首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wilt is a serious disease of guava crop in India. Fusarium oxysporum f. sp. psidii and F. solani have been reported as the main causative agents of this disease. Most recently a survey on guava plants affected with wilt disease was conducted in severely affected areas of India, and two new species of Fusarium viz. Fusarium proliferatum and Fusarium chlamydosporum were found to be associated with this disease. However, pathogenecity of Fusarium chlamydosporum was successfully conducted in the field trials. The culture of F. chlamydosporum was processed for DNA sequencing and DNA sequence was submitted to NCBI with GenBank accession no. HM102506. The submitted DNA sequence of F. chlamydosporum was compared for the genetic position in Fusarium spp. evolutionary phylogenic tree.  相似文献   

2.
A serious wilt disease of guava has been observed in the Varanasi district of eastern Uttar Pradesh of India. The causal organism has been identified as Fusarium oxysporum f. sp. psidii. Pathogenicity tests were performed in pot experiments to confirm the causal agent of the disease. Infected plants developed chlorosis followed by wilting of entire seedlings and leaf abscission. Histopathological studies showed the presence of hyphae in xylem vessels of roots of the wilted seedlings and when sections of such roots were transferred to potato dextrose agar medium, this pathogen grew in culture.  相似文献   

3.
Wilt of Psidium guajava L., incited by Fusarium oxysporum f. sp. psidii and Fusarium solani is a serious soil borne disease of guava in India. Forty-two isolates, each of F. oxysporum f. sp. psidii (Fop) and F. solani (Fs), collected from different agro climatic zones of India showing pathogenicity were subjected to estimate their virulence factor in terms of analysis using virulent gene-related microsatellite loci. The erratic spread and occurrence of guava wilt in different areas may be due to variable aggressiveness or virulence of different pathogenic isolates in the soil. Out of 10 virulent gene locus related microsatellite markers ofFusarium spp., only six marker viz. Xyl, KHS1, PelA1, PG6/7, CHS1/2 and FMK1/MAPK1 were successfully amplified. This indicates that all the tested Fusarium sp. isolates of guava are having virulence gene in their genome. Microsatellite marker for virulence factor genes of Xyl loci was amplified in both Fop and Fs isolates. Product size of 281 bps was exactly amplified with a single banding pattern in all the isolates of Fop and Fs. It has been observed that other five microsatellite marker for virulence factor genes such as KHS1, PelA1, PG6/7, CHS1/2 and FMK1/MAPK1 were amplified with specific band pattern. PG6/7, CHS1/2 and FMK1/MAPK1 were only amplified in Fop isolates with a product size of 765 bps, 1566 bps; 1010 bps and 1244 bps. PelA1 and KHS1were amplified only in Fs isolates with the product size of 586 bps; 1359 bps, respectively. The results indicate that virulence factor genes are in response to produce wilt disease like symptoms in guava plants and also having pathogenic gene-related locus.  相似文献   

4.
During the summer season of 2003 and 2004, wilt syndromes of grapevine leaves (Cv. crimson) and vascular discolouration of roots have been observed in 2-year-old grapevine plants in the field at two sides in Gharbeia Governorate, Egypt. First, symptoms of wilt began on bottom leaves borderline as chlorosis and then these turned to necrotic spots and the leaves died. Wilt symptoms were spread to apical associated with vascular discolouration of roots and stem basal. Routine isolations of discoloured root tissue from diseased plant yielded eight isolates of Fusarium oxysporum Schlechtend only where no other fungi were developed. Microscopic examination revealed the presence of three shapes of microconidia, first is avoid shape non-septate measuring 2.5–3.0 μm × 6–10 μm, second is cylindrical with one septa measuring 2.6 μm × 17.0 μm and third shape also cylindrical with two septate measuring 3.0 μm × 20.0 μm. Macroconidia was rarely with three septate measuring 3.5– 4.0 μm × 35.0–38.0 μm, and chlamydospores were found singly or in pairs or chains. F. oxysporum isolates attacked grapevine plants (Cv. crimson) causing vascular wilt (66.7%) and root-rot syndrome (33.3%). In vitro isolates of F. oxysporum causing wilt of grapevine (Cv. crimson) varied for producing lytic enzymes, i.e. polygalacturonase (PG) and cellulase. The reactions of several grapevines (Cvs.) with a virulent isolate of F. oxysporum indicated the presence of two different symptoms, i.e. vascular wilt only on grapevine plants (Cv. crimson) and root-rot on the other grapevine (Cvs.), i.e. superior, Thompson, King robi and flame seedless. All F. oxysporum isolates caused vascular wilt of grapevine Cv. crimson, successfully reisolated from symptomatic vascular infected tissue and complete identification on the basis of colony, conidia morphology and host range at formae speciales level as F. oxysporum f. sp. herbemontis (Tochetto) Gordan. This is the first report of Fusarium wilt on grapevine in Egypt.  相似文献   

5.
Plant growth promoting rhizobacteria (PGPR) strains Rb29 (B. amyloliquefaciens MF352007), Bs1 (B. subtilis MF352017) and Bt1 (B. tequilensis MF352019) were tested for growth promotion and for their ability to induce systemic resistance against Fusarium wilt, a vascular disease of chickpea, using two methods that include whole plant and a split-root system. Bacillus strains and Fusarium oxysporum f. sp. ciceris (FOC) were inoculated on separate halves of roots of chickpea seedlings at the same time and then planted in separate pots either in superposition or one side of the other. All Bacillus strains systemically induced resistance against FOC, and significantly (p < 0.05) reduced the wilt disease by 98–100%. Application of Bacillus strains effectively enhanced plant growth, leading to increased plant height, root length, a fresh and dry weight of shoots and roots. These results help to explain the role of strains of Bacillus in growth promotion and biological control of Fusarium wilt in chickpea. This is the first report of systemic-induced resistance against Fusarium wilt in chickpea obtained by application of Bacillus strains to a root system spatially separated from the FOC-inoculated root.  相似文献   

6.
Panax notoginseng is a traditional Chinese medicinal plant. Root rot of P. notoginseng is one of the most serious diseases affecting P. notoginseng growth and causes wilted leaves, fewer lateral roots and rotten roots. Root rot is a soil-borne disease, and mainly occurs from June to August in Yunnan Province when the temperatures are high and the air is humid. In this study, the endophytic fungal genus Fusarium isolate E-2018.1.22-#3.2 was obtained from a P. notoginseng embryo. Fusarium isolate E-2018.1.22-#3.2 was identified as Fusarium striatum based on morphological characteristics and molecular analysis. The fungus was found to have conidiophores and macroconidia, and its ITS, LSU and TEF-1α genes shared 100%, 99.2% and 99% identities with the homologous genes of Fusarium striatum, respectively. Isolate F. striatum E-2018.1.22-#3.2 can cause root rot symptoms, including black, soft roots, fewer lateral roots and leaf wilt, in 93% of the experimental P. notoginseng plants, and could be re-isolated, fulfilling Koch’s postulates. When the P. notoginseng plants were treated with the fungicide pyraclostrobin, isolate F. striatum E-2018.1.22-#3.2 was unable to cause root rot. We have therefore demonstrated that F. striatum E-2018.1.22-#3.2 is able to cause root rot disease in P. notoginseng. This is the first report of root rot disease caused by F. striatum on P. notoginseng in China.  相似文献   

7.
From 2002 to 2004, wilted plants of different species of rocket (Eruca vesicaria and Diplotaxis spp.) were found for the first time in Europe, in greenhouse cultivations in Piedmont and Lombardy, northern Italy. The causal agent of the disease was found to be Fusarium oxysporum. Vegetative compatibility analysis was carried out on 46 isolates of the fungus, 41 of them obtained from wilted rocket (E. vesicaria and D. tenuifolia) and five reference strains, in order to increase the knowledge on the causal agent of recent epidemics of Fusarium wilt on rocket in Italy. The analysis showed the presence of two vegetative compatibility groups (VCGs) (VCG 0101 and VCG 0220) pathogenic on both kinds of rocket. The two VCG populations, which were classified as formae specialesconglutinans and raphani, respectively, are spread in the area of epidemics but are not related to the host species from which they were isolated (D. tenuifolia or E. vesicaria). This finding shows the heterogeneity of the causal agent of Fusarium wilt on rocket in Italy.  相似文献   

8.
Interactions between watermelon and a green fluorescent protein (GFP)‐tagged isolate of Fusarium oxysporum f.sp. niveum race 1 (Fon‐1) were studied to determine the differences in infection and colonization of watermelon roots in cultivars resistant to and susceptible to Fusarium wilt. The roots of watermelon seedlings were inoculated with a conidial suspension of the GFP‐tagged isolate, and confocal laser scanning microscopy was used to visualize colonization, infection and disease development. The initial infection stages were similar in both the resistant and susceptible cultivars, but the resistant cultivar responded differentially after the pathogen had penetrated the root. The pathogen penetrated and colonized resistant watermelon roots, but further fungal advance appeared to be halted, and the fungus did not enter the taproot, suggesting that resistance is initiated postpenetration. However, the tertiary and secondary lateral roots of resistant watermelon also were colonized, although not as extensively as susceptible roots, and the hyphae had penetrated into the central cylinder of lateral roots forming a dense hyphal mat, which was followed by a subsequent collapse of the lateral roots. The initial infection zone for both the wilt‐susceptible and wilt‐resistant watermelon roots appeared to be the epidermal cells within the root hair zone, which the fungus penetrated directly after forming appressoria. Areas where secondary roots emerged and wounded root tissue also were penetrated preferentially.  相似文献   

9.
Burkholderia glumae is a well‐known pathogen for causing bacterial panicle blight of rice. In this study, the infection process of B. glumae in rice plants at different growing stages was tracked by means of real‐time fluorescence quantitative PCR. Burkholderia glumae tended to colonize at the growing point of rice plants, and the biomass of population was 104 to 108 CFU/g. The most intensive colonization was detected in the upmost leaf in the two‐leaf period. However, after the two‐leaf period, the population of pathogens decreased significantly, and they successfully recovered in the booting stage and broke out in panicles. We also illustrated the incubation location of B. glumae by presenting the infection pattern in the seedling and tillering stage of rice. Under fluorescent microscopy, the gfp‐labelled pathogens were first found in the vascular bundle of lateral roots, taproots and injured cells, then they were observed in the root hairs, epidermal cells and main root cap. The pathogens in the vascular bundle laterally dispersed towards the epidermal cells. By spray application of a bacterial suspension, the pathogens landed on the leaf sheaths and leaves, colonized in the epidermal hairs and leaf hairs, or invaded into the cells through the stomas. At the same time, the pathogens from the vascular bundle of the roots spread into the vascular bundle of leaf sheaths and leaves, which caused the leaves to curl and wilt, beginning from the tip.  相似文献   

10.
Fusarium wilt is caused by F. oxysporum Schlecht end. Fr. f. sp. ciceris (FOC) is a devastating disease of chickpea in Algeria. In this study, antagonistic effects of B. subtilis MF352017 (Bs1) and Trichoderma harzianum KX523899 (T5) isolated from the rhizosphere of chickpea were investigated separately and in combination for their efficacy in controlling the disease in vivo. The efficacy of the antagonistic biocontrol agents on Fusarium wilt was evaluated based on vegetative and root growth parameters of chickpea. Seed bacterisation with B. subtilis MF352017 (Bs1) and seed treatment with T. harzianum (T5) significantly protected chickpea seedlings from FOC as compared to untreated plants. Plant protection was more pronounced in T. harzianum-treated plants than in bacterised plants. The application of both antagonists effectively suppressed 93.67% of the disease and also enhanced plant growth leading to increased plant height, root length, fresh and dry weights of shoot and root. The mixture of antagonists increased the effectiveness of B. subtilis MF352017 (Bs1) isolate on Fusarium wilt and improved chickpea growth.  相似文献   

11.
Ditylenchus dipsaci and Fusarium oxysporum f. sp. medicaginis synergistically affected the mortality and plant growth of Ranger alfalfa, a cultivar susceptible to stem nematode and Fusarium wilt. The nematode-fungus relationship had an additive effect on mortality and plant growth of Lahontan (nematode resistant and Fusarium wilt susceptible) and of Moapa 69 (nematode susceptible and Fusarium wilt resistant). Mortality rates were 13, 16, 46, and 49% for Ranger; 4, 18, 26, and 28% for Lahontan; and 19, 10, 32, and 30% for Moapa 69 inoculated with D. dipsaci, F. oxysporum f. sp. medicaginis, and simultaneously and sequentially with D. dipsaci and F. oxysporum f. sp. medicaginis, respectively. Shoot weights as a percentage of uninoculated controls for the same treatments were 52, 84, 26, and 28%, for Ranger; 74, 86, 64, and 64% for Lahontan; and 50, 95, 44, and 39% for Moapa 69. Plant growth suppression was related to vascular bundle infection and discoloration of alfalfa root tissue. Disease severity and plant growth of alfalfa did not differ with simultaneous or sequential inoculations of the two pathogens. Fusarium oxysporum f. sp. medicaginis affected alfalfa growth but not nematode reproduction.  相似文献   

12.
Fifty-six isolates of Fusarium oxysporum from wilted cotton plants were characterized by (a) hydrolysis of aesculin and (b) utilization of the products glucose and aesculetin. Aesculin and aesculetin agars provided a simple in vitro test that enabled differentiation of pathogenic races of the cotton wilt pathogen.  相似文献   

13.
The objective of this study was to examine the effects of Bacillus amyloliquefaciens Y1 on the control of Fusarium wilt disease and subsequent improvement in the growth of tomato plants. The Y1 strain strongly inhibited Fusarium oxysporum f. sp. lycopersici in vitro and also produced indole-3-acetic acid (IAA) in both the presence and absence of tryptophan. Over 96% of tomato seeds germinated when treated with either water, tryptone soy broth, or Y1 cultures, whereas root (5.40?cm) and shoot (5.15?cm) lengths were greatest in tomato seedlings treated with Y1 cultures that lacked tryptophan. Three experimental treatments – Black White medium (BW), BW medium with a commercial fungicide (BW?+?F), and Y1 culture inoculated in BW medium (Y1) – were applied to control Fusarium wilt disease under in vivo conditions. Application of Y1 culture and BW?+?F led to significantly lower disease incidence than did BW; moreover, shoot length and fresh and dry weight of both roots and shoots were greater in plants treated with Y1 than in plants treated with either BW or BW?+?F. A similar trend was observed for chitinase and β-1,3-glucanase activities in roots and leaves of tomato plants in all treatment groups over most of the experimental period. Finally, the presence of Y1 in the rhizospheric soils of Y1-treated plants resulted in a significant reduction in the populations of other bacteria. The results of our study demonstrated the effectiveness of Y1 not only in the control of Fusarium wilt disease but also for the enhancement of plant growth in cultivated tomato.  相似文献   

14.
陈瑶  刁瑕  宦云敏  杜阳春  李维  何兵 《广西植物》2017,37(9):1111-1121
为探究小檗科植物八角莲组织培养的器官发生方式,该研究以八角莲离体叶片、叶柄在MS培养基上诱导产生的愈伤组织、不定芽、不定根为对象,用连续石蜡切片技术分析八角莲组织培养的器官发生途径。结果表明:八角莲愈伤组织形成的解剖学特征是靠近表皮的薄壁细胞经激素刺激恢复分裂能力,继续培养形成拟分生组织。拟分生组织可形成许多分化中心。通过对八角莲组织培养产生的不定芽细胞组织学观察发现芽原基起源于愈伤组织外侧的几层薄壁细胞,芽原基背离愈伤组织中央生长形成不定芽,故八角莲脱分化形成的芽起源方式为外起源。而八角莲的根原基起源于组织深处髓部薄壁细胞和部分维管形成层细胞,进而形成类似球形或楔形并朝韧皮部突起的根原基轮廓,根原基继续发育会突破表皮生成不定根,起源方式为内起源。八角莲离体再生途径为器官发生型,在组培苗生长过程中先诱导形成不定芽,再诱导形成不定根,在愈伤组织上形成维管组织将不定芽和不定根连接成完整植株。  相似文献   

15.
RISHBETH  J. 《Annals of botany》1955,19(3):293-328
The banana wilt pathogen Fusarium oxysporum f. cubense can bedetected in soil by a suitable host test. It often enters thehost through living rootlets, from which it passes into thevascular strand of the main root and thence into the rhizome;apparently infection does not occur through dead roots. The spread of wilt through plantations was studied by takingrecords at 2-monthly intervals: new cases arise both spontaneouslyand in association with pre-existing ones. Flooding is probablyimportant in local dispersal of the pathogen, as it is in long-rangedispersal. The relative importance of some other modes of dispersalis discussed. The soil population of F. oxysporum f. cubense increases considerablywhen wilted bananas collapse and declines shortly after theirremoval. If the site is replanted with a banana variety resistantto wilt the pathogen can thereafter often be detected in thesoil; in the absence of bananas, however, it cannot be detectedby any test after about 10 years, although its continued survivalis well established by many field observations on the incidenceof banana wilt. Little is known about its mode of survival insoil.  相似文献   

16.
尖孢镰孢菌古巴专化型(Fusarium oxysporum f.sp.cubense)是香蕉枯萎病的病原菌,该菌是一种土壤习居菌,了解香蕉根区土壤中真菌多样性及镰孢菌属(Fusarium)真菌所占比例,对如何减少土壤中的病原菌、预防香蕉枯萎病的发生有重要的指导意义。该文通过采集不同宿根年限的香蕉健康植株和枯萎病植株的根区土壤,利用高通量测序技术测定土壤样品中的真菌种群。结果表明:(1)同一宿根年限的香蕉植株中,健康植株根区土壤中所获的reads及OTUs数量均高于枯萎病植株,说明健康植株根区土壤的真菌多样性丰富于枯萎病植株。(2)除了一年生香蕉枯萎病植株以担子菌门(Basidiomycota)为主外,其他土壤样品中均以子囊菌门(Ascomycota)为主,其中的丛赤壳科最高相对丰度来自三年生健康植株的根区土壤(26.02%),其次是五年生的枯萎病植株根区土壤(15.56%)。(3)在丛赤壳科中,镰孢菌属在三年生健康植株土壤中的相对丰度最高(2.54%),在其他样品中的相对丰度在0.1%~0.65%之间;在镰孢菌属中,腐皮镰孢菌(Fusarium solani)的相对丰度(0~1.59%之间)高于尖孢镰孢菌(F.oxysporum),尖孢镰孢菌仅占很小的比例(相对丰度0~0.08%之间)。可见,在不同香蕉植株的根区土壤中,健康植株的根区土壤真菌多样性高于枯萎病植株,无论是健康植株还是枯萎病植株的根区土壤中,作为香蕉枯萎病病原菌的镰孢菌属或尖孢镰孢菌的群体均不占主导地位。  相似文献   

17.
In Egypt, sesame cultivation is subject to attack by wilt and root-rot diseases caused by Fusarium oxysporum f.sp. sesami (Zap) Cast. and Macrophomina phaseolina (Maubl) Ashby causing losses in quality and quantity of sesame seed yield. Bacillus subtilis and Trichoderma viride isolates which were isolated from sesame rhizosphere were the most effective to antagonise fungal pathogens, causing high reduction of hyphal fungal growth. Trichoderma viride was found to be mycoparasitic on Fusarium oxysporum f.sp. sesami and M. phaseolina causing morphological atternation of fungal cells and sclerotial formation. In general, Bacillus subtilis, T. viride, avirulent Fusarium oxysporum isolate and Glomus spp. (Amycorrhizae) significantly reduced wilt and root-rot incidence of sesame plants at artificially infested potted soil by each one or two pathogens. Data obtained indicate that Glomus spp significantly reduced wilt and disease severity development on sesame plants followed by T. viride. Meanwhile, avirulent Fusarium oxysporum isolate followed by Glomus spp. were effective against root-rot disease incidence caused by M. phaseolina. Glomus spp. followed by B. subtilis significantly reduced wilt and root-rot disease of sesame plants. All biotic agents significantly reduced F. oxysporum f.sp. sesami and M. phaseolina counts in sesame rhizosphere at the lowest level. Glomus spp. and the avirulent isolate of F. oxysporum eliminated M. phaseolina in sesame rhizosphere. Meanwhile T. viride was the best agent at reducing F. oxysporum at a lower level than other treatments. Application of VA mycorrhizae (Glomus spp.) in fields naturally infested by pathogens significantly reduced wilt and root-rot incidence and it significantly colonised sesame root systems and rhizospheres compared to untreated sesame transplantings.  相似文献   

18.
The main objective of this study was to evaluate the effectiveness of crude chloroform extract of Piper betle L. (PbC) in controlling Fusarium wilt of tomato (Lycopersicon esculentum) caused by Fusarium oxysporum f. sp. lycopersici. It was observed that 1% (w/w) amendment of the PbC in soil was more efficient in reducing the Fusarium population in soil than carbendazim and the combined amendment of carbendazim and PbC. Fusarium wilt control studies were carried out in a greenhouse. Variation in different parameters like shoot growth, root growth and mean fresh weights of tomato seedlings in all the treatments were recorded. Accumulation of total phenolics was also studied from the root tissues of tomato. Higher accumulation of total phenolics was observed in the Fusarium-infested plants as compared to that of healthy control and PbC-treated plants. Moreover, it was observed that the extract could reduce the symptoms and disease development. Electron microscopy studies were also done to observe the Fusarium infestation in the vascular bundles and to show the accumulation of total phenolics in the vacuoles of root tissue.  相似文献   

19.
六盘山鸡爪大黄蒽醌类化合物积累特征的研究   总被引:3,自引:0,他引:3  
采用多种组织化学方法研究了六盘山鸡爪大黄营养器官中蒽醌类化合物的积累特征.结果显示:蒽醌类化合物在根中分布于周皮的木栓层和栓内层、次生维管组织的维管射线和根中央的部分木薄壁细胞内,且维管射线是根中贮藏和积累蒽醌类化合物的主要组织;在根茎中分布于周皮的木栓层和栓内层、次生维管组织的形成层和维管射线,以及髓的异常维管束射线中,且维管射线是根茎中贮藏和积累蒽醌类化合物的主要组织;在茎中主要分布于表皮、近表皮皮层和维管束的维管束鞘及其薄壁细胞,大型和小型维管束之间和周围的部分薄壁细胞,以及髓射线中有不同程度的分布;在叶中主要积累在叶柄的表皮、叶柄和大叶脉的部分基本组织、维管束的部分薄壁细胞等部位.结果表明,六盘山鸡爪大黄的根和根茎是蒽醌类化合物贮藏和积累的主要器官,维管射线是其贮藏和积累的主要组织,而且各营养器官中蒽醌类化合物积累的数量与植物各相关器官组织的发育程度、细胞中含淀粉粒的多少存在着一定的相关性.  相似文献   

20.
桔梗根的发育解剖学研究   总被引:1,自引:0,他引:1  
以桔梗(Platycodon grandiflorum A.DC)根为材料,运用石蜡切片和半薄切片法对其根的发育过程及结构进行解剖学观察,并对不同年限根的结构进行了比较。结果表明:桔梗根的结构发育过程包括原生分生组织、初生分生组织、初生生长和次生生长4个阶段。其原生分生组织由3群原始细胞组成,表现出典型分生组织的细胞学特征;初生分生组织包括根冠原、表皮原、皮层原和中柱原;初生结构由表皮、皮层和中柱组成,其中皮层薄壁细胞占主要地位,初生木质部为二原型;次生生长主要依靠维管形成层和木栓形成层的活动来完成,其次生结构从外到内由周皮和次生维管组织组成,次生维管组织占主导地位,其中以薄壁细胞为主,维管分子少量,分散在薄壁组织中。不同年限的根的结构基本相同,但它们在主根长度和直径、周皮厚度、木质部与韧皮部面积之比等方面存在差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号