首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants exude a variety of substances through their roots, germinating seeds and aerial parts. Some of these released compounds seem to have an inhibitory effect against pathogens. The aim of this work was to investigate and identify antifungal proteins present in exudates from imbibed cowpea seeds (Vigna unguiculata (L.) Walp). The obtained exudation was analyzed in regard to specific protein activities by enzymatic or immunological assays for plant defense proteins, from 4 h to 48 h of seed imbibition. Our results show that cowpea seeds exudates present several defense related proteins characterized as β-1,3-glucanases, cystatins, vicilins and lipid transfer proteins (LTPs), as well as a storage vacuole membrane α-TIP protein, since the very first hours of imbibition. These exudates also have an “in vitro” inhibitory effect on the growth of the fungus Fusarium oxysporum f. sp. phaseoli. Our results suggest that seed exudates should promote seed protection from soil pathogens.  相似文献   

2.
3.
Plants exude a variety of substances through their external surfaces and from germinating seeds, some of which have an inhibitory action against plant pathogens. The aim of this study was the investigation and characterization of defense proteins present in exudates from roots of cowpea seedlings (Vigna unguiculata (L.) Walp.). Root exudates were collected from seedlings that were grown hydroponically in three different media, including, 100 mM sodium acetate buffer pH 4.5, water pH 6.0 and 100 mM sodium phosphate buffer pH 7.5. The proteins from these exudates were analyzed by SDS–PAGE and SDS–Tricine–PAGE and the presence of antimicrobial proteins in the exudates was investigated by immunological and enzymatic assays. Results showed that roots from cowpea seedlings contained -1,3-Glucanases, chitinases and lipid transfer proteins (LTPs), all of which may potentially function as plant defense proteins. Immunolocalization of one of these proteins, chitinase, revealed its presence in the xylem cell wall vessel elements. These exudates also demonstrated an inhibitory effect on the growth of the fungus, Fusarium oxysporum, in vitro. The results suggest that plant roots may exude a variety of proteins that may function to repress the growth of root pathogenic fungi.  相似文献   

4.
Reyes D  Rodríguez D  Nicolás G  Nicolás C 《Planta》2006,223(2):381-385
In the present paper evidence is presented indicating that tyrosine dephosphorylation is a key regulatory mechanism in postgermination arrest of Arabidopsis thaliana L. seed development mediated by abscisic acid (ABA). By using phenylarsine oxide (PAO), an inhibitor of tyrosine phosphatases, the sensitivity to the inhibitory effect of ABA on seed germination is enhanced. Consistent with this finding, we demonstrate that the ABA-responsive gene, RAB18, is hyperinduced in seeds imbibed in ABA plus PAO, compared with seeds imbibed only with ABA.  相似文献   

5.
  • Jatropha curcas is an oilseed crop renowned for its tolerance to a diverse range of environmental stresses. In Brazil, this species is grown in semiarid regions where crop establishment requires a better understanding of the mechanisms underlying appropriate seed, seedling and plant behaviour under water restriction conditions. In this context, the objective of this study was to investigate the physiological and cytological profiles of J. curcas seeds in response to imbibition in water (control) and in polyethylene glycol solution (osmoticum).
  • Seed germinability and reactivation of cell cycle events were assessed by means of different germination parameters and immunohistochemical detection of tubulin and microtubules, i.e. tubulin accumulation and microtubular cytoskeleton configurations in water imbibed seeds (control) and in seeds imbibed in the osmoticum.
  • Immunohistochemical analysis revealed increasing accumulation of tubulin and appearance of microtubular cytoskeleton in seed embryo radicles imbibed in water from 48 h onwards. Mitotic microtubules were only visible in seeds imbibed in water, after radicle protrusion, as an indication of cell cycle reactivation and cell proliferation, with subsequent root development. Imbibition in osmoticum prevented accumulation of microtubules, i.e. activation of cell cycle, therefore germination could not be resumed.
  • Osmoconditioned seeds were able to survive re‐drying and could resume germination after re‐imbibition in water, however, with lower germination performance, possibly due to acquisition of secondary dormancy. This study provides important insights into understanding of the physiological aspects of J. curcas seed germination in response to water restriction conditions.
  相似文献   

6.
7.
The gram pod borer, Helicoverpa armigera, is one of the most important constraints to chickpea production. High acidity of chickpea exudates is associated with resistance to pod borer, H. armigera; however, acidic exudates in chickpea might influence the biological activity of the bacterium, Bacillus thuringiensis (Bt), applied as a foliar spray or deployed in transgenic plants for controlling H. armigera. Therefore, studies were undertaken to evaluate the biological activity of Bt towards H. armigera on chickpea genotypes with different amounts of organic acids. Significantly lower leaf feeding, larval survival and larval weights were observed on ICC 506EB, followed by C 235, and ICCV 10 across Bt concentrations. Leaf feeding by the larvae and larval survival and weights decreased with an increase in Bt concentration. However, rate of decrease in leaf feeding and larval survival and weights with an increase in Bt concentration was greater on L 550 and ICCV 10 than on the resistant check, ICC 506EB, suggesting that factors in the resistant genotypes, particularly the acid exudates, resulted in lower levels of biological activity of Bt possibly because of antifeedant effects of the acid exudates. Antifeedant effects of acid exudates reduced food consumption and hence might reduce the efficacy of Bt sprays on insect‐resistant chickpea genotypes or Bt‐transgenic chickpeas, although the combined effect of plant resistance based on organic acids, and Bt had a greater effect on survival and development of H. armigera than Bt alone.  相似文献   

8.
Genetic relationships among the annual species of Cicer L.   总被引:3,自引:0,他引:3  
Summary Genetic relationships between 7 annual species of the genus Cicer, including the cultivated chickpea, have been studied. These species were assigned to 3 crossability groups. In each group interspecific hybrids could be obtained but their fertility differed considerably in the various cross combinations. Crosses between members of different groups yielded no viable seeds. The possibility of gene transfer from the wild species to the cultivated chickpea C. arietinum was also assessed. Only two species could be considered for this purpose, C. reticulatum, which is the wild progenitor of the cultivated species, and C. echinospermum, which is in the secondary gene pool of C. arietinum. A unique postzygotic reproductive barrier mechanism was found between the members of Group II, C. judaicum, C. pinnatifidum and C. bijugum. It is based on a disharmony in the growth rate of the stigma and the anthers at the time of anthesis of the F1 interspecific hybrid so that selfpollination is avoided. It is proposed that this kind of mechanism has been involved only when an effective spatial isolation between the three species had been obtained.  相似文献   

9.
Proteomic analysis of seed dormancy in Arabidopsis   总被引:3,自引:0,他引:3       下载免费PDF全文
The mechanisms controlling seed dormancy in Arabidopsis (Arabidopsis thaliana) have been characterized by proteomics using the dormant (D) accession Cvi originating from the Cape Verde Islands. Comparative studies carried out with freshly harvested dormant and after-ripened non-dormant (ND) seeds revealed a specific differential accumulation of 32 proteins. The data suggested that proteins associated with metabolic functions potentially involved in germination can accumulate during after-ripening in the dry state leading to dormancy release. Exogenous application of abscisic acid (ABA) to ND seeds strongly impeded their germination, which physiologically mimicked the behavior of D imbibed seeds. This application resulted in an alteration of the accumulation pattern of 71 proteins. There was a strong down-accumulation of a major part (90%) of these proteins, which were involved mainly in energetic and protein metabolisms. This feature suggested that exogenous ABA triggers proteolytic mechanisms in imbibed seeds. An analysis of de novo protein synthesis by two-dimensional gel electrophoresis in the presence of [(35)S]-methionine disclosed that exogenous ABA does not impede protein biosynthesis during imbibition. Furthermore, imbibed D seeds proved competent for de novo protein synthesis, demonstrating that impediment of protein translation was not the cause of the observed block of seed germination. However, the two-dimensional protein profiles were markedly different from those obtained with the ND seeds imbibed in ABA. Altogether, the data showed that the mechanisms blocking germination of the ND seeds by ABA application are different from those preventing germination of the D seeds imbibed in basal medium.  相似文献   

10.
Abscisic acid (ABA) and gibberellins (GAs) are two major phytohormones that regulate seed germination in response to internal and external factors. In this study we used HPLC-ESI/MS/MS to investigate hormone profiles in canola (Brassica napus) seeds that were 25, 50, and 75% germinated and their ungerminated counterparts imbibed at 8°C in either water, 25 μM GA4+7, a 80 mM saline solution, or 50 μM ABA, respectively. During germination, ABA levels declined while GA4 levels increased. Higher ABA levels appeared in ungerminated seeds compared to germinated seeds. GA4 levels were lower in seeds imbibed in the saline solution compared to seeds imbibed in water. Ungerminated seeds imbibed in ABA had lower GA4 levels compared to ungerminated seeds imbibed in water; however, the levels of GA4 were similar for germinated seeds imbibed in either water or ABA. The ABA metabolites PA and DPA increased in seeds imbibed in either water, the saline solution, or ABA, but decreased in GA4+7-imbibed seeds. In addition, ABA inhibited GA4 accumulation, whereas GA had no effect on ABA accumulation but altered the ABA catabolism pathway. Information from our studies strongly supports the concept that the balance of ABA and GA is a major factor controlling germination.  相似文献   

11.
Bioassay based on thick and short root (Tsr) and hair deformation (Had) phenotypes were used to test the activity of Nod factors produced byRhizobium sp. (Cicer) strains HS-1, Rcd-301, IC-59, IC-76 and Ca-181 on chickpea (Cicer arietinum) cv. ‘C-235’. Nod mutants ofRhizobium sp. (Cicer) did not produce Tsr+ and Had+ phenotypes on chickpea, indicating the requirement of nodulation genes for their appearance. The strain HS-1 treated with root exudates of pea (Pisum sativum), berseem (Trifolium alexandrinum) and lucerne (Medicago sativa) failed to produce the Tsr+ and Had+ phenotypes on chickpea. ConverselyR. leguminosarum bvs.viciae andtrifolii, R. meliloti, Rhizobium sp. (Sesbania), andRhizobium sp. (Cajanus) induced with chickpea root exudates did not show Tsr+ and Had+ phenotypes on chickpea. It appears that host specificity inRhizobium sp. (Cicer)-chickpea symbiosis is regulated by the production of host-specific factors which are not active on heterologous hosts.  相似文献   

12.
Following 16, 40 and 64 h exposure to 0.33 M NaCl given after 8 h water imbibition, lentil seeds showed a gradual decrease of germination upon their transfer to water. These salt related changes were accompanied by modifications in the protein patterns of embryo axes as revealed by two-dimensional electrophoresis separation and by the computer image analysis of protein spots. In comparison with 8 h water imbibed seeds, prominent proteins comprised between the 5.1 – 7.6 pH isoelectric point in the first dimension and 75 – 50 kDa molecular mass in the second dimension showed a significant increase in their abundance as salt exposure increased. On transfer to water to complete germination, the content of many of these proteins decreased at 24h in 2 – 3 cm length embryo axes in comparison with the corresponding embryo axes of seeds continuously imbibed in water for 24 h. Some groups of proteins ranging between 15.5 – 17.3 kDa, already present after 8 h water imbibition, were not detectable after 24 h but were expressed in seeds exposed to NaCl and transferred to water for 24 h. Up- and down-regulated proteins in lentil embryo axes, imbibed under non-lethal salt stress conditions, have been tentatively identified by comparison with the protein map of germinating seeds of the model plant Arabidopsis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
L. Lalonde  J. D. Bewley 《Planta》1986,167(4):504-510
As germination of axes of Pisum sativum L. seeds progressed, profound quantitative and qualitative changes occurred in the patterns of protein synthesis. This was shown by fluorography of gels following two-dimensional polyacrylamide gel electrophoresis separation of [35S]methioninelabelled proteins. The effects of desiccation during germination on these in-vivo protein-synthesis patterns were followed. Desiccation differentially affected the synthesis of proteins. Usually, however, upon rehydration following desiccation the types of proteins being synthesized were recognizable as those synthesized earlier during imbibition of control, once-imbibed axes: seeds imbibed for 8 h, and then dried, did not recommence synthesis of proteins typical of 8-h-imbibed control seeds, but rather of 4-h-imbibed control seeds. Seeds imbibed for 12 h, and then dried and rehydrated, synthesized proteins typical of 4-h-and 8-h-control seeds. Thus drying of germinating pea axes caused the proteinsynthesizing mechanism to revert to producing proteins typical of earlier stages of imbibition. Drying during germination never caused the seed to revert to the metabolic status of the initial mature dry state, however.Abbreviation DR dried and rehydrated  相似文献   

14.
Abstract

In this study we assessed microconidia germination of the tomato pathogens F. oxysporum f. sp. lycopersici (Fol) and F. oxysporum f. sp. radicis-lycopersici (Forl) in the presence of root exudates. Tomato root exudates stimulated microconidia germination and the level of stimulation was affected by plant age. Treatment of root exudates with insoluble polyvinylpolypyrrolidone, which binds phenolic compounds, indicated that tomato root exudates contain phenolic compounds inhibitory to F. oxysporum microconidia germination. Our study indicates that tomato root exudates similarly stimulate microconidia germination of both Fol and Forl. However, individual F. oxysporum strains differ in the degree of germination response to the root exudates. Furthermore, root exudates from non-host plants also contain compounds that stimulate microconidia germination of Fol. In general, the effects of root exudates from non-host plants did not differ considerably from those of tomato. The ability of phenolic compounds to inhibit germination of Fol seems not to be plant-specific.  相似文献   

15.
The seeds of two cultivars of rice and wheat were examined for the presence of bacteria antagonistic to the growth of fungal plant pathogens. A yellow-pigmented bacterium was found to predominate on rice seed cv. Sasashigure, and in pure culture strongly inhibited mycelial growth of a wide range of pathogens. A similarly inhibitory, cream-coloured bacterium was predominant on wheat seeds cv. Longbow. This paper describes the isolation and range of antagonism of these organisms, and details their identification as a member of the Erwinia herbicola group and Pseudomonas syringae respectively.  相似文献   

16.
The inhibitory effect of NaCl on barley germination   总被引:2,自引:1,他引:1  
Abstract The possibility that the nature of the inhibitory effect of NaCl is different during imbibition compared to germination was investigated. Germination in both NaCl and betaine (a non-toxic solute) improved with pre-imbibition in water. Seeds imbibed in inhibitory concentrations of either solute could be induced to germinate by brief exposure to water. Electron micrographs of tissue from seeds imbibed in 0.5 kmol m?3 NaCl for 25 h showed cells identical to those in seeds imbibed in water for only 1 h, but seeds imbibed for 6 h in water exhibited many changes in ultrastructure. These results are consistent with the hypothesis that seed hydration must reach a critical value before germination can proceed, and that the inhibitory effect of NaCl is primarily osmotic in barley seeds that have not reached this hydration threshold. Although isotonic solutions of betaine and NaCl were equally inhibitory to germination, isotonic solutions of betaine and NaCl were not equally inhibitory to continued development in seeds which had been pre-imbibed in water. Calcium ions improved both germination and plumule emergence of pre-imbibed seeds in NaCl solutions, but calcium had little effect on pre-imbibed seeds placed in betaine. Very high concentrations of NaCl or betaine inhibited germination, but did not kill dry seeds. Both solutes, on the other hand, were lethal at high concentrations to germinating seeds. NaCl killed germinating seeds more rapidly than betaine, but calcium reduced the rate of killing to nearly that of betaine. We conclude that hydrated seeds are sensitive to both osmotic and toxic effects of NaCl and that calcium mitigates the toxic effect of NaCl, but not the osmotic effect.  相似文献   

17.
A greenhouse assay was developed to evaluate the root-colonizing capability of the native chickpea rhizospheric bacterial population. In this assay system, screening time was reduced on two counts. First, spontaneous chromosomal rifampicin-resistant (Rifr) strains were directly inoculated to seeds without any check for the stability of the mutation, and second, no attempts were made to taxonomically identify all the strains being screened for chickpea rhizosphere competence. Only two chickpea rhizosphere-competent Rifr strains from the group of six good chickpea rhizosphere colonizers forming 107 to 108 colony-forming units (cfu)/g root were taxonomically identified as Pseudomonas fluorescens NB13R and Pseudomonas spp. NB49R, after screening 49 bacteria. Both the strains showed no difference from their corresponding wild-type strains P. fluorescens NB13 and Pseudomonas spp. NB49 in terms of chickpea rhizosphere competence. Isogenic or equally rhizospheric competitive second non-isogenic bacterial isolate, when present in tenfold higher amount, pre-empted the colonization of the soil by the bacterium, which was present in smaller ratio. These findings indicate that the isogenic or equally rhizospheric competitive second non-isogenic Rifr strains should be compared for their survival and competition with that of the isogenic parent and with each other for specific ecological niche, before using a mixture of isolates, for stable and consistent biological seed treatment to control soilborn pathogens or pests or to promote plant growth. Received: 31 May 1996 / Accepted: 5 July 1996  相似文献   

18.
One-year-old seeds of chickpea (Cicer arietinum L. cv. C-235) lost about 23 % germinability and leaked larger quantities of N, P, K, saccharides and proteins into the soaking medium in the first 48 h, as compared with fresh seeds. The protein content in stored seeds decreased more than in fresh seeds, as the soaking progressed.  相似文献   

19.
Developing chickpea (Cicer arietinum L.) seeds 12 to 60 d after flowering (DAF) were analyzed for proteinase inhibitor (Pi) activity. In addition, the electrophoretic profiles of trypsin inhibitor (Ti) accumulation were determined using a gel-radiographic film-contact print method. There was a progressive increase in Pi activity throughout seed development, whereas the synthesis of other proteins was low from 12 to 36 DAF and increased from 36 to 60 DAF. Seven different Ti bands were present in seeds at 36 DAF, the time of maximum podborer (Helicoverpa armigera) attack. Chickpea Pis showed differential inhibitory activity against trypsin, chymotrypsin, H. armigera gut proteinases, and bacterial proteinase(s). In vitro proteolysis of chickpea Ti-1 with various proteinases generated Ti-5 as the major fragment, whereas Ti-6 and -7 were not produced. The amount of Pi activity increased severalfold when seeds were injured by H. armigera feeding. In vitro and in vivo proteolysis of the early- and late-stage-specific Tis indicated that the chickpea Pis were prone to proteolytic digestion by H. armigera gut proteinases. These data suggest that survival of H. armigera on chickpea may result from the production of inhibitor-insensitive proteinases and by secretion of proteinases that digest chickpea Pis.  相似文献   

20.
Grand Rapids lettuce (Lactuca sativa L.) seeds were stored in an imbibed state for up to two years. Embryos dissected from stored seeds showed a progressive loss with time in their ability to germinate on polyethylene glycol (PEG) solutions. Little germination of dissected embryos from one-month imbibed seeds occurred on-6 bar PEG but only after four months of storage did the dissected embryos fail to germinate on-4 bar PEG. After two years storage 30% of dissected embryos still were able to germinate on-2 bar PEG. This loss of germination potential, which may be a symptom of the development of an embryo dormancy, could be reversed by N6-benzyladenine (BA) and red light (R) applied together or separately to dissected embryos. Two weeks of chilling of 12-month imbibed seeds restored sensitivity to R and a 48-h BA pretreatment prior to R resulted in germination rates similar to those of seeds emerging from primary dormancy. There was loss of embryo control of endo--mannanase activity after two weeks of storage even though the endosperms themselves retained their capacity for enzyme synthesis for six more weeks. Eventually, then, endo--mannanase synthesis is not possible because of inherent changes in both the embryo and endosperm, although each tissue undergoes changes at its own rate. Oxygen uptake by embryos dissected from two-month imbibed seeds did not increase to the same extent as embryos dissected from freshly imbibed seeds. In intact seeds germinating from a skotodormant state, oxygen uptake increased at a time coincident with radicle protrusion, but did not achieve the levels of uptake of those seeds germinating from a primary dormant state. The decline in uptake of oxygen by secondary dormant seeds is the result of a lowered respiratory capability of the embryo itself, rather than of changes in permeability of the surrounding structures.Abbreviations BA N6-benzyladenine - Pfr active (far-redabsorbing) form of phytochrome - R red light - PEG polyethylene glycol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号