) on detached strawberry leaf disks incubated at 10°C reduced incidence and conidiophore density of B. cinerea by 86 and 99%, respectively, but effectiveness was reduced at higher temperatures. Treatments with C. albidus during bloom of strawberries reduced incidence of grey mould on ripe strawberry fruits after harvest by 33, 28 and 21% in three years of field trials. The effectiveness of the yeast was increased when formulation substances (alginate, xanthan and cellulose) were added to the cell suspension.  相似文献   

4.
The fungal pathogen Botrytis cinerea causes grey mould, a commercially damaging disease of strawberry. This pathogen affects fruit in the field, storage, transport and market. The presence of grey mould is the most common reason for fruit rejection by growers, shippers and consumers, leading to significant economic losses. Here, we review the biology and epidemiology of the pathogen, mechanisms of infection and the genetics of host plant resistance. The development of grey mould is affected by environmental and genetic factors; however, little is known about how B. cinerea and strawberry interact at the molecular level. Despite intensive efforts, breeding strawberry for resistance to grey mould has not been successful, and the mechanisms underlying tolerance to B. cinerea are poorly understood and under-investigated. Current control strategies against grey mould include pre- and postharvest fungicides, yet they are generally ineffective and expensive. In this review, we examine available research on horticultural management, chemical and biological control of the pathogen in the field and postharvest storage, and discuss their relevance for integrative disease management. Additionally, we identify and propose approaches for increasing resistance to B. cinerea in strawberry by tapping into natural genetic variation and manipulating host factors via genetic engineering and genome editing.  相似文献   

5.
Grey mould, caused by the fungus Botrytis cinerea, is one of the most destructive diseases in greenhouses for which serious fungicide resistance has developed. Between 2003 and 2005, 213 isolates of B. cinerea from two geographical regions were characterised for baseline sensitivity to kresoxim‐methyl. In the absence of salicylhydroxamic acid (SHAM), the mean 50% effective concentration (EC50) values were 6.67 ± 0.61 (mean ± SD) and 0.37 ± 0.10 mg L?1 during growth and germination, respectively. In the presence of 100 mg L?1 SHAM, baseline sensitivities were distributed as unimodal curves with mean EC50 values of 2.38 ± 0.21 and 0.28 ± 0.09 mg L?1 for inhibiting growth and inhibiting germination, respectively. The mixture of kresoxim‐methyl and boscalid showed good control efficacy against strawberry grey mould disease. After the mixture was extensively used on strawberry for 2 years, 50 isolates were collected and determined for their sensitivity to kresoxim‐methyl and boscalid, respectively. The mean EC50 of germination inhibition by boscalid was 0.39 ± 0.08 mg L?1. The mean EC50 of germination inhibition by kresoxim‐methyl was 0.26 ± 0.07 mg L?1 in the presence of 100 mg L?1 SHAM. Sensitivities of B. cinerea to both kresoxim‐methyl and boscalid did not show any significant decrease. These results suggest that their mixture is a satisfactory alternative candidate for management of grey mould disease in greenhouses.  相似文献   

6.
In order to investigate the effects of antifungal essential oils on postharvest decay and some quality factors of strawberry fruit, experiments were conducted under in vitro and in vivo conditions. The antifungal activates of essential oils obtained from fennel, anis, peppermint and cinnamon at concentrations 0, 200, 400, 600 and 800 μL L?1 were investigated against Botrytis cinerea with four replications. In vitro results showed that the growth of B. cinerea was completely inhibited by fennel, cinnamon and anis essential oils at relatively low concentrations (400–800 μL L?1). In vivo results showed that all the used essential oils at all applied concentrations caused an increase in the shelf life and inhibited of B. cinerea growth on strawberry fruits completely in comparison to the controls. The results of this study confirmed the antifungal effect of four essential oils in both in vitro and on fruit postharvest.  相似文献   

7.
The fungal pathogen Botrytis cinerea causes severe rots on tomato fruit during storage and shelf life. Biological control of postharvest diseases of fruit may be an effective alternative to chemical control. Yeasts are particularly suitable for postharvest use, proving to be highly effective in reducing the incidence of fungal pathogens. Yeast fungi isolated from the surface of solanaceous plants were evaluated for their activity in reducing the postharvest decay of tomato caused by B. cinerea. Of 300 isolates, 14 strains of Rhodotorula rubra and Candida pelliculosa were found to be strongly antagonistic to the pathogen in vitro and were selected for further storage experiment. The antagonists were evaluated for their effect on the biological control of postharvest grey mould. Artificially wounded fruits were treated by means of a novel technique: small sterile discs of filter paper imbibed separately in suspensions of each yeast and the pathogen were superposed onto each wound. After 1‐week, 11 isolates were significantly effective in reducing the diameter of lesions by more than 60% compared to the control treated with B. cinerea alone. Total protection was obtained with the strain 231 of R. rubra on fruits challenged with pathogen spores. To our knowledge, R. rubra and C. pelliculosa have not been described as biocontrol agents against grey mould caused by B. cinerea. Our data demonstrate that the application of antagonistic yeasts represents a promising and environmentally friendly alternative to fungicide treatments to control postharvest grey mould of tomato.  相似文献   

8.
Abstract

In order to evaluate the potential of naturally occurring filamentous fungi having potential as biocontrol agents effective against grey mould and post-harvest fruit rot caused by Botrytis cinerea on tomato, fungal saprophytes were isolated. They were obtained from leaves, fruits and flowers belonging to different species of cultivated and spontaneous Solanaceous plants collected at the horticultural area of La Plata, Argentina. Of 300 isolates screened for inhibition of B. cinerea using the dual culture technique on agar plate, 12 strains inhibited strongly mycelial growth of the pathogen. Among the antagonists one isolate of Epicoccun nigrum (126), four of Trichoderma harzianum (110, 118, 248 and 252) and four isolates of Fusarium spp. decreased the spore germination of B. cinerea between 30 and 70%. These isolates were probed on tomato fruits to evaluate their biocontrol activity against post-harvest grey mould. In growth chamber tests, E. nigrum (27), F. equiseti (22, 105) and T. harzianum (118, 252) reduced the diameter of fruit lesions by 50 – 90% and were selected for further biocontrol assays of tomato plants in the greenhouse. Although there were not significant differences between the treatments and the control, F. equiseti (105), E. nigrum (27) and T. harzianum (118) reduced by 20, 22 and 22 respectively the disease on whole plants. The targeted application of isolates of E. nigrum, T. harzianum and F. equiseti provides a promising alternative to the use of fungicide spray to control B. cinerea on tomatoes.  相似文献   

9.
A bacterial strain, SCE2, identified as Bacillus polymyxa, produced an anti-microbial substance active against yeasts, fungi and different genera of Gram-positive and-negative bacteria, in liquid medium and in plate assays. This substance appeared to be an antibiotic different from the polymyxin group, mainly because of its action against the majority of Gram-positive bacteria tested and its lack of activity against Pseudomonas aeruginosa, a species usually killed by polymyxins. Preliminary characterization showed resistance to heat (65°C, 2 h), to proteases, trypsin, lysozyme, deoxyribonuclease I, ribonuclease A, phospholipase C, ethanol, acetone, chloroform, ether and to strong alkali treatment (2 M NaOH). The molecular weight was less than 3500. The B. polymyxa strain harboured a plasmid that did not correlate with antibiotic production; after curing experiments, a derivative strain, SCE2(46), was isolated that lacked the plasmid pES1, but showed the same inhibitory spectrum as the wild-type strain.  相似文献   

10.
This study aims to investigate the role of Paenibacillus terrae AY-38 to produce bioactive metabolites and to counteract pathogenic infections caused by B. cinerea. The pure culture of P. terrae (AY-38) showed the secretion of significant amount of IAA (indole-3-acetic acid) (109.57?±?3.2?µg?mL?1). The AY-38 strain also produced siderophore and glucanase, while in the in vitro test, it showed significant antagonism to Botrytis cinerea. In the in vivo plant experiment, the sole application of AY-38 significantly improved plant growth (plant height and leaf area), while in B. cinerea infected plants, AY-38 inoculation not only decreased the disease incidence on leaves and fruits but also reprogramed the plants for higher growth. AY-38 treatments promoted and rescued plant growth by modulating the defence responses of endogenous hormones, such as jasmonic and salicylic acids. Our findings concluded that P. terrae possesses great potential as a possible biocontrol agent against B. cinerea-induced pathogenic infections.  相似文献   

11.
Aims: Developing new bio‐agents to control plant disease is desirable. Entomopathogenic bacteria Xenorhabdus spp. have potential antimicrobial activity in agriculture. This work was conducted to evaluate the antimicrobial activity of Xenorhabdus bovienii YL002 on plant pathogenic fungi and oomycete in vitro and the efficiency of this strain to reduce the in vivo incidence of grey mould rot on tomato plants caused by Botrytis cinerea and leaf scorch on pepper plants caused by Phytophthora capsici. Methods and Results: The antimicrobial activity of X. bovienii YL002 was firstly determined on in vitro plant pathogenic fungi and oomycete and then on tomato fruits and plants infected with B. cinerea and pepper plants infected with P. capsici. The cell‐free filtrate of X. bovienii YL002 exhibited highest inhibition effects (>98%) on mycelia growth of P. capsici and B. cinerea. The 50% inhibition concentration (EC50) of the methanol‐extracted bioactive compounds (methanol extract) of the cell‐free filtrate against P. capsici and B. cinerea were 164·83 and 42·16 μg ml?1. The methanol extract also had a strong effect on the spore germination of P. capsici and B. cinerea, with a EC50 of 70·38 and 69·33 μg ml?1, respectively. At 1000 μg ml?1, the methanol extract showed a therapeutic effect of 70·82% and a protective effect of 77·4% against B. cinerea on tomato plants compared with the control. The methanol extract also showed potent effect against P. capsici, with a therapeutic effect of 68·14% and a protective effect of 65·46% on pepper plants compared with the control. Conclusions: Xenorhabdus bovienii YL002 produces antimicrobial compounds with strong activity on plant pathogenic fungi and oomycete and has the potential for controlling grey mould rot of tomato plants and leaf scorch of pepper and could be useful in integrated control against diverse plant pathogenic fungi and oomycete. Significance and Impact of the Study: This study showed the potential that X. bovienii YL002 can be used to control the grey mould rot caused by B. cinerea on tomato plants and leaf scorch caused by P. capsici on pepper plants with the objective to reduce treatments with chemical fungicides.  相似文献   

12.
The potential use of Bacillus thuringiensis UM96 as a biocontrol agent for the grey mould phytopathogen Botrytis cinerea was evaluated. In order to dissect the mode of action of this UM96 strain, we also examined the role of lytic activities in the antagonism. First, B. thuringiensis UM96 was characterised based on 16S rRNA and gyrA gene sequencing and phenotypic traits. Petri dish biocontrol assays demonstrated that when strain UM96 was inoculated 24 h previous to B. cinerea, the mycelial growth was inhibited by up to 70%. Test for lytic enzymes activities of cellulase and glucanase was negative. Chitinase was the only positive enzyme activity in two different culture media. PCR detection of the chiB gene was also positive. Chitinolytic supernatants, obtained from rich and minimal media supplemented with colloidal chitin as the sole carbon source, from B. thuringiensis UM96 showed a strong inhibitory effect of B. cinerea that was not observed with heat-treated supernatant. Interestingly, when the supernatant was supplemented with 100 µM allosamidin, a chitinase specific inhibitor, the antagonistic activity was suppressed significantly. A lack of chitinase activity was also observed in allosamidin-treated supernatants. Our pathogenic B. cinerea strain also exhibited susceptibility to pure Streptomyces griseus chitinase. Finally, the chitinolytic strain B. thuringiensis UM96 was able to protect Medicago truncatula plants in vitro from B. cinerea infection and significantly reduced the necrotic zones and root browning of the plants. Together, these results suggest a potential use of B. thuringiensis UM96 for the biological control of B. cinerea and a role for chitinases during the antagonism displayed.  相似文献   

13.
Polymyxin E, produced by Paenibacillus polymyxa, is an important antibiotic normally against Gram-negative pathogens. In this study, we found that polymyxin E can kill its producer P. polymyxa, a Gram-positive bacterium, by disrupting its cell membrane. Membrane damage was clearly revealed by detecting the leakage of intracellular molecules. The observation using scanning electron microscopy also supported that polymyxin E can destroy the cell membrane and cause an extensive cell surface alteration. On the other hand, divalent cations can give protection against polymyxin E. Compared with Mg2+, Ca2+ can more effectively alleviate polymyxin E-induced damage to the cell membrane, thus remarkably increasing the P. polymyxa survival. Our findings would shed light on a not yet described bactericidal mechanism of polymyxin E against Gram-positive bacteria and more importantly the nature of limited fermentation output of polymyxin E from P. polymyxa.  相似文献   

14.
Harvesting and bedding practices in relation to grey mould of strawberries   总被引:1,自引:0,他引:1  
Relationships of cultural and harvesting practices in strawberries to epidemics of grey mould, caused by Botrytis cinerea, were examined in field plots in 1983 - 84 and 1984 - 85. The strawberries were grown in matted rows or solid beds and harvested by hand or by machine. Foliage cut by the machine was removed by hand-raking. Potential sporulation of B. cinerea on dead strawberry leaves, the principal inoculum source, was estimated by quantifying sporulation on samples of the leaves incubated in humidity chambers. During May, the incidence and density of sporulation, and total spore production per unit area of strawberry bed, usually were lower in plots harvested by machine in the preceding year than in those harvested by hand. Machine harvesting in the preceding year also suppressed incidence of grey mould on the fruits in June. Potential sporulation on dead leaves was usually less in solid beds than in matted rows in 1984 but not in 1985. Bed type usually did not affect incidence of grey mould fruit rot. No relationship was found between dry weights of dead leaves from sampling quadrats and potential sporulation on the leaves. It was postulated that the long-term impact of machine harvesting on grey mould epidemics was related to removal of the majority of the foliage and berries from the plots during harvesting operations.  相似文献   

15.
Polymyxin B, one of the cyclic polypeptide antibiotics, binds to the coat of Bacillus subtilis dormant spores and inhibits them from growing after germination. When about 2.8 × 108 cells/ml of polymyxin B-treated dormant spores were incubated in heart infusion broth, 3.6 μg/ml of polymyxin B were released into the liquid medium during germination. Incubation of the same concentration of polymyxin B-treated ones in 100 mM CaCl2 solution released 4.0 μg/ml of the antibiotic. The effect of various concentrations of polymyxin B on germination, outgrowth and vegetative growth of the dormant spores was investigated; the results showed that concentrations of 4.0 μg/ml and higher of the antibiotic inhibited their outgrowth and vegetative growth after germination. Young vegetative cells were less sensitive to the antibiotic than germinated spores. In addition to these results, immunoelectron microscopy with colloidal gold particles indicated that polymyxin B permeated into the core of the germinated spores and inhibited them from outgrowing.  相似文献   

16.
Gramicidin S is known to prolong the outgrowth stage of spore germination in the producing culture. Bacillus brevis strain Nagano and its gramicidin S-negative mutant, BI-7, were compared with respect to cell-surface hydrophobicity and germination of their spores. Parental spores were hydrophobic as determined by adhesion to hexadecane, whereas mutant spores showed no affinity to hexadecane. Addition of gramicidin S to mutant spores resulted in a high cell surface hydrophobicity and a delay in germination outgrowth. The hydrophobicity of parental spores was retained throughout most of the germination period. Hydrophobicity was lost as outgrowing spores entered into the stage of vegetative growth. The data indicate that gramicidin S is responsible for the hydrophobicity of B. brevis spores. It is suggested that in making spores hydrophobic, the antibiotic plays a role in concentrating the spores at interfaces where there is a higher probability of finding nutrients for germination and growth.Abbreviation GS Gramicidin S  相似文献   

17.
Botrytis cinerea is the causal agent of grey mould for more than 200 plant species, including economically important vegetables, fruits and crops, which leads to economic losses worldwide. Target of rapamycin (TOR) acts a master regulator to control cell growth and proliferation by integrating nutrient, energy and growth factors in eukaryotic species, but little is known about whether TOR can function as a practicable target in the control of plant fungal pathogens. Here, we characterize TOR signalling of B. cinerea in the regulation of growth and pathogenicity as well as its potential value in genetic engineering for crop protection by bioinformatics analysis, pharmacological assays, biochemistry and genetics approaches. The results show that conserved TOR signalling occurs, and a functional FK506-binding protein 12 kD (FKBP12) mediates the interaction between rapamycin and B. cinerea TOR (BcTOR). RNA sequencing (RNA-Seq) analysis revealed that BcTOR displayed conserved functions, particularly in controlling growth and metabolism. Furthermore, pathogenicity assay showed that BcTOR inhibition efficiently reduces the infection of B. cinerea in plant leaves of Arabidopsis and potato or tomato fruits. Additionally, transgenic plants expressing double-stranded RNA of BcTOR through the host-induced gene silencing method could produce abundant small RNAs targeting BcTOR, and significantly block the occurrence of grey mould in potato and tomato. Taken together, our results suggest that BcTOR is an efficient target for genetic engineering in control of grey mould, and also a potential and promising target applied in the biocontrol of plant fungal pathogens.  相似文献   

18.
19.
Experiments were conducted with Botrytis cinerea on strawberry leaves to investigate where combinations of commercially available biological control agents (BCAs) might control B. cinerea more effectively than individual BCAs. Specifically, we studied the persistence of biocontrol activities, spread of BCAs among leaves, and biocontrol efficacy in relation to application regimes: mixed versus single BCA, pre-versus post-inoculation application, and sequential versus simultaneous application. Three BCA products (Sentinel, Serenade and Trianum) were used for this study. Overall, Serenade did not significantly reduce sporulation of B. cinerea on strawberry leaf discs whereas Sentinel and Trianum gave a similar and significant biocontrol efficacy. Biocontrol efficacy remained almost unchanged 10 days after application at 20/20°C (day/night) or 24/16°C temperature regimes. In contrast, reduced biocontrol efficacy at 26/14°C suggests BCA survival was reduced under these conditions. Incidence of B. cinerea sporulation on leaf discs was ca. 60% higher on leaves that emerged after the BCA application than on leaves directly exposed to BCA, indicating insufficient amount of the BCA had managed to spread to new leaves. Combinations of BCAs, whether applied simultaneously or sequentially (48 h apart), did not improve disease control over the most effective BCA within the combination applied alone. This indicated possible antagonism or interference between the BCAs. Results suggested that there was significant antagonism for most combinations of the three BCAs tested and the degree of antagonism increased as the time from BCA application to pathogen introduction lengthened.  相似文献   

20.
The difference in antagonistic activity against the causal agent of grey mould (Botrytis cinerea) of tomato between Aureobasidium strains belonging to three different species, namely A. pullulans, A. melanogenum and A. subglaciale, was evaluated by in vitro and in vivo assays. In the yeast–pathogen direct interaction experiment, all the strains significantly reduced B. cinerea growth, with A. melanogenum the least efficient species (17.8% of reduction) compared to A. pullulans and subglaciale (22 and 27.8%). The non-volatile metabolites produced by all three species reduced mycelial growth between 95 and 100%. These metabolites were characterised by FT-IR spectroscopy as polysaccharides, lytic enzymes, siderophores and antibiotics. The inhibitory effect of Aureobasidium strains on pathogenic enzymes such as xylanase, polygalacturonase and pectinase was measured showing A. pullulans strains as capable of strong inhibition of xylanase, an enzyme directly related to the virulence of necrotrophic pathogens such as B. cinerea. Our data demonstrate that the different species of Aureobasidium isolated from a range of non-conventional environments exerted variable efficacy against B. cinerea, with A. pullulans as the most active species followed by A. subglaciale and A. melanogenum as ineffective and not suitable for biocontrol applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号