首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wilt of Psidium guajava L., incited by Fusarium oxysporum f. sp. psidii and Fusarium solani is a serious soil-borne disease of guava in India. Forty-two isolates each of F. oxysporum f. sp. psidii (Fop) and F. solani (Fs) collected from different agro climatic zones of India showing pathogenicity were subjected to estimate the genetic and molecular characterisation in terms of analysis of microsatellite marker studies. Out of eight microsatellite markers, only four microsatellite markers, viz. MB 13, MB 17, RE 102 and AY212027 were amplified with single band pattern showing the character of identical marker for molecular characterisation and genetic identification. Microsatellite marker MB 13 was amplified in F. oxysporum f. sp. psidii and F. solani isolates. Product size of 296 bps and 1018 bps were exactly amplified with a single banding pattern in all the isolates of F. oxysporum f. sp. psidii and F. solani, respectively. Microsatellite markers, viz. MB 17, RE 102 and AY212027 were also exactly amplified with a single banding pattern. MB 17 was amplified in F. oxysporum f. sp. psidii isolates with a product size of 300 bp. RE 102 and AY212027 were amplified in F. solani isolates with the product size of 153 bp and 300 bp, respectively. Therefore, amplified microsatellite marker may be used as identifying DNA marker.  相似文献   

2.
Twenty one isolates of Fusarium oxysporum f. sp. psidii (Fop), causing a vascular wilt in guava (Psidium guajava L.), were collected from different agro-ecological regions of India. The pathogenicity test was performed in guava seedlings, where the Fop isolates were found to be highly pathogenic. All 21 isolates were confirmed as F. oxysporum f. sp. psidii by a newly developed, species-specific primer against the conserved regions of 28S rDNA and the intergenic spacer region. RAPD and PCR-RFLP were used for genotyping the isolates to determine their genetic relationships. Fifteen RAPD primers were tested, of which five primers produced prominent, polymorphic, and reproducible bands. RAPD yielded an average of 6.5 polymorphic bands per primer, with the amplified DNA fragments ranging from 200–2,000 bp in size. A dendrogram constructed from these data indicated a 22–74% level of homology. In RFLP analysis, two major bands (350 and 220 bp) were commonly present in all isolates of F. oxysporum. These findings provide new insight for rapid, specific, and sensitive disease diagnosis. However, genotyping could be useful in strain-level discrimination of isolates from different agro-ecological regions of India.  相似文献   

3.
Wilt is the most destructive disease of guava in India. Fusarium oxysporum f. sp. psidii and Fusarium solani are reported as most commonly isolated pathogens and are considered to be associated singly or in combination with roots of wilt affected plants of guava (Psidium guajava L.). Histopathological observations were made of the roots of wilt affected guava plants in the present investigation. The observations of wilted guava root showed disintegration/necrosis of the epidermal tissue, cortex tissue and vascular bundle cells. In T.S. of root of wilted plant the normal shape of the epidermis was disrupted and there was breaking and opening in the epidermis through which pathogen may enter in the host tissue. Necrosis of the internal tissue and vascular bundle restricts the movement of water and nutrient and thus results wilting.  相似文献   

4.
Wilt is a serious disease of guava crop in India. Fusarium oxysporum f. sp. psidii and F. solani have been reported as the main causative agents of this disease. Most recently a survey on guava plants affected with wilt disease was conducted in severely affected areas of India, and two new species of Fusarium viz. Fusarium proliferatum and Fusarium chlamydosporum were found to be associated with this disease. However, pathogenecity of Fusarium chlamydosporum was successfully conducted in the field trials. The culture of F. chlamydosporum was processed for DNA sequencing and DNA sequence was submitted to NCBI with GenBank accession no. HM102506. The submitted DNA sequence of F. chlamydosporum was compared for the genetic position in Fusarium spp. evolutionary phylogenic tree.  相似文献   

5.
The rust fungus, Puccinia psidii, is a devastating pathogen of introduced eucalypts (Eucalyptus spp.) in Brazil where it was first observed in 1912. This pathogen is hypothesized to be endemic to South and Central America and to have first infected eucalypts via a host jump from native guava (Psidium guajava). Ten microsatellite markers were used to genotype 148 P. psidii samples from eucalypts and guava plus five additional myrtaceous hosts across a wide geographic range of south‐eastern Brazil and Uruguay. Principal coordinates analysis, a Bayesian clustering analysis and a minimum‐spanning network revealed two major genetic clusters among the sampled isolates, one associated with guava and another associated with eucalypts and three additional hosts. Multilocus genotypes infecting guava differed by multiple mutational steps at eight loci compared with those infecting eucalypts. Approximate Bayesian computation revealed that evolutionary scenarios involving a coalescence event between guava‐ and eucalypt‐associated pathogen populations within the past 1000 years are highly unlikely. None of the analyses supported the hypothesis that eucalypt‐infecting P. psidii in Brazil originated via host jump from guava following the introduction of eucalypts to Brazil approximately 185 years ago. The existence of host‐associated biotypes of P. psidii in Brazil indicates that this diversity must be considered when assessing the invasive threat posed by this pathogen to myrtaceous hosts worldwide.  相似文献   

6.
Fusarium wilt is an economically important fungal disease of common bean and sugar beet in the Central High Plains (CHP) region of the USA, with yield losses approaching 30% under appropriate environmental conditions. The objective of this study was to characterize genetic diversity and pathogenicity of isolates of Fusarium oxysporum obtained from common bean and sugar beet plants in the CHP that exhibited Fusarium wilt symptoms. A total of 166 isolates of F. oxysporum isolated from diseased common bean plants were screened for pathogenicity on the universal susceptible common bean cultivar ‘UI 114’. Only four of 166 isolates were pathogenic and were designated F. oxysporum f.sp. phaseoli (Fop). A set of 34 isolates, including pathogenic Fop, F. oxysporum f.sp. betae (Fob) isolates pathogenic on sugar beet, and non‐pathogenic (Fo) isolates, were selected for random‐amplified polymorphic DNA (RAPD) analysis. A total of 12 RAPD primers, which generated 105 polymorphic bands, were used to construct an unweighted paired group method with arithmetic averages dendrogram based on Jaccard's coefficient of similarity. All CHP Fop isolates had identical RAPD banding patterns, suggesting low genetic diversity for Fop in this region. CHP Fob isolates showed a greater degree of diversity, but in general clustered together in a grouping distinct from Fop isolates. As RAPD markers revealed such a high level of genetic diversity across all isolates examined, we conclude that RAPD markers had only limited usefulness in correlating pathogenicity among the isolates and races in this study.  相似文献   

7.
The variability in cultural characteristics and the virulence among three isolates of Fusarium oxysporum f. sp. ciceri causing vascular wilt in chickpea was studied under laboratory conditions. The three isolates (Foc-1, Foc-2 and Foc-3) did not show any significant difference in their mycelial dry weight production at any temperature regimes, pH level or the growth media tested. The radial growth on PDA also did not differ significantly in the three isolates. However, some quantitative differences were noted in colony characters and septations in macroconidia of these isolates. The isolate Foc-1 exhibited dull white, thin and flat hairy growth, spreading out like thread, Foc-2 showed a white fluffy colony with irregular aerial margin, while Foc-3 exhibited a pinkish white, slightly fluffy colony with regular margin. Conidia also differed with regard to septation. Three to six septa were present in Foc-2, while there were 2–3 in isolates Foc-1 and Foc-2. These isolates differed significantly with regard to their virulence on test varieties. Isolate Foc-1 was more virulent that Foc-2 or Foc-3 and produced abundant spores.  相似文献   

8.
A serious wilt disease of guava has been observed in the Varanasi district of eastern Uttar Pradesh of India. The causal organism has been identified as Fusarium oxysporum f. sp. psidii. Pathogenicity tests were performed in pot experiments to confirm the causal agent of the disease. Infected plants developed chlorosis followed by wilting of entire seedlings and leaf abscission. Histopathological studies showed the presence of hyphae in xylem vessels of roots of the wilted seedlings and when sections of such roots were transferred to potato dextrose agar medium, this pathogen grew in culture.  相似文献   

9.
Of the insect pests that attack guava fruits, the guava weevil, Conotrachelus psidii Marshall, 1922 (Coleoptera: Curculionidae), is one of the most important in Brazil. In search of alternatives to chemical pesticides, this study was performed to select fungal isolates of Beauveria bassiana and Metarhizium anisopliae as potential candidates for the control of adult C. psidii. Tests were carried out using three products applied with the entomopathogenic fungi: Tween 80, sunflower oil and Imidacloprid (IMI). A sub-lethal concentration of IMI was determined (100 ppm). The results demonstrated that LPP 19 and LPP 114 were the most effective isolates when used in combination with all of the products. The least virulent isolate, ESALQ 818, when applied in Tween 80 caused only 26.6% mortality, however, this isolate showed significantly improved efficiency when applied together with either sunflower oil or IMI, causing 57.3 and 88.6% mortality, respectively. The efficiency of all the isolates tested here improved when applied together with IMI, with LT50 values of 5.3–10.3 days when compared to LT50 values in Tween alone of 9.5–17 days. The isolate that produced the highest number of conidia on the cadavers of adult C. psidii was LPP138, independent of the product used; however, conidial production was slightly reduced when fungi were applied together with IMI. These results are promising for developing new formulations of the isolates to be tested in the field.  相似文献   

10.
Fusarium wilt caused by Fusarium oxysporum f.sp. ciceris (Foc) is the most important soilborne disease of chickpea in the Sudan and many other countries. A total of 76 Foc isolates from six different chickpea‐growing states in the Sudan have been collected in this study to investigate the genetic diversity of Sudanese Foc isolates. Additional 14 Foc isolates from Syria and Lebanon were included in this study. All isolates were characterized using four random amplified polymorphic DNA (RAPD), three simple sequence repeats (SSR), five sequence‐characterized amplified region (SCAR) primers and three specific Foc genome primers. Based on the similarity coefficient, the results indicated two major clusters included seven subclusters. The isolates from the Sudan were grouped as identified as races 0, 2 and unknown races. The isolates from Syria and Lebanon were grouped together as they identified as races 1B/C and 6, respectively. This study identified a new race Foc (race 0) in the Sudan. The results of this study will be useful for breeders to design effective resistance breeding program in chickpea in the Sudan.  相似文献   

11.
Four bean genotypes (IPA-1, A-107, A-211, and Calima), representing all possible combinations of resistance and susceptibility to Fusarium oxysporum f. sp. phaseoli (Fop) and Meloidogyne incognita, were each inoculated with three population densities of these pathogens. Calima and A-107 were resistant to Fop; A-107 and A-211 were resistant to M. incognita; and IPA-1 was susceptible to both pathogens. In Fop-susceptible lines (IPA-1 and A-211), the presence of M. incognita contributed to an earlier onset and increased severity of Fusarium wilt symptoms and plant stunting. However, the Fop-resistant Calima developed symptoms of Fusarium wilt only in the presence of M. incognita. Genotype A-107 (resistant to both M. incognita and Fop) exhibited Fusarium wilt symptoms and a moderately susceptible reaction to Fop only after the breakdown of its M. incognita resistance by elevated incubation temperatures (27 C). Root galling and reproduction of M. incognita was generally increased as inoculum density of M. incognita was increased on the M. incognita susceptible cultivars. However, these factors were decreased as the inoculum density of Fop was increased. It was concluded that severe infections of bean roots by M. incognita increase the severity of Fusarium wilt on Fop-susceptible genotypes and may modify the resistant reaction to Fop.  相似文献   

12.
F‐box proteins determine substrate specificity of the ubiquitin–proteasome system. Previous work has demonstrated that the F‐box protein Fbp1, a component of the SCFFbp1 E3 ligase complex, is essential for invasive growth and virulence of the fungal plant pathogen Fusarium oxysporum. Here, we show that, in addition to invasive growth, Fbp1 also contributes to vegetative hyphal fusion and fungal adhesion to tomato roots. All of these functions have been shown previously to require the mitogen‐activated protein kinase (MAPK) Fmk1. We found that Fbp1 is required for full phosphorylation of Fmk1, indicating that Fbp1 regulates virulence and invasive growth via the Fmk1 pathway. Moreover, the Δfbp1 mutant is hypersensitive to sodium dodecylsulfate (SDS) and calcofluor white (CFW) and shows reduced phosphorylation levels of the cell wall integrity MAPK Mpk1 after SDS treatment. Collectively, these results suggest that Fbp1 contributes to both the invasive growth and cell wall integrity MAPK pathways of F. oxysporum.  相似文献   

13.
Root and basal rot of common onion (Allium cepae L.) caused by Fusarium oxysporum f. sp. cepae is one of the most important diseases causing tremendous losses in onion‐growing areas worldwide. In this study, random amplified polymorphic DNA (RAPD), intersimple sequence repeats (ISSR) and virulence studies were conducted to analyse 26 F. oxysporum f. sp. cepae isolates obtained from the main onion‐growing regions of Iran, including Fars, Azerbaijan and Isfahan states. Cluster analysis using UPGMA method for both RAPD and ISSR markers revealed no clear grouping of the isolates obtained from different geographical regions, and the isolates were observed to derive probably from the same clonal lineage. Pathogenicity test indicated that all F. oxysporum f. sp. cepae isolates were pathogenic on onion; however, virulence variability was observed among the isolates. The grouping based on virulence variability was not correlated with the results of RAPD and ISSR analyses.  相似文献   

14.
The virulence and vegetative compatibility of eight Dutch and four Italian isolates of Fusarium oxysporum obtained from lily were compared. The virulence was tested by determination of the specific interaction between the Fusarium isolates and eight lily cultivars. A specific interaction was not found, so the existence of races was not demonstrated. Six of the twelve isolates turned out to be non-pathogenic for lily. The pathogenic isolates fell in four vegetative compatibility groups. No vegetative compatibility was found between isolates of F. oxysporum f. sp. lilii and those of f. sp. gladioli.  相似文献   

15.
The present study describes the comparative analysis of five genetic markers viz., random amplified polymorphic DNA (RAPD), enterobacterial repetitive intergenic consensus (ERIC), BOX-elements, mating type (MAT) locus and microsatellites for genetic analysis of virulent isolates of Fusarium oxysporum f. sp. ciceri (FOC) representing seven races from chickpea. Phylogenetic analysis of translation elongation factor 1-α and internal transcribed spacer region separated all the FOC isolates into two major clades. Majority of the isolates (FOC 63, FOC 33, FOC 40, FOC 100, FOC 6, FOC 22, FOC 31, FOC 79 and NDFOC 98) representing race 1, 2, 5 and 6 grouped in clade I, while isolates (FOC 90, FOC 108 and FOC 88) belonging to race 3, 4 and 7 were clustered in clade II. Isolates (FOC 33, FOC 40, FOC 17 and FOC 100) representing race 2 had MAT-2 loci, while race 1 isolates (FOC 63, FOC 72 and FOC 76) contained MAT-1 loci only. The principal component analysis (PCA) of RAPD, ERIC, BOX and microsatellite marker data explained 39.94, 39.98, 42.04 and 62.59% of the total variation among test isolates, respectively. Furthermore, there was no correlation existed between genetic diversity, virulence, race compositions or geographic origin of the isolates. Overall, these findings will assist in better understanding of the genetic variability and ideally, will improve disease management practices.  相似文献   

16.
Dominant phylloplane fungi of guava (Psidium guajava L.) were screened for their antagonistic activities against the two pathogens,Colletotrichum gloeosporioides andPestalotia psidii, bothin vitro andin vivo. Culture filtrates ofAspergillus niger, Fusarium oxysporum andPenicillium citrinum caused more than 50% growth inhibition ofC. gloeosporioides. Filtrates ofCephalosporium roseo-griseum andF. oxysporum were most effective in reducing the growth ofP. psidii. Volatiles produced from the cultures ofA. niger, F. oxysporum, P. citrinum andP. oxalicum inhibited the growth ofC. gloeosporioides, whereas volatiles fromC. roseo-griseum, F. oxysporum andTrichoderma harzianum inhibited the growth ofP. psidii. The inhibitory effect of volatiles decreased with increase in incubation time. In general, the maximum effect of volatiles was noticed after 48 h incubation. Different grades of colony interactions in dual cultures were recognised between the two pathogens and the phylloplane fungi examined. Maximum inhibition ofC. gloeosporioides was caused byAureobasidium pullulans, Cladosporium cladosporioides, epicoccum purpurascens, F. oxysporum andMyrothecium roridum, whereasAspergillus terreus, C. roseo-griseum andP. oxalicum significantly reduced the growth ofP. psidii. Application of a spore suspension of each test fungus inhibited lesion development of guava leaves caused by the test pathogensin vitro. Inhibition was more pronounced when the spore concentration was increased.A. pullulans, C. cladosporioides, E. purpurascens, F. oxysporum, andT. harzianum were found to be strongly antagonistic toC. gloeosporioides. A. niger, A. terreus, C. roseo-grisem andT. harzianum were strongly antagonistic toP. psidii.  相似文献   

17.
Eucalyptus or guava rust caused by Puccinia psidii is a serious disease of Eucalyptus and other Myrtaceae. In Uruguay, it has been previously found on Eucalyptus globulus and Psidium brasiliensis. Almost nothing is known regarding the occurrence of this pathogen on other Eucalyptus species or native Myrtaceae in that country. In this study, we determined the presence of P. psidii on Eucalyptus species and native Myrtaceae trees in Uruguay and evaluated the pathogenicity of specimens from native myrtaceous hosts on E. globulus and E. grandis. Phylogenetic analyses based on the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA operon were used to confirm pathogen identity. Comparisons of ITS sequences confirmed the identity of P. psidii on Eucalyptus globulus, E. grandis, Myrcianthes pungens, and Myrrhinium atropurpureum var. octandrum. This is the first report of P. psidii on M. atropurpureum var. octandrum. Pathogenicity tests showed that isolates from native Myrtaceae could infect both Eucalyptus species tested, indicating a strong biological relationship between both introduced and native Myrtaceae. This study supplies relevant field data, morphological information, molecular phylogenetic analyses and infection studies that contribute to a better understanding of an important and little studied pathogen.  相似文献   

18.
PG1, the major endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum, was secreted during growth on pectin by 10 of 12 isolates belonging to seven formae speciales, as determined with isoelectric focusing zymograms and sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. A Southern analysis of genomic DNA and PCR performed with gene-specific primers revealed that the pg1 locus was highly conserved structurally in most isolates. Two PG1-deficient isolates were identified; one lacked the encoding gene, and the other carried a pg1 allele disrupted by a 3.2-kb insertion with sequence homology to hAT transposases. The virulence for muskmelon of different F. oxysporum f. sp. melonis isolates was not correlated with PG1 production in vitro. We concluded that PG1 is widely distributed in F. oxysporum and that it is not essential for pathogenicity.  相似文献   

19.
Puccinia psidii sensu lato (s.l.) is the causal agent of eucalyptus and guava rust, but it also attacks a wide range of plant species from the myrtle family, resulting in a significant genetic and physiological variability among populations accessed from different hosts. The uredospores are crucial to P. psidii dissemination in the field. Although they are important for the fungal pathogenesis, their molecular characterization has been poorly studied. In this work, we report the first in-depth proteomic analysis of P. psidii s.l. uredospores from two contrasting populations: guava fruits (PpGuava) and eucalyptus leaves (PpEucalyptus). NanoUPLC-MSE was used to generate peptide spectra that were matched to the UniProt Puccinia genera sequences (UniProt database) resulting in the first proteomic analysis of the phytopathogenic fungus P. psidii. Three hundred and fourty proteins were detected and quantified using Label free proteomics. A significant number of unique proteins were found for each sample, others were significantly more or less abundant, according to the fungal populations. In PpGuava population, many proteins correlated with fungal virulence, such as malate dehydrogenase, proteossomes subunits, enolases and others were increased. On the other hand, PpEucalyptus proteins involved in biogenesis, protein folding and translocation were increased, supporting the physiological variability of the fungal populations according to their protein reservoirs and specific host interaction strategies.  相似文献   

20.
To assess the impact of non-host crops intercropping, bioagents and oil cakes, on population dynamics of Fusarium oxysporum f. sp. psidii (Fop) and wilt of guava. Lowest population of Fop was recorded in garlic followed by intercropping with marigold with reduction of 84.9 and 83.9%, respectively. Bioagents viz; Aspergillus niger, Trichoderma viride and Trichoderma harzianum reduced the Fop population significantly, with the lowest in T. harzianum followed by A. niger. Garlic bulb extract exhibited maximum inhibition of Fop growth (2.7 cm) followed by marigold (2.4 cm), respectively, over control. Neem cake significantly reduced population of Fop, closely followed by mahua cake, over control. Integration of neem cake + T. harzianum + garlic reduced the Fop population significantly, over control, followed by neem cake + T. harzianum + marigold but neem cake + T. harzianum + marigold reduced wilt disease significantly in comparison to neem cake + T. harzianum + garlic inter-cropping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号